复杂生产系统决策若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今世界政治经济环境多变,科学技术高速发展,企业必须适应变化,科学并正确地作出决策,才能生存发展。同时,决策活动也是贯穿管理过程始终的一项基本活动,企业各项管理职能中都存在着如何科学合理决策的问题。论文以系统方法论作为指导,研究复杂生产系统决策中的若干关键技术,涉及面广,包括复杂问题诊断、战术层优化决策、战略层群体决策、人机智能系统的技术支撑等多个层面。
     生产经营系统是个复杂大系统,其决策问题的解决涉及多个学科的交叉和融合。论文概述系统方法论与系统科学体系,综述了复杂系统诊断与决策、综合集成方法等研究现状,讨论了生产经营系统的决策流程,明确了论文要解决的问题。针对复杂生产系统的决策难点,本文提出的核心思路是:从系统方法与相关知识工程两个角度,发挥群体智慧,定性定量综合集成,并提出了相应决策的总体思路,构建了决策过程的框架模型。
     问题识别与诊断是做好决策的基础。论文在对生产系统“问题”进行界定和分类的基础上,建立了问题识别层次模型。总结了面对不同“问题结构”和不同利益群体的“问题”挖掘方法。分别对半结构的和无结构的“问题诊断技术”进行讨论,尤其针对“软系统方法论模型”所存在的不足,提出了方法上的修正,给出了分析框架,设计了分析步骤与方法。对两类问题的两个相应案例进行处理,收到良好的效果。
     随着人们认知水平的提高,对一些具有不确定性、无结构的决策问题可以由定性决策转为定量决策。在生产经营系统的战术决策层面,解决了因时滞性因素的存在,难以构建定量化模型以进行优化决策的问题,完成了以下工作:①针对生产系统的时滞性因素,建立了一个基于大系统“关联预测法”的递阶模型,分散了系统的复杂性;②针对时滞性生产系统,提出了基于“条件最优化原理”的动态规划方法,用微分动态规划方法解决了动态规划的“维数灾”,并证明了算法的收敛性;③论文用上述方法解决某工厂多过程的最优协调和生产调度问题,仿真结果收到良好的节能效果,证明了本文提出方法的有效性。
     对于战略性决策的复杂问题,往往需要多人共同参与决策。论文进一步研究了复杂生产系统群体决策问题。从分析群体决策特点入手,给出了群体决策的过程模型;研究了群体决策有效性的影响因素,从决策个体的决策行为、角色、群体研讨规则等角度提出了相应对策;研究了群体决策中的知识交互与协同策略,讨论了决策中的克星循环现象,通过工程实践,总结了消除克星循环的一些方法。最后,论文研究了群体决策沟通的技术环境与手段的影响,通过设计试验与统计分析,得出了提高效率的有效途径,给出了相应的数据。
     考虑到生产经营系统在进行决策的各个阶段,都必须得到知识的支撑,问题诊断和战略决策中往往还离不开人―机智能系统,论文最后研究了工程领域中的自然语言理解与诊断推理技术。针对这两个问题:①研究提出了一种相关对象组合匹配的分层表达模型,在词形的特征标注中采用常量、特征常量与变量相结合的方法,便于在匹配搜索时分层地加以处理,兼顾了规则的准确性和覆盖面;②基于此模型,提出了切分组合与规则调用的方法、应用翻译规则获取译文流畅性的方案;③对规则匹配时的搜索,提出一种采用闭环消除法解耦的递阶智能搜索方法,证明了方法的严密性,避免了搜索中大量的回溯、内存占用和“组合爆炸”问题。
     最后对本文提出的理论和方法进行了综合应用研究。对一家工业集团公司进行技术系统的战略规划,设计了全部战略决策过程。整个过程通过合理的系统分解,采用各种群体研讨方式,综合使用定性定量方法,有效地解决了跨行业知识传递、整合的问题,达成了共识,给出了各类产品的发展前景,给企业指明了发展方向。
Today, in the world's ever-changing political and economic environment, with the rapid development of science and technology, enterprises must adapt to change themselves and make scientific and right decision in order to survive and develop. The decision-making activities has always been a basic activity throughout the management process. The problem of how to make rational decision exists in all of the enterprise various management functions. This paper takes systematic methodology as a guide to study some key technologies in complex production system decision-making. The research involves a wide range of diagnosis of complex problem, tactical optimization decision-making, group decision-making on strategic level, technical support for man-machine intelligent system and so on.
