基于激光扫描点云的数据处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机技术和机械制造技术的日益发展,逆向工程已广泛应用于产品再创新和设计中。作为产品零部件外形几何逆向工程的一个研究热点,基于激光扫描点云的数据处理技术作为逆向工程几何建模的重要技术,它以激光扫描点云作为逆向数据预处理和建模的基本元素,目前该技术在国内外得到蓬勃发展。该项技术以获取的点云数据为处理对象,不用构建三角网格,在处理超大规模点云中,对点云数据进行预处理、特征提取和模型重构方面,显示出其独特的优势,现在正成为逆向工程研究的一个热点。本文针对该领域中的若干关键性问题,结合山东省自然科学基金项目“基于多尺度特征的复杂曲面重构技术研究”(项目编号:Y2006F12)进行了深入地研究。
     (1)为了满足逆向工程后续产品开发和重构的精度要求,本文完成了激光扫描点云数据的噪声数学描述与分类,制定了把各种噪声降到最低甚至有效去除的数据预处理流程。
     根据激光扫描点云数据的特点,给出了噪声点的产生机理及其数学描述,根据建立的数学模型,把噪声点进行分类:由系统测量误差α(x_i,y_i,z_i),和系统随机误差β(x_i,y_i,z_i)引起的噪声点,以及由随机性分量g~S(x_i,y_i,z_i)引起的噪声点。分别根据其特点制定切实可行的去噪方案有针对性的去除。为此,制定了一套数据预处理去除噪声的流程,包括明显噪声点去除,噪声点滤波平滑处理,点云数据的光顺处理等。工作结果表明,在求得的切片点云(从模型的三维离散点云数据到获取的二维截面轮廓的点云数据)基础之上,所采取的去除噪声预处理流程能够把由系统测量误差、系统随机误差以及随机性分量所引起的噪声点减小甚至部分消除,满足逆向工程后续产品开发和重构的精度要求。
     (2)研究了激光扫描点云数据的有关预处理算法,提出了优化修正量光顺算法。
     本文在激光扫描点云数据密集、数据量大、不便于存贮的背景下,在保证精简后数据精度的前提下,提出一种用偏差参数和角度允差值来进行点云数据压缩的算法,该算法用于处理的激光扫描点云数据是经过大噪声点去除、滤波和优化修正量光顺处理之后的海量点云数据。该压缩算法简单直观,能够根据公差值d_T和角度最大允差值的大小来压缩数据,这一点能最大限度地满足机械产品外形和精度要求。能够最大限度地保留原有点云数据的外形,提高压缩后数据点的精度,对海量点云数据的压缩具有实际应用价值。
     针对所采集的激光扫描点云密集和数据量大的特点,重点研究了截面线点云数据的光顺处理,这方面比较著名的文献包括,Eck M.,Jaspert R.和G.H.Liu,Y.S.Wang and Y.F.Zhang所提出的光顺算法,可是,G.H.Liu和Y.S.Wang等人所提出的光顺算法,其修正量是递进的,利用寻优函数的约束来确定修正量,从而使坏点得到光顺,其修正量的阈值没有限制;修正方向的指向是按照能量函数方程符号的变化作出决定,其编程实现相对复杂。由此,本文提出了一种优化修正量光顺算法,在分块进行粗、精光顺处理采样数据过程中,分别由曲率及其一阶差分符号的变化来辨识坏点。坏点的修正方向直接按照能量函数方程确定出由型值点指向三角形形心的正或负的G向;修正量由赋初值开始,然后按照能量函数方程,递进搜索,满足能量代数式最小值后搜索停止。本文所提出的优化修正量光顺算法,主要用于光顺激光扫描散乱点云数据,该算法能够满足曲线曲面重构的光顺性要求,可以有效保留曲线的原有几何外形。最后通过在二维散乱点云上的实例仿真,验证了所提算法的适用性和有效性。
     (3)提出了用离散曲率算法进行截面线特征提取。
     特征提取是逆向工程的重要步骤,其中截面线特征点的弱化是需要解决的关键问题。本文重点研究了二维截面线特征点的提取。检索到有关特征点直接提取的文献有,自适应k-曲率(AKC)函数算法,在断点提取中,AKC函数是用于提取拐角和光滑连接之间的特征点;映射高度函数(PHF)算法,PHF函数用于从圆弧中区分出直线段的特征点提取;由Liu和Ma提出的相对转角绘图(RSTM)算法,用于辨识轮廓线的特征点提取问题。AKC函数算法和PHF算法只能提取某种特征点,其广泛应用受到一定限制。
     在研究了特征点直接提取上述文献相关算法的基础上,提出用离散曲率法提取特征点。所提出算法的主要内容包括:用包含了高斯核函数曲线的曲率表达式建立相关数学模型,选用了合适的离散尺度因子。根据离散曲率曲线的局部极值点,确定出截面线特征点集,并进行特征点的融合。所提出的算法用于准确地获取激光扫描点云的原始设计意图,能最大限度地与原有形状特征元保持一致。顺利地完成逆向建模过程的关键一步。在实例应用中,把RSTM算法和所提出的离散曲率算法在实例应用上做了输出比较,结果是,本文提出的离散曲率算法特征点提取问题,能够提取弱化的特征点,不容易出现特征点的漏检问题,是一种适用和有效的算法。
With the development of computer and mechanical manufacturing technology, reverse engineering has been widely used in product re-innovation and design. As a research hot topic of geometrical components and an important geometric modeling technique in reverse engineering, data processing technology based on laser scanning point cloud, which is regarded scattered point cloud data as the the basic element during the process of data pre-processing and modeling, and which is so important that it is full of development at home and abroad at present time. The data processing technology, regarded the obtained point cloud data as processing objects and without building a triangular mesh, now shows its unique advantages and is becoming a hot research spot, during the process of dealing with very large scale point cloud, point cloud data preprocessing, feature extraction and model reconstruction. In this paper, some key issues in the field of reverse engineering have been developed deeply, which is helped by the National Natural Science Foundation of Shandong Province " Complicated Surface Reconstruction Technology Research Based on Multi-scale Features " (Item Number: Y2006F12).
