用户名: 密码: 验证码:
刚体姿态控制及其在机器人控制中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机器人研究体现了人类复制自身的愿望,是最高意义上的机械仿生学,是当代众多高技术领域成果的综合体现。机器人智能主要来自机器人控制系统,而机器人的底层控制问题是机械臂和末端执行器的运动控制。因此,当将机械臂和末端执行器近似看作刚体时,机器人的底层控制问题实际上是刚体运动的控制问题。
     基于这样的认识,本文在国家自然科学基金项目“刚体姿态控制的几何方法”(基金代号:69774010)、航空科学基金项目“航空火控系统中的姿态控制问题”(基金代号:97D53040)和国家973重大基础研究项目“复杂大系统过程优化与高性能软件”(项目代号:G1988030417)的资助下,对刚体姿态控制及其在机器人控制中的应用进行了较为系统的研究。本文的主要工作和贡献有以下几点:
     (1) 系统地研究了刚体姿态的参数化描述方法,给出了描述刚体姿态的姿态矩阵、欧拉角、四元数和Rodrigues参数的相互转换关系,建立了基于四元数和Rodrigues参数的刚体姿态调节控制模型,和基于误差四元数和误差Rodrigues参数的刚体姿态跟踪控制模型。
     (2) 系统地研究了刚体姿态控制系统的输出反馈控制问题。目前的姿态控制系统中,基本上都要用到全部状态信息,即姿态和角速率信息。但角速率信息通常很难获取,或带有严重的噪声。针对这种情况,本文利用刚体姿态控制系统中固有的无源性,设计了无需角速率测量值的刚体姿态控制器。
     (3) 刚体姿态控制系统中一般存在两类不确定性:惯性矩阵含有的不确定性和控制矩阵含有的不确定性。现有的刚体姿态鲁棒控制器都只是针对惯性矩阵的不确定性。本文首次针对控制矩阵中的不确定性,采用自适应控制方法,得到了一种对上述两种不确定性都具有鲁棒性的自适应鲁棒控制器。
     (4) 系统地研究了刚体机器人控制系统的输出反馈控制问题。利用机器人控制系统固有的无源性,在作业空间中,采用Rodrigues参数描述末端执行器的姿态,设计了用于机器人末端执行器位姿控制的输出反馈控制律,消除了控制器中的广义速度。目前的动态输出反馈控制器都采用7阶无源网络,而本文的无源网络是由6阶平方线性系统实现的。另外,在关节空间中,我们利用机器人控制系统固有的无源性,设计了无需测量关节速度的PD控制律。
    
     西北工业大学博士学位论文
     (5)针对机器人控制系统中的精确重力补偿问题,给出了可以用平衡点的
    常数重力补偿项来实现精确重力补偿的条件,大大地简化了机器人控制系统中
    的精确重力补偿问题。
     (6)改进了现有的弹性关节机器人控制律,利用无源性方法,给出了仅需要
    作动器位置测量的输出反馈控制器。
     (7)基于线性化假设,研究了基于Internet的机器人控制系统的稳定性分
    析和镇定控制器设计问题,给出了一种时滞系统稳定性新判据,并据此设计了。
    ””’”’””“‘“’”‘”“””’‘””’”““”’”“’“”””“”“’“””““““”“’““”””’“f
    镇定控制器。
Robotics research is the embodiment of man's long-standing and deep desire to create something like himself,and robot is the highest form of the achievements in mechanical bionics. Now robot is the integration of many high and new technologies.
    As is well-known,the intelligence of a robot is derived from its control system,and the basic problem of a robot control system is the manipulation of the robot arm and its end-effector. When the robot arm and its end-effector is treated as a rigid body,as is quite reasonable in most cases,the motion control,especially attitude control,of a rigid body becomes the basic problem of robot control.
    Based on the above perception,we carried out systematic research on attitude control of a rigid body and its application to robot control. Our research is supported partly by the National Natural Science Foundation of China (Grant No. 69774010),Aeronautical Science Foundation of China (Grant No. 97D53040) and the National 973 Fundamental Research Program of China ( Grant No. G1988030417).
    The main contributions of this dissertation are as follows:
    (1) Four kinds of parameters for representing the attitude of a rigid body are studied. They are attitude matrix,Euler angles,quaternion,and Rodrigues parameters. Formulas are given for changing from any kind of parameters to the other three kinds of parameters. The model for attitude stabilization is established using quaternion or Rodrigues parameters,and the model for attitude tracking is established using error quaternion or error Rodrigues parameters.
    (2) Attitude stabilization and attitude tracking are then studied. As is known,the existing control laws require full state information,including attitude parameters and angular velocities. Usually,angular velocities are difficult to oh tain,or even if they can be obtained,they are usually contaminated by noises. To
    