     Production-operation system is a large complex system that involves the intersection and integration of multiple disciplines. Therefore this paper summarizes the system methodology and the system of systematic science, and specially the status quo of diagnosing & decision-making, comprehensive integration approach for a complex system. On this basis, it gives the decision-making process of production-operation system, and highlights the main issues that should be studied. The core idea of this paper is that playing collective wisdom, exerting integrated qualitative and quantitative factors from the two angles of system approach and related knowledge work. It proposes general ideas of corresponding decision-making and builds a framework for decision-making process.
     Problem identification and diagnosis is the basis of good decision-making. On the basis of defination and classification of the‘problem’in production system, it establishes hierarchical model of problem identification. It sums up the method of excavating the‘problem’when facing different "problem structure" and the different interest groups. The paper discusses the semi-structured and unstructured‘problem diagnostic techniques’respectively. In particular, for the shortcomings of "Soft Systems Methodology Model", it proposes methods amendments, gives the analytical model and designs analysis steps and methods. Handling two corresponding types of cases to the two types of problems has received good results.
     As the level of cognitive rising, some uncertain type, non-structural decision-making problems can be changed from qualitative to quantitative decision-making. On the tactical decision-making level of production and management system, it solves the difficult of build quantitative models to optimize the decision-making due to the presence of time-delay factor. It creatively completed the following work:①for time-delay factor of the production system, it establishes a hierarchical model based on‘related prediction’of large scale system and disperses complexity of the system.②To solve problems of time-delay production system, it proposes dynamic programming based on“principle of optimality conditions”. It uses differential dynamic programming to solve the "curse of dimensionality" of dynamic programming and proves convergence of the algorithm.③The paper uses it to solve the problems of optimal coordination and production scheduling among multi-process in a factory. The simulation shows that a great energy-saving effect is achieved, and the validity of the method is proved.
     Complex strategic decision-making problems often require a few persons participating in decisions-making together. The paper studies group decision-making problems of complex production systems; and gives group decision-making process models based on the analysis of characteristics of group decision-making. Then it studies the factors that influence effectiveness of group decision-making, and puts forward corresponding countermeasures from the viewpoint of decision-maker’s behavior, role, and rules of group decision-making. It also studies knowledge interaction and collaboration strategies during group decision-making; and discusses killer-loop exists in decision-making. Through the engineering practice, it summarizes some of the ways to eliminate killer-loop. Finally, the paper studies impact of group decision-making communication’s technical environment and means. Experiment and statistical analysis results in effective ways to improve efficiency, which gives corresponding data.
     Considering every phase of decision-making within the production-operation system, knowledge is a must-be brace. Problem diagnosis and strategic decision could not be made without man-machine system. Thus, this paper studies the natural language understanding and diagnostic reasoning techniques in the field of engineering. Aims to those two problems:①this study proposes a layered expressed model of related objects with combinatorial matches. The constant, the characteristic constant and the variable was unified within the morphology characteristic labeling, in order to handle hierarchically when match searching which considering the rules of accuracy and the coverage;②based on this model, the paper proposes the method of segmentation- combination and rule scheduling, and the plan of access to affluent translation by translation rules;③when the rule’s match searching, it proposes a hierarchical intelligence researching method using a closed loop to eliminate the law decoupling which has proven to be rigorous. This method has avoided the massive recollections and the memory occupation during the search, as well as the problem of“combination explosion”.
     Finally, it makes comprehensive applied research on the theories and methods in this paper. It makes a technology systems strategic planning for an industry group and designs the whole process of the strategic decision-making. Through reasonable system disassembling, variety of group discussion ways, qualitative and quantitative methods, the paper effectively solves the cross-industry knowledge transfer, integration problems and reached agreement. It gives the prospects of the development of various products and points out the direction of development.
引文
[1]钱学森.人体科学与当代科学技术发展纵横观[M].北京:人民出版社,1996.
    [2]钱学森,于景元,戴汝为.一个科学新领域——开放的复杂巨系统及其方法论[J].自然杂志,1990,13(1): 3-10.
    [3]袁震东,毛羽辉.控制理论[M].上海:华东师范大学出版社,2000.