     (1) In order to meet the precision of following product development and reconstruction in reverse-engineering, mathematical description and classification about noise have been completely finished, and a set of data pre-processing process has been set up, which can minimize or effectively eliminate the noise.
     According to the characteristics of laser scanning point cloud data, some mathematical description and generated mechanism of noise points are descriped. Based on the established mathematical model, the noise points are classified into two categories, one is that caused by the system measurement errorα(x_i,y_i,z_i)and the system random errorβ(x_i,y_i,z_i), the other is that caused by the random component g~s(x_i,y_i,z_i), the removal of which is carried up according to their characteristics relied on some feasible de-noised methods. So, a set of de-noised process of data pre-processing is developed, including the removal of obviously noise points, smoothing filter process of noise points, and smoothing process of point cloud data, etc.. The run results show that the de-noised pre-processing process can minimize noise points, and can meet the precision of following product development and reconstruction in reverse-engineering based on the sliced point cloud data (from three-dimensional discrete point cloud data of the model to the obtained point cloud data of two-dimensional cross-section contour), which caused by system measurement error, system random error and system random component.
     (2) The preprocessing algorithms about massive laser scanning point cloud data have been studied, and an optimized amount of smoothing algorithm has been proposed.
     In this paper, an bias parameter algorithm and an allowable difference of angle is presented to compress point cloud data, under the condition of intensive and massive laser scanning point cloud data which is not easy to store, and data accuracy assured after data compression, which is used to process laser scanning point cloud data through the big noise points removal, filtering and optimal amount smoothing process. The above mentioned compression algorithm is simple and intuitive, which can compress the data based on the size of the tolerance values about bias parameter and bias angle, and can meet the required appearance and precision of mechanical products greatly. The algorithm can preserve the original shape of point cloud data, and can improve the accuracy of the compressed data points, which has practical application value on the compression of massive point cloud data.