    
    solve this problem,we propose an output feedback control law without angular velocities by making use of the inherent passivity of the attitude control system.
    (3) Usually,there are two kinds of unknown external disturbances and/or modeling uncertainties:one in the inertial matrix,and the other in the control matrix. The existing robust attitude controllers can only deal with disturbances and/ or uncertaities in the inertial matrix. In this paper,we for the first time present an adaptive robust attitude controller which is robust to the disturbances and/or uncertaities in both the inertial matrix and the control matrix.
    (4) Output feedback controllers are proposed for eliminating velocity measurement in robot control systems. In the task space,the attitude space of the robot end-effector is parameterized by Rodrigues parameters,and an output feedback controller without the generalized velocity is designed for controlling the position and attitude of the end-effector of a rigid robot. The existing dynamic output feedback schemes use a seven-order passive network,but our dynamic controller is realized by a six-order square linear system. In the joint space,proportional plus derivative (PD) controllers without joint velocity measurement are designed by making use of the inherent passivity of the robot control system.
    (5) In the existing robot controller,the gravity compensation item needs to be computed for each joint state,it is quite a burden for real-time control. We proved in this paper that under a certain condition the gravity compensation item can be replaced by the constant gravity compensation item at the equilibrium point,thus greatly reducing the computation overhead.
    (6) We also improved the existing controllers for elastic joint robot by the passivity approach,and an output feedback controller is designed,which only requires the measurement of the actuator position.
    (7) Finally,based on the linearization of the robot control system,we studied the stability criterion of an Internet-based robot control system which is a linear system with multiple time-delays. A new and less conservative stability criterion is given,and a controller for
引文
[1] 蔡自兴.机器人学.北京:清华大学出版社,2000
    [2] 理查德·摩雷,李泽湘,夏恩卡·萨思特里著,徐卫良,钱瑞明译.机器人操作的数学导论.北京:机械工业出版社,1998
    [3] Shuster M D. A survey of attitude representation. J. of Astronautical Sci ences, 43: 439~514, 1993
    [4] Cristi R, Burl J, Russo N. Adaptive quaternion feedback regulation for eigenaxis rotation. J. of Guidance, Control, and Dynamics, 17(6): 1287~1291, 1994
    [5] Joshi S M, Kelkar A G. Three-axis stabilization of spacecraft using parameter-independent nonlinear quaternion feedback, NASA-TM-109150,1994, 9
    [6] Wen J T and Delgado K K. The attitude control problem. IEEE Trans. on Automatic Control, 36(10):1148~1162, 1991
    [7] Tsiotras P, Junkins J L, and Schaub H. Higher order Cayley transforms with application to attitude representation. J. of Guidance, Control, and Dynamics, 20: 528~534, 1997
    [8] Tsiotra P and Longuski J M. A new parameterization of the attitude kine matics. J. of Astronautical Sciences, 42: 455~473, 1994
    [9] 冯璐.刚体姿态控制及其应用.西北工业大学博土学位论文,1999
    [10] Balas G J, Packard A K and Harduve J T. Application of μ-synthesis tech nique to momentum management and attitude control of the space station. Proceedings of AIAA Guidance, Navigation, and Control Conference (New Orleans, LA), AIAA, Washington, DC, 565~575, 1991
    [11] Rhee I, Speyer J L. Robust momentum management and attitude control system for the space station. J of Guidance, Control, and Dynamics. 15(2): 342~351, 1992
    [12] Byun K W, Wie B, Geller D and Sunkel J. Robust H_∞ control design for the space station with structured parameter uncertainty. J. of Guidance, Control and Dynamics, 14(6): 1115~1122. 1991
    