    [4]杨自厚.自动控制原理[M].北京:冶金工业出版社,1987.
    [5]庞特里雅金等.最佳过程的数学理论[M].上海:上海科学技术出版社,1983.
    [6]张嗣瀛.现代控制理论[M].北京:冶金工业出版社,1994.
    [7]钱学森,戴汝为等.工程控制论[M].上海:上海交通大学出版社,2007.
    [8]李人厚,邵福庆.大系统的递阶与分散控制[M].西安:西安交通大学出版社,1986.
    [9]辛格.大系统的动态递阶控制[M].北京:科学出版社,1983.
    [10] EAGLEN C.J.,SINGH,M.G.,COALES J.F. A hierarchical strategy for the temperature control of a hot steel roughing process[J]. Automatic, 1973,2(9):209-222.
    [11] FALLSIDE F,PERRY P. Hierarchical Optimisation of a Water Supply Network[J]. Proc.IEE ,1975, 2 (122):202-208.
    [12] SINGH M.G. Hierarchical Strategies for the on-line control of urban road traffic signals[J]. Proc.IFIP Symposium on Optimization Techniques, 1973,(5):56-60.
    [13] SINGH M.G.. River pollution control [J].International Journal of System science,1975, 1(6):9-21.
    [14]万百五,P.D.Roberts.稳态大系统中采用局部反馈的价格法协调[J].控制理论与应用,1984,1(1):36-44.
    [15]魏一鸣,范英,蔡宪,唐曾嵘,傅小锋.人口、资源、环境与经济协调发展的多目标集成模型[J].系统工程与电子技术, 2002,24(8):1-5.
    [16]柳澹,吴捷,曾君,郭红霞,余晓明.基于多Agent系统的分散发电调度规划[J].控制理论与应用, 2008,25(1):151-154.
    [17]曲中宪,武文华,宋代清.生产计划优化模型的研究[J].武汉理工大学学报, 2008,30(8):185-188.
    [18]段文泽,刘士荣.大规模供水系统的动态递阶最优控制[J].系统工程理论与实践,1990,10 (6):39-47.
    [19] JAMSHIDI M. Large Scale Systems: Modeling and Control.[M]. North-Holland,1983.
    [20]石纯一,黄昌宁等.人工智能原理[M].北京:清华大学出版社, 1994.
    [21] COHEN P.R,FEIGENBAUM E.A. The Handbook of Artificial Intelligence [M].WilliamKaufman, 1982.
    [22]庄镇泉等.神经网络与神经计算机[M].北京:科学出版社,1992.
    [23] HOPFIELD J.J. Neural Networks and Physical Systems with Emergent Collective Computational Abilities[J]. Proceedings of the national academy of sciences of the united states of America-biological science,1982,79(8):2554-2558.
    [24]戴汝为.人工智能发展的几个问题——1991年国际人工智能大会简介[J].模式识别与人工智能,1992,5(2):69-78.
    [25]戴汝为.社会智能科学[M].北京:北京科学出版社:2006.
    [26]戴汝为.从基于逻辑的人工智能到社会智能的发展.复杂系统与复杂性科学[J].2006, 3(2):21-25.
    [27] BERTALANFFY L V. General system theory [M]. New York, USA:Braziller, 1968.
    [28] PRIGOGINE I, STENGERS I. Order out of chaos [M]. New York, USA:Bantam books Incorporation, 1984.
    [29] HAKEN H. Advanced Synergetic [M]. New York, USA: Springer-Verlag, 1983.
    [30]约翰?霍兰.隐秩序——适应性造就复杂性[M].周晓牧,韩晖,译.上海:上海科技教育出版社,2000.
    [31]胡晓峰.战争复杂性与信息化战争模拟[J].系统仿真学报,2006,18(12):3572-3576.
    [32]杨叔子,丁洪.基于知识的诊断推理[M].北京:清华大学出版社,1993:76-96.
    [33] ALLEN T.F.H., & Starr .Hierarchy theory: Perspective for ecological complexity[M]. Chicago: University of Chicago Press,1982.
    [34] BAKYTS,DJANYBEKOV. Interval householder method for complex linear systems [J]. Reliable Computing,2006,(12):35-43.
    [35]华立,赵纯均.复杂性与社会经济系统建模[J].清华大学学报(哲学社会科学版),2001,16(3):43-47.