     As the collected laser scanning point cloud data is intensive and large, some smoothing process algorithm about laser scanning point data of a sectional curve have been mainly researched. The well-known literatures in this field, Eck M., Jaspert R., and G.H. Liu, Y.S. Wang and Y.F.Zhang, in which an smoothing algorithm is proposed. However, the smoothing algorithms are proposed by G.H.Liu and Y.S.Wang etc., the revised amount is progressive, and the constrained optimizing function is used to determine the amendment amount, which has no limit to the threshold value. And the revised direction to point is determined in accordance with changes of energy function equation symbols, in which the its program is relatively complex. Thus, an optimized amount of smoothing algorithm is presented in this paper, which identified bad points in accordance with the sign change of their curvatures and corresponding first-order differences during the process of coarse smoothing and fine smoothing. The corrected direction of bad points is pointed to the positive or negative G of the triangle centroid from the sampled data in accordance with the energy function equation. The revised amount has been an incremental search, beginning with an initial value and then following the energy function equation, until the minimum value of energy algebraic expression is meet. The proposed optimized amount smoothing algorithm in this paper, mainly used for smoothing scattered laser scanning point cloud data, can meet the smoothness requirements of curve and surface reconstruction. The proposed algorithm is particularly effective in terms of shape preservation. Case studies are presented that illustrate the efficacy of the proposed algorithm.
     (3) A discrete curvature algorithm is proposed to extract feature points of a sectional curve.
     Feature extraction is an important process in reverse engineering, in which weak feature points of a sectional curve is the key issues to be dealed with. The feature points extraction of two-dimensional cross-sectional curve is focused on in this paper. The retrieved literatures about feature points extracted directly include the adaptive k-curvature (AKC) function algorithm, which is used to extract the feature points between corner and smooth connection, the mapping height function (PHF) algorithm, which is used to distinguish feature points from arc and line segments, and the relative angle mapping (RSTM) algorithm proposed by Liu and Ma, which is used to identify the feature points of contours. The AKC function algorithm and PHF algorithm can only extract some certain feature points, which has certain restrictions used in the wide field.
     Based on directly extracting feature points of the above-mentioned documents, the discrete curvature method is proposed to extract feature points. The main contents of the proposed algorithm include, the curvature expression comprised of Gaussian kernel function curve is used to establish the relevant mathematical models, and a suitable discrete scale factor is chosen. According to the local extreme points of discrete curve, a set of feature points is determined, and the fuse of feature points is carried out subsequently. The proposed algorithm is used to accurately obtain the original design intent of the laser scanning point cloud, which can greatly keep with the original shape feature cell consistently. Then a key step in reverse modeling process is successfully completed. During the course of example application, an output comparison between the RSTM algorithm and the proposed discrete curvature algorithm has been carried out, which the the result is that the proposed method in this paper can extract the weak feature points, and cannot prone to undetect feature points. Then the output results show the proposed algorithm is practical and effective.
引文
[1]卢秉恒,唐一平.21世纪新产品快速开发技术[M].西安:陕西科学技术出版社,2000:3-10
    [2]孙大涌等.先进制造技术[M].北京:机械工业出版社,2000:4-18
    [3]梁福军,石治平.21世纪的制造技术.机械工程学报[J],2002,38(1):1-8
    [4]王先逵.制造技术的历史回顾与面临的机遇和挑战[J].机械工程学报,2002,38(8):1-8
    [5]金涛,童水光等编著.逆向工程技术[M].北京:机械工业出版社.2003:1-5
    [6]Lischinski D.,Rappoport A..Image-based rendering for non-diffuse synthetic scenes[C].In Rendering Techniques'98,Wien,Austria,1998,Vienna:Springer,1998,6:301-314
    [7]Zwicker M.,Pauly M.,Knoll O.,et al.Pointshop 3D:an interactive system for point-based surface editing[C].SIGGRAPH,2002,36(4):322-329
    [8]Fleishman S.,Daniel C.O.,Aiexa,et al.Progressive point set surface[C].ACM Transactions on Graphics,2002:20-36
    [9]Tamas Varady,Ralph Martin,Jordan Cox.Reverse Engineering of Geometric Models -an Introduction[J].Computer Aided Design.1997,29:253-254.
    [10]栗全庆等.实物反求工程的关键技术分析[J].机械设计.1999,5:4-6.