    
    [13] Hunt L R, Meyer G. Global transformation of nonlinear system. IEEE Trans. on Automatic Control, 28(1): 24~30, 1983
    [14] Sheen J T and Bishop R. Spacecraft nonlinear control. J. of the Astronau tical Sciences, 42: 361~377, 1994
    [15] Singh S N and Iyer A. Nonlinear regulation of spacecraft: a geometric approach. J. of Guidance, Control and Dynamics, 17: 243~249, 1994
    [16] Singh S N, Bossart T C. Exact feedback linearization and control of space station using CMG. IEEE Trans. Automatic Control, 38(1): 184~187,1993
    [17] Kreutz K. On manipulator control by exact linearization. IEEE Trans. Automatic Control, 34(7): 763~767, 1989
    [18] Tsiotras P. Stabilization and optimality results for the attitude control problem. J. of Guidance, Control and Dynamics, 19(4): 772~779, 1996
    [19] Joshi S M, Kelkar A G and Wen J T Y. Robust attitude stabilization of spacecraft using nonlinear quaternion feedback. IEEE Trans Automatic Control, 40: 1800~1803, 1995
    [20] Shen T, Tamuya K. Robust H_∞ control of uncertain nonlinear system via state feedback. IEEE Trans. Automatic Control, 40: 766~768, 1995
    [21] Van der Schaft A J. L_2-gain analysis of nonlinear systems and nonlinear state feedback H_∞ control. IEEE Trans. Automatic Control 37:770 784, 1992
    [22] Patpon L, Sampei M, Koga M, Shimizu E. A numerical computational approach of Hamilton-Jacobi-Isaacs equation in nonlinear H_∞ control problems. Proceeding of the 35th Conference on Decision and Control, Kobe,Japan, 3774~3779, 1996
    [23] Ball J, Helton J W, Walker M L. H_∞ control for nonlinear systems via output feedback. IEEE Trans. Automatic Control, 38(4): 546~559, 1993
    [24] Isidori A and Astolfi A. Disturbance attenuation and H_∞ control via measurement feedback in nonlinear systems. IEEE Trans. Automatic Control, 37: 1283~1293, 1992
    [25] Isidori A, Kang W. H_∞ control via measurement feedback for general nonlinear systems. IEEE Trans. Automatic Control, 40(6): 446~472, 1995
    
    
    [26] Paynter S J, Bishop R H. Adaptive nonlinear attitude control and momentum management of spacecraft. J of Guidance, Control, and Dynamics, 20(5): 1025~1032, 1997
    [27] Junkins J L, Akella M R, Robinett R D. Nonlinear adaptive control of spacecraft maneuvers. J. of Guidance, Control, and Dynamics, 20(6):1104~1110, 1997
    [28] Crassidis J L, Markley F L. Nonlinear predictive control of spacecraft. J. of Guidance, Control, and Dynamics, 20(6): 1096~1103, 1997
    [29] Khan M A, Lu P. New technique for nonlinear control of aircraft. J. of Guidance, Control, and Dynamics, 17(5): 1055~1060, 1994
    [30] Yuan J S C. Closed-loop manipulator control using quaternion feedback. IEEE J. of Robotics and Automation, 4(4): 434~440, 1988
    [31] 肖尚彬.四元数及其应用.力学进展,23(2):249~260,1993
    [32] Gong C, Feng L. A feedback nonlinearization approach to robust attitude control of a rigid body. Submitted to IEEE Trans. on Automatic Control
    [33] 吴方向,周宗锡,龚诚.刚体姿态的自适应鲁棒控制.中国学术期刊文摘,1999,Vol.5(12)
    [34] Nicosia S, Tomei P. Robot control by using only joint position measurements. IEEE Transactions on Automatic Control, 1990, 35(9): 1058~1051
    [35] Lizarralde F and Wen J T. Attitude control without angular velocity measurement: a passivity approach. IEEE Trans. on Automatic Control, 1996, 41(3): 468~472
    [36] 吴方向,周宗锡,龚诚.刚体机械手的动态输出反馈镇定.2000年中国控制与决策年会论文集,沈阳:东北大学出版社,2000
    [37] Spong M W. Modeling and control of elastic joint robots. ASME J. of Dynamic Syst., Meas., Contr., 1987, 109:310~319
    [38] Tomei P. A simple PD controller for robots with elastic joints. IEEE Trans. on Automatic Control, 1991, 36(10): 1208~1213
    [39] Nicosia S and Tomei P. A tracking controller for flexible joint robots using only link position feedback. IEEE Trans. on Automatic Control, 1991, 36(10): 1208~1213
    