    [36]朱六璋,陈宗海.复杂系统的定性建模和定性控制综述[J].信息与控制,2001,30(3):234-237.
    [37]于跃海,邱海波,何建敏.诊断问题的类模型研究[J].系统工程理论与实践,2001,(7):58-61.
    [38]胡春,李平,王慧.面向制造企业的智能企业诊断系统[J].中南工业大学学报(自然科学版),2003,34(4):436-439.
    [39]于伟,沈晖,刘阶萍,陈禹六.基于模糊覆盖集的企业诊断模型及其求解策略[J].控制与决策,2004,19(5):557-560.
    [40]翟忠平,王坚,凌卫青.企业模型诊断的知识表达与知识库构建[J].计算机工程,2004,30(18):141-144.
    [41]董淑英.复杂系统的认识与系统模型[J].系统仿真学报,2006,18(2):554-557.
    [42]杨炳儒,李晋宏,宋威,李欣.面向复杂系统的知识发现过程模型KD(D&K)及其应用[J].自动化学报,2007,33(2):151-155.
    [43]戴汝为,李耀东.基于综合集成的研讨厅体系与系统复杂性[J].复杂系统与复杂性科学,2004,1(4):1-24.
    [44] ZIGURS,ILZE,BUCKLAND,BONNIE K. A theory of task/technology fit and group support systems effectiveness[J].MIS Quarterly,1998,22(3):313-335.
    [45]张志强,张朋柱.面向复杂决策任务的综合集成决策研讨总体框架设计[J].系统工程理论与实践,2006(1):9-18.
    [46]王建军,杨德礼.复杂系统决策的综合评价方法[J].哈尔滨工业大学学报,2008,40(8): 1337-1340.
    [47]郭四海,冯珊.面向SBA的综合集成决策支持系统[J].华中科技大学学报,2009,37(2):53-57.
    [48]王坚强.一类群决策问题的最优分配解法[J].中南大学学报,2003, 34(5):584-586.
    [49]杨萍,刘卫东.基于证据理论的群决策层次评价方法研究[J].系统工程与电子技术, 2002,24(2):42-44&92.
    [50]陈晓红,陈志阳,徐选华.面向复杂大群体的群体决策支持平台框架研究[J],计算机集成制造系统,2008, 14(9): 1796-1805.
    [51]朱建军,刘思峰.群决策中模糊偏好信息转化的若干性质研究[J],控制与决策, 2008,23(1):56-60.
    [52]孟志青,胡毓达,胡奇英.求解群体多目标决策问题的一种方法[J].系统工程理论与实践,2006(6):69-75.
    [53]张兴学,张朋柱.开放式群体决策研讨两种研讨模式有效性的实验研究[J].西安工程科技学院学报,2004,18(3): 361-367
    [54]郑全全等.多决策方法多交流方式的群体决策比较[J].心理学报,2005,37(2): 246-252.
    [55]刘洪,张龙.群体沟通意见模式涌现的因素影响分析[J].复杂系统与复杂性科学. 2004,1(4): 45-52.
    [56]王毅成.市场预测与决策[M].武汉:武汉理工大学出版社,2006.
    [57] SIMON H.A, Newell A. Computer simulation of human thinking and problem solving[J]. Monographs of the Society for Research in Child Development,1962,27(2):137-150.
    [58]陈琦,刘儒德.当代教育心理学[M].北京:北京师范大学出版社,1999.
    [59] NEVELL A,SIMON H. A. Human problem solving[M]. Englewood Cliffs,NJ:Prentice Hall Incorporation, 1972.
    [60]王甦,汪安圣.认知心理学[M].北京:北京大学出版社, 1992.
    [61] TVERSKY A, KAHNEMAN D. The framing of decisions and the psychology of choice[J]. Science, 1981,(211): 453-458.
    [62] KAHNEMAN D, Tversky A. Choices, Values and Frames[M].UK: Cambridge UniversityPress, 2000.
    [63]吴广谋.系统原理与方法[M].南京:东南大学出版社, 2005.
    [64]迈克尔.C.杰克逊.系统思考[M].北京:中国人民大学出版社,2009.
    [65]顾基发.意见综合——如何达成共识[J].系统工程学报.2001, 5(16): 340-347.
    [66]切克兰德.系统论的思想与实践[M].北京:华夏出版社,1990.