    [11]Jarvis R.A..A perspective on range finding techniques for computer vision[C].IEEE PMAl.1983,5(5):505-512
    [12]刘利.三维测量技术新动态.机电一体化[J].1997,1:20-23.
    [13]安卫.三坐标测量机使用现状与发展动态[J].计量技术.1996,9:14-16.
    [14]张曙.Renishaw数字化扫描系统[J].机电一体化.1996,1:10-14.
    [15]Watanabe S.,Yoneyama M..An ultrasonic visual sensor for three-dimensional object recognition using neural networks[C].IEEE Transactions on Robotivs and Automation.1992,8(2):240-249.
    [16]Motavalli S.,Bidanda B..A part image reconstruction system for reverse engineering of design modification[J].Journal of manufacturing system.1991,10(5):383-395.
    [17]Modjarrad A..Non-contact measurement using a laser scanning probe[C].SPIE in Process Optical Measurements.1988,I 0:229-239.
    [18]Moring I.,Heikknen T.,Myllyla R..Acquisition of three-dimensional image data by a scanning laser range finder[J].Journal of Optical Engineering.1989,28(8):897-902.
    [19]Wang Y.F.,Aggarwal J.K..3D object description from stripe coding and multiple views[C].Proceedings of the 5th sacndinavin Conference on Image analysis,1987,60(6):669-680.
    [20]Rockwood A.,Winget J..Three-dimensional object reconstruction from two-dimensional image[J].Computer Aided Design.1997,129(4):279-285.
    [21]Stanley J.H.et al.CT-assisted solid freeform fabrication[C].Proceedings of the sixth International Coference on Rapid Prototyping,Dayton,OH.1995:267-274
    [22]Lin A.C.,Lin S.Y.,Fang T.H..Automated sequence arrangement of 3D point data for surface fitting in reverse engineering[J].Computers in Industry,1998,35(2):149-173
    [23]钟钢.曲线曲面重建方法研究[D].浙江大学博士学位论文,2002,6:20-65
    [24]刘云峰.基于截面特征的反求工程CAD建模关键技术研究[D].浙江大学博士学位论文,2004,6:21-22
    [25]Wu Y.F.,Wong Y.S.,Loh H.T.,et al..Modelling cloud data using an adaptive slicing approach[J].Computer Aided Design,2004,36(1):231-240
    [26]柯映林,王青.反求工程中的点云切片算法研究[J].计算机辅助设计与图形学学报.2005,17(8):1798-1802
    [27]罗大兵,高明,王培俊.逆向工程中数字化测量与点云数据处理[J].机械设计与制造.2005,9
    [28]周纯江,杜红文.面向反求技术的测量数据预处理[J].机电工程,2004,21(5):50-51
    [29]范怀志,刘江,于宁.反求工程中横截面扫描数据预处理[J].机械设计与制造,2007.9:71-73
    [30]王淑君,赵玉刚,赵国勇.曲面激光数字化测量数据平滑方法的研究[J].计算机测量与控制,2002,10(8):494-510
    [31]曹新民.反求工程中散乱数据拓扑和三角曲面重建关键技术研究[Z].2004,6:12-15
    [32]李剑.基于激光测量的自由曲面数字制造基础技术研究[D].浙江大学博士学位论文,2001,6:30-78
    [33]郑康平.基于点云数据的曲面重构关键技术研究[D].西安交通大学博士学位论文,2002.6:50-92
    [34]Vollmer J.,Mencl R.,Mailer H..Improved laplacian smoothing of noisy surface meshes[J].Computer Graphics Forum.1999,18(3):131-138
    [35]Kai W.,Dieter R.,Dirk S..An approach to computer-aided quality control based on 3D coordinate metrology[J].Journal of Materials Processing Technology,2000,10:96-110
    [36]Pietro P.,Jitendra M..Scale-space and edge detection using anisotropic diffusion[J].IEEE Transactions on pattern analysis and machine intelligence,1990,12(7):629-638
    [37]Zhang X.,Xi J.,Yan J..A methodology for smoothing of point cloud data based on anisotropic heat conduction theory[J].International Journal of Advanced Manufacturing Technology,2006,8(30):70-75
    [38]Farin G.,Sapidis N..Curvature and fairness of curves and surface.IEEE,Computer Graphics & Application.1989,5:52-57