    [67]肖智军,刘胜军.精益生产方式——JIT[M].深圳:海天出版社,2002.
    [68]罗振壁,朱立强.工业工程导论[M].北京:机械工业出版社,2003.
    [69]姚振强,张雪萍.敏捷制造[M].北京:机械工业出版社,2004.
    [70]李培根,张洁.敏捷化智能制造系统的重构与控制[M].北京:机械工业出版社, 2003.
    [71] BANERJEE Prashant,Zetu Dan著.虚拟制造[M].班纳吉,张伟译.北京:清华大学出版社,2005.
    [72] BEVIS G E. A management viewpoint on the implementation of a MRP system[J]. Production and Inventory Management,1976,17(1):105-116.
    [73] BODINGTON C E. Planning scheduling and control integration in process indunsties [M] . McGraw-Hill Companies,1995.
    [74] BREITMAN R L,Lucas J M. PLANETS: a modeling system for business planning[J]. Interfaces,1987, 17(1): 94-106.
    [75] COHEN M A, Lee H L. Strategic analysis of integrated production/distribution systems: models and methods[J]. Operations Research,1988, 36(2): 216-228.
    [76] PATANKAR A K, Adiga S. Enterprise integration modeling: a review of theory and practice[J].Computer Integrated Manufacturing System,1995, 8(1):21-34.
    [77] SEYED J. Optimal production planning[J]. OR/MS Today,1996,23(2):56-59.
    [78] SEYED J. Strengthening key links[J]. OR/MS Today, 1998,(4).
    [79] PETRIE C J. Introduction in Enterprise Integration Modeling[A]. Proceedings of the FirstInternational Conference[C]. Cambridge,MA,USA:MIT Press, 1992.
    [80]蓝伯雄,陈晖娜.一个集成化企业生产计划模型[J].系统工程理论与实践,2001,21(9):33-41.
    [81]王志强,魏纪泳,余玉刚等.ATO型供应链生产规划与库存协调集成决策经济模型[J].系统工程理论与实践,2005,25(7): 17-25.
    [82]张晓东,严洪森.多级车间生产计划和调度的集成优化[J].机械工程学报,2005,41(9):98-105.
    [83] TAMURA H. A discrete dynamic model with distributed transport delay and its hierarchical optimization to preserve stream quality[J]. IEEE Transactions on Systems,Man,and Cybernetics,1974,4(6):424-429.
    [84] MOHANMMAD,JAMSSHIDI. Large-Scale System Modeling and Control[M].New York:Amsterdam Oxford North-Holland,1983.
    [85] WANG Xiaodong,XING Jixiang, WANG Xiaotao. Optimal control problems of linear quadratic time-delay systems via block-pulse functions [J]. ACTA Automatica Sinica,2005,17(6):731-735.
    [86]严洪森,张晓东.最优递阶随机生产计划与控制[J].自动化学报,2002,28(1):83-89.
    [87] Adler I, Resende M.G.C,Veiga G. An implementation of Karmarkar’s algorithm of linear programming [J]. Mathematical Programming ,1989, 44(3):297-335.
    [88] R.Bellman著.控制过程的数学理论引论[M].蒲富全等译.北京:人民教育出版社,1983.
    [89] JACOBSON D H. Second-order second-variation methods for determining optimal control: A comparative study using differential dynamic programming [J]. International Journal of Control, 1968, 7(2):175-196.
    [90]段鹰,段文泽.大规模时滞系统的动态规划模型与优化算法[J].机械工程学报,2007,43(4):215-223.
    [91]辛格著.大系统的动态递阶控制[M].李敉安等译.北京:科学出版社,1983.
    [92]周辉仁,郑丕谔.基于递阶遗传算法和BP网络的时间序列预测[J].系统仿真学报,2007,19(21):5055-5058.
    [93]李正欣,赵林度.基于贝叶斯框架下LS-SVM的时间序列预测模型[J].系统工程理论与实践,2007(5):142-147.
    [94]袁崇义. Petri网原理与应用[M].北京:北京电子工业出版社,2005.
    [95]施国强,李伯虎,柴旭东.不确定条件下复杂产品开发项目调度模型研究[J].计算机集成制造系统, 2007,13(10):1909-1915.
    [96]段文泽,杨少林.泵站调速节能的自适应控制[J].电气传动,1990,20(5):38-45.