    [39]Sapidis N.,Farin G..Automatic fairing algorithm for B-spline curves[J].Computer Aided Design.1990,22(2):121-129
    [40]Kjellander J.A.P..Smoothing of cubic parametric splines[J].Computer Aided Design.1983,15(3):175-179
    [41]Hahmann S.and Konz S..Knot-removal surface fairing using search strategies[J].Computer Aided Design.1998,30(2):131-138
    [42]Pigounakis K.G.,Kaklis P.D..Convexity-preserving fairing[J].Computer Aided Design.1996,28(12):981-984
    [43]Hoscheck J..Intrinsic parametrization for approximation[J].Computer Aided Geometric Design.1988,21:27:31
    [44]Rogers D.F.,Fog N.G..Constrained B-spline curve and surface fitting[J].Computer Aided Design.1989,21:641-648
    [45]Sarkar B.,Menq C.H..Parameter optimization in approximating curves and surfaces to measurement data[J].Computer Aided Geometric Design.1991,8:267-290
    [46]Hyun Chart Lee,Seek Yong Hong,Chung Sung Hong,etc..Analytic and discrete fairing of three-dimensional B-spline curves using nonlinear programming[J].Computers & Industrial Engineering.2007,53(2):263-269
    [47]苏步青,刘鼎元.计算几何[M].上海科学技术出版社.1981
    [48]王平江,黄雪梅,陈吉红.曲面激光的密集测量的三维数据的三角片逼近方法[J].工程图学学报.1998(1):17-28
    [49]田晓东,史桂蓉,杬血榆.复杂曲面实物的逆向工程及其关键技术[J].机械设计与制造工程,2000,29(4):1-4
    [50]阎华,林巨广,蔡树煌.汽车覆盖件逆向工程中若干关键技术的探讨[J].Die and Mould Technology,200 1.2:4-8
    [51]Chen Y.H.,Ng C.T.,Wang Y.Z..Generation of an stl file from 3d measurement data with user-controlled data reduction[J].Advanced Manufacturing Technology,1999(15):127-131
    [52]Hammman B..A data reduction for triangulation surface[J].Computer Aided Geometric Design,1994(11):197-214
    [53]Fishcher A..Reverse engineering:multi-level models for design and manufacturing [J].Advanced Manufacturing Technology,2002(15):566-572
    [54]朱心雄.自由曲线曲面造型技术[M].北京:科学出版社,2000,228-230
    [55]金涛,陈建良,童水光.逆向工程技术研究进展[J].中国机械工程.2002,13(16):1430-1438
    [56]Varady T.,Martin R.R.,Cox J..Reverse engineering of geometric models-an introduction[J].Computer Aided Design,1997,29:255-268
    [57]Wang G.Y.,Houkes Z.,Zheng B.,Li X..A note on conic fitting by the gradient weighted least-squares estimation:refined eigenvector solution[J].Pattern Recognition Letters.2002,23:1695-1703
    [58]Ahn S.J.,Rauh W.,Warnecke H.J..Least-squares orthogonal distances fitting of circle,sphere,ellipse,hyperbola and parabola[J].Pattern Recognition.2001,34: 2283-2303
    [59] Farago F.T.. Handbook of Dimentional Measurement [M], Second Edition. New York: Industrial Press, 1982
    [60] Fischler M.A. and Bolles R.C.. Perceptual Organization and Curve Partitioning [C]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1986, 8: 100-105
    [61] Sporring J., Olsen O.F., Nielsen M., Weickert J.. Smoothing images creates corners [J]. Image and Vision Computing. 2000,18: 261-266
    [62] Wu W.Y.. Dominant point detection using adaptive bending value [J]. Image and Vision Computing. 2003, 21: 517-525
    [63] Horng J.H.. An adaptive smoothing approach for fitting digital planar curves with line segments and circular arcs [J]. Pattern Recognition Letters. 2003, 24: 565-577.