    [97]袁凌,刘星,聂菁苗.群体决策极端化的征兆、成因及其改进策略[J].湖南大学学报(社会科学版),2007,4(21):58-61.
    [98]杨雷.不完全信息条件下多指标群体决策方法[J].系统工程理论与实践,2007,(3):172-176.
    [99]段鹰,易树平.动态网络环境下知识工作效率内涵探析[J].求索,2007,(7):45-48.
    [100]陈晓红,周艳菊.基于遗传算法的群体决策支持系统有效性的评价[J].系统工程,2001,19(6):55-59.
    [101] GALLUPE R B,Mckeer J D. Enhancing Computer-mediated Communication: an experimental investigation into the use of a group decision support system for face-to-face versus remote meetings[J]. Information &Management, 1990,18(1):1-13.
    [102]吕钊,刘新福,顾君忠.电子商务中群体决策行为的研究[J].计算机工程,2002,28(9):24-26.
    [103]赵渊,宗月琴.人员的招聘、考核、培训[M].北京:人民教育出版社,1996.
    [104]刘助柏.论知识创新能力[J].机械工程学报, 1999, 35(1):6-10.
    [105]路甬祥,陈鹰.人机一体化系统科学体系和关键技术,[J].机械工程学报,1995,31(1):1-7.
    [106]戴汝为.支持科学决策和咨询的新技术——思维系统工程[J].中国工程科学,2005,7(1):15-20.
    [107]冯志伟.国外主要自然语言理解系统概况[J].计算机科学,1984,2(2):25-32.
    [108]冯志伟.机器翻译研究[M].北京:中国对外翻译出版公司, 2004.
    [109] WOODS W A. Transition Network Grammars for Natural Language Analysis [J]. Communication of ACM, 1970,13(10):591-606.
    [110]菲尔墨.格辩[M].北京:社科院出版社,1980.
    [111] Cognitive Science Laboratory at Princeton University Wordnet-1.7.1[EB/OL]. http://www.cogsci.princeton.edu/~wn/,2004-05-10.
    [112]张民,李生,赵铁军,张艳凤.统计与规则并举的汉语词性标注算法[J].软件学报,1998,9(2):134-138.
    [113]段文润.隐词形论及其在机器翻译中的应用[EB/OL]. http://www.zgkjcx.com/Article/ShowArticle.asp?ArticleID=3173/.2007.
    [114]段文润,段文泽,段鹰.JX-1机器翻译系统试验研究报告[EB/OL]. http://www.zgkjcx.com/Article/ShowArticle.asp?ArticleID=2243#/ 2007.
    [115]段绮丽,段之宓.机器翻译中自然语言的梯级表示模型[A].机器翻译研究进展——2002年全国机器翻译研讨会论文集[C].2002:132-137.
    [116]李蕾,郭祥昊,钟信义.面向特定领域的理解型中文自动文摘系统[J].计算机研究与发展, 2000,37(4):493-497.
    [117]段鹰,段文泽,易树平.相关对象组合匹配模型及解耦递阶智能搜索[J].科研管理,2009,30 (1):22-27.
    [118]杜晓明,于永利.规则推理和案例推理的集成研究[J].计算机工程,1998,24(5):32-32.
    [119] GALLUPE B. Knowledge management systems: surveying the landscape[J]. International Journal of Management Reviews, 2002,3(1):61-77.
    [120]张兴,王英林,张申生.可重构知识管理系统中案例与规则的集成推理方法[J].计算机应用与软件, 2008, 25(2): 1-3.
    [121]段鹰等.机器翻译中的一种状态空间搜索方法[J].重庆大学学报,2006,29(3):99-102.
    [122]王凌.智能优化算法及其应用[M].北京:清华大学出版社,2001.
    [123]杨尔弘等.基于粗糙集的汉语词语义项知识的获取[J].中文信息学报,2002,16(3):27-33.
    [124]苗夺谦等.知识约简的一种启发式算法[J].计算机研究与发展,1999,36(6):681-684.
    [125]彭岩,鄢琦,齐剑锋,涂序彦.基于大系统理论的分布式数据库系统设计与分析[J].计算机工程, 2002, 28(7):35-37.
    [126]李士勇,田新华.非线性科学与复杂性科学[M].哈尔滨:哈尔滨工业大学出版社, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700