    [64] Sarkar B., Singh L.K., Sarkar D.. Approximation of digital curves with line segments and circular arcs using genetic algorithms [J]. Pattern Recognition Letters.2003, 24:2585-2595
    [65] Rosin P.L., West G.A.W.. Nonparametric Segmentation of curves into Various Representations [C]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1995, 17: 140-153
    [66] Lowe D.G.. Three-Dimentional Object Recognition from Single Two-Dimensional Images [J]. Artificial Intelligence. 1987, 31: 355-395
    [67] Rattarangsi A., Chin R.T.. Scale-based detection of corner of planar curves [C].IEEE Transactions on Pattern Analysis and Machine Intelligence. 1992, 14: 430-449
    [68] Ichoku C, Deffontanies B. and Chorowicz J.. Segmentation of Digital Plane Curves: A Dynamic Focusing Approach [J]. Pattern Recognition Letters. 1996, 17: 741-750
    [69] Tong Zhi-Min, Tang Wen-Yan, Ma Qiang, etc.. Reconstruction of antenna offset surface based on segmentation technique [J]. Journal of Nanjing University of Science and Technology. 2008, 32(5): 585-589
    [70] Yoichi Hori. Future Vehicle Driven by Electricity and Control-Research on Four-Wheel-Motored "UOT Electric March" [C]. IEEE Transaction on Industrial Electronics (S0278-0046). 2004, 51(5): 954-962
    [71] Motoki Shino, Masao Nagai. Yaw-moment control of electric vehicle for improving handling and stability[J].JSAE Review(S0389-4304).2001,22(4):473-480
    [72]陈晓波,熊光楞,郭斌,张和明.基于HLA的多领域建模研究[J].系统仿真学报.2003,15(11):1537-1542
    [73]熊光楞,范文慧,陈晓波.复杂产品开发的仿真技术[J].系统仿真学报.2004,16(2):194-201
    [74]李伯虎,柴旭东,熊光楞等.复杂产品虚拟样机工程的研究与初步实践[J].系统仿真学报.2002,14(3):336-341
    [75]Farzad Tahami,Shahrokh Farhag.A Fuzzy Logic Direct Yaw-Moment Control System for All-Wheel-Drive Electric Vehicles[J].Vehicle System Dynamics (S0042-3114).2004,41(3):203-221
    [76]Shin-ichiro Sakai,Yoichi Hori.Robustified Model Matching Cotrol for Motion Control of Electric Vehicle[C].Proceedings of the IEEE Workshop Advanced Motion Control,1988,USA.1988:574-579
    [77]马骊溟,徐毅,李泽湘.基于高斯曲率极值点的散乱点云数据特征点提取[J].系统仿真学报.2008,20(9):2341-2344
    [78]Choi S.N.,Kolluri R..The power crust[C].ACM Symposium on solid Modeling and Applications,2001:25-37
    [79]Gumhold S.,Wang X.,Mcleod R..Feature extraction from point clouds[C].Proceedings on 10th International Meshing Roundatable,2001:51-64
    [80]Pauly M.,keiser R.,Gross M..Multi-scale feature extraction on point-sampled surfaces[C].Eurographics'03,2003,22(3):32-41
    [81]李培华,张田文.主动轮廓线模型(蛇模型)综述[J].软件学报,2000,11(6):751-757
    [82]朱根松,周天瑞,潘海鹏,胡世飞.反求工程中扫描曲面特征的提取[J].计算机工程与科学.2007,29(5):71-72
    [83]Hsin-Teng Sheu,Wu-Chih Hu.Multiprimitive segmentation of planar curves-A two level breakpoint Classification and tuning approach[C].IEEE Transactions on Pattern Analysis and Machine Intelligence.1999,21(8):791-797
    [84]Wu-Chin Hu.Multiprimitive segmentation based on meaningful breakpoints for fitting digital planar curves with line segments and conic arcs[J].Image and Vision Computing.2005,23:783-789
    [85]张舜德,朱东波,卢秉恒.反求工程中三维几何形状测量及数据预处理[J].机电工程技术.2001,1:7-10
    [86]李春玲.复杂曲面激光测量与重构相关技术研究[D],济南:山东大学硕士学位论文,2005:20-22
    [87]刘云峰,柯映林,王秋成等.基于特征的反求工程技术研究[J].计算机集成制造系统.2006,12(1):32-37
    [88]吕震.反求工程CAD建模中的特征技术研究[D].浙江大学博士学位论文.2002,6:70-102
    [89]Anderi R.,Mendgen..Modelling with constraints:theoretical foundation and application[J].Computer Aided Design.1997,128(3):155-168
    [90]孙正兴,杬雪榆,丁秋林.面向制造设计中的约束处理方法研究[J].机械设计.1997,2:14-17
    [91]孙正兴,张福炎,蔡士杰.基于特征参数化设计中的尺寸约束及其表示[J].机械设计.1998,5:1-4
    [92]Werghi N.,Fisher R.,Robertson C.,etc..Object reconstruction by incorporating geometric constraints in reverse engineering[J].Computer Aided Design.1999,31:363-399
    [93]小西荣一,深见远造.线性代数-向量分析[M].沈阳:辽宁人民出版社,1981:99-106
    [94]赵凤治.数值优化中的二次逼近法[M].北京:科学出版社,2000:45-60
    [95]张光澄,黄世莹,侯泽华.最优化计算方法[M].成都:成都科技大学出版社,1989:140-168
    [96]Chen Y.H.,Liu C.Y..Quadric surface extraction genetic algorithms[J].Computer Aided Design.1999,31:101-110
    [97]周利民.自由曲面快速反求技术与应用研究[D].西安交通大学博士学位论文.1997,6:50-96
    [98]许智钦,闫明,张宝峰等.逆向工程技术三维激光扫描测量[J].天津大学学报.2001,34(3):404-407
    [99]Renz W..Interactive smoothing of digitized point data[J].Computer Aided Design. 1982,14(5):267-269.
    [100]Lott N.J.,Pullin D.I..Method for fairing B-spline surfaces[J].Computer Aided Design.1988,20(10):597-604.
    [101]杨耀权,施仁,于希宁等.激光扫描三角法大型曲面测量中影响参数分析[J].西安交通大学学报.1999,33(7):15-18
    [102]Ming-Chih Huang,Ching-Chih.The Pre-Processing of Data Points for Curve Fitting in Reverse Engineering[J].The International Journal of Advanced Manufacturing Technology.2000,16(9):635-642.
    [103]董明晓,郑康平.一种点云数据噪声点的随机滤波处理方法[J].中国图象图形学报.2004,2(9):245-247.
    [104]G.H.Liu,Y.S.Wang,Y.F.Zhang.Adaptive fairing of digitized point data with discrete curvature[J].Computer-Aided Design.2002,34:309-320.
    [105]陈杰,高诚辉,何炳蔚.反求工程三维特征提取技术的研究进展[J].中国工程机械学报.2009,2:239-244
    [106]柯映林,范树迁.基于点云的边界特征直接提取技术[J].中国工程机械学报.2004,40(9):116-120
    [107]Eck M.,Jaspert R..Design fair curves and surfaces[M].Sapidis N.S.1994:45-60.
    [108]付丽琴,陈树越.反求工程中实体的数据获取技术[J].华北工学院测试技术学报.2001,15(4):223-248
    [109]LIU Shoubin,MA Weiyin.Motif analysis for automatic segmentation of CT surface contours into surface feature[J],Computer-aided design,2001,33(14):1091-1109
    [110]施法中.计算机辅助几何设计与非均匀有理B样条[M].北京:北京航空航天大学出版社,1994:21-26,302-306
    [111]Lee E.T.Y..Choosing nodes in parametric curve interpolation[J].Computer Aided Design.1989,6(21):363-370
    [112]Farin G..Curvature continuity and offsets for piecewise conics[C].ACM Transactions on graphics.1989,2(8):89-99
    [113]Saint-Marc P.,Chen J.-S.,Medioni G..Adaptive smoothing:A general tool for early vision[C].IEEE Transactions on Pattern Analysis & Machine Intellegence.1991,13(6):514-529
    [114]Xinting Gaoa,Farook Sattara,Azhar Quddusb,etc..Multiscale contour corner detection based on local natural scale and wavelet transform[J].Image and Vision Computing.2007,25(6):890-898
    [115]Steger C..An Unbiased Detector of Curvilinear Structures[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(2):113-125
    [116]Hui A.,Liew S.C.,Kwoh L.K..Extraction of Linear Features in Multispectral Imagery[C].Geoscience and Remote Sensing Symposium,IGARSS'01,2001,5:2310-2312
    [117]Monga O.,Armande N.,Montesinos P..Thin Nets and Creat Lines:Application to Satellite Data and Medical Images[J].Computer Vision and lmage Understanding,1997,67(3):285-295
    [118]Armande N.,Montesinos P.,Monga O.,et al.Thin Nets Extraction Using a Multiscale Approach[J].Computer Vision and Image Understanding,1999,73(2):248-257
    [119]杨少军,杨艺山,刘晨亮.线特征提取的多尺度分析[J].计算机应用.2004,24(9):16-18
    [120]YANG H.J.,ZHOU Y.Q.,ZHAO Z.X..Curve Feature Extraction in Reverse Engineering[C].Proceedings of the 12th Chinese Automation and Computing Society Conference in the UK.Loughborough:Academic Press,2006:256-260
    [121]Asada H.,Brady M..The Curvature Primal Sketch[C].IEEE Transactions for Pattern Analysis and Machine Intelligence.1986,8:2-14
    [122]Wu Q.M.,Rodd M.G..Boundary Segmentation and Parameter Estimation for Industrial Inspection[C].Proceedings on IEEE Computers and Digital Techniques.1990,137:319-327
    [123]Asada H.,Brady M..The Curvature Primal Sketch[C].IEEE Transactions on Pattern Analysis and Machine Intelligence.1986,8:2-14
    [124]Sheu H.T.,Hu W.C..A Rotationally Invariant Two-Phase Scheme for Corner Detection[J].Pattern Recognition.1996,29:819-828
    [125]Rosenfeld A.,Johnston E..Angle Detection on Digital Curves[C].IEEE Transactions on Computers.1973,22:875-878
    [126]李江雄,柯映林.基于特征的复杂曲面反求建模技术研究[J].机械工程学报.2000,36(5):18-21
    [127]The C.H.,Chin R.T..On the Detection of Dominant Points on Digital Curves[C].IEEE Transactions on Pattern Analysis and Machine Intelligence.1989,11:859-872
    [128]Loncaric S..A survey of shape analysis techniques[J].Pattern Recognition.1998,31(8):983-1001
    [129]Cachia A.,Mangin.1.,Riviere D.,etc..A primal sketch of the cortex mean curvature:a morphogenesis based approach to study the variability of the folding patterns[C].IEEE Transactions on Medical Imaging.2003,22(6):754-765
    [130]Arkin E.,et al.An efficiently computable metric for comparing polygonal shapes[C].IEEE Transactions on Pattern Analysis and Machine Intelligence.1991,13(3):209-215.
    [131]Liu S.,Ma W..Seed-growing segmentation of 3-D surfaces from CT-contours data [J].Computer Aided Design.1999:31(8):517-536
    [132]Bribiesca E..A new chain code[J].Pattern Recognition.1999,32(2):235-251
    [133]Bribiesca E..A geometric structure for two-dimensional shapes and three dimensional surfaces[J].Pattern Recognition.1992,25(5):483-496
    [134]Bribiesca E.,Guzman A..How to describe pure form and how to measure differences in shapes using shape numbers[J].Pattern Recognition.1980,12:101-112
    [135]Freeman H.,Davis L.S..A Corner Finding Algorithm for Chain Coded Curves[C].IEEE Transactions on Computers.1977,26:297-303
    [136]Sheu H.T.,Yang H.Z..Open Curve Segmentation via a Two-Phase Scheme[J].Pattern Recognition.1993,26:1839-1844
    [137]吴世雄.逆向工程中多传感器集成的智能化测量研究[D].浙江大学博士学位论文.2005,5:32-39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700