    
    [40] Hmamed A. Further results on the stability of uncertain time-delay systems. Int. J. Syst. Sci., 22(3), 605~614, 1991
    [41] Luo J S, Van Den Bosch P P. Independent of delay stability criteria for uncertain linear state space models. Automatica, 33(2). 171~179. 1997
    [42] Chen J, Xu D, Shafai B. On sufficient condition for stability independent of delay. IEEE Trans. on Automatic Control, 40(9), 1675~1680, 1995
    [43] 熊有伦等.机器人技术基础.武汉:华中理工大学出版社,1997
    [44] 吴方向,周宗锡,龚诚.具有简单重力补偿的机械手反馈控制.机械科学与技术,20(3),2001
    [45] 周宗锡,吴方向,佟明安.作业空间中刚体机器人的输出反馈控制.机械科学与技术,21(5),2002
    [46] 吴方向,周宗锡,龚诚.弹性关节机器人的输出反馈控制.中国学术期刊文摘,6(8):1030~1032,2000
    [47] 周德云,李锋,蒲小勃,周宗锡,“基于遗传算法的飞机战术飞行动作决策,西北工业大学学报,20(1),109~112,2002
    [48] 周宗锡,吴方向,龚诚,佟明安.基于四元数的刚体姿态调节问题.西安交通大学学报,(10),2002
    [49] 廖晓昕.稳定性的理论、方法和应用.武汉:华中理工大学出版社,1999
    [50] Hu J C, Shen C L, Guo Z. D-robust controller for multiple state delayed system with uncertain parameters. Proc. of 3rd World Congress on Intelligent Control and Automation, Vol. 1, P. 99, July, 2000
    [51] Luh J Y S, Srioon S. Animated simulation of human-robot interactions.Proc. of 3rd World Congress on Intelligent Control and Automation, Vol.1, P. 1361, July, 2000
    [52] Kumon M, Adachi N. Dynamic parameterization for path following control. Proc. of 3rd Asian Control Conference, P. 383, July, 2000
    [53] Rovetta A. Telerobotic surgery control. Proc. of 3rd Asian Control Conference, P. 435, July, 2000
    [54] Kim Y S, Kim H S, Kwon W H. A design of a network-based robot control system using FIP. Proc. of 3rd Asian Control Conference, P. 420, July, 2000
    [55] Zhang Y X, Tian H Y, Qiang W Y, Fu P S. Nonlinear H_∞ servo control in joint space of biped robot. Proc. of 3rd Asian Control Conference, P.538, July, 2000
    
    
    [56] Sasaki M, Yoshinage K, et al. Development and motion control of small hopping robot. Proc. of 3rd Asian Control Conference, P. 422, July, 2000
    [57] Qin B, Soh Y C, et al. Path-following trajectory generation for car-lik robot. Proc. of 3rd Asian Control Conference, P. 382, July, 2000
    [58] 张绪平,余跃庆.冗余度柔性机器人的自运动规划新方法.机械科学与技术,Vol.20,No.1,P.39,2001
    [59] 陈廷楠.双欧拉法与四元数的应用比较.飞行力学,14(4):59
    [60] Chou J. Quaternion kinematic and dynamic differential equations. IEEE Trans. on Robotics and Automation, 8(1): 53~64, 1992
    [61] Schaub H and Junkins J L. Sterographic orientation parameters for attitude dynamics: a generalization of the Rodrigues parameters. J. of the Astronatical Sciences, 42: 455~473, 1994
    [62] Yu F, Su H Y, Chu J. Robust H_∞ control for a class of nonlinear systems via measurement feedback. Proc. of 3rd Asian Control Conference, Shanghai, 2000, P. 188
    [63] Craig J J. Introduction to Robotics. New York: Addison-Wesky Publishing Co., 1989
    [64] 章仁为.卫星姿态动力学与控制.北京:北京航空航天大学出版,1998
    [65] 黄圳川.航天器姿态动力学.长沙:国防科技大学出版社,1997
    [66] Slotine J J E, Li W. Applied nonlinear control. New Jersey: Prentice Hall,1991
    [67] Byrnes C L, Isidori A, Willems J C. Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems
    [68] Tsiotras P. A passivity approach to attitude stabilization using nonredundant sets of kinematic parameters. In: Proceedings of the 34th Conference on Decision and Control, New Orleans, LA, 1995
    [69] Byrnes C I, Isidori A. On the attitude stabilization of rigid spacecraft. Automatica, 36(10), 1991
    [70] Wie B, Weiss H, and Arapostathis A. Quaternion feedback regulator for spacecraft eigenaxis rotation. J. of Guidance, Control. and Dynamics, 12:375~380, 1989
    
    
    [71] Crouch P E. Spaceerafe attitude control and stabilization: application of geometric theory to rigid body models: IEEE Trans. on Automatic Control, 29: 321~331, 1984
    [72] Huang J, Rugh W J. Stabilization on zero-error manifolds and the nonlin ear servo-mechanism problem. IEEE Trans. on Automatic Control, 37:139~1398, 1992
    [73] Fjellstad O E, and Fossen T I. Comments on "The attitude Control Problem." IEEE Trans. on Automatic Control, 39: 699~700, 1995
    [74] Vadili S R, and Oh H S. Space station attitude control: a nonlinear look. J. of Guidance, Control, and Dynamics, 15: 577~586, 1992
    [75] Lee Y J, Lee K S, et al. Adaptive control of nonlinear system using immune response algorithm. Proc. of 3rd Asian Control Conference, P. 339,July, 2000
    [76] Wang J, Liu L D, et al. Robust composite adaptive control of space manipulator. Proc. of 3rd Asian Control Conference, P. 348, July, 2000
    [77] Yang C D, Sun Y P. Mixed H_2/H_∞ design for micro satellite attitude control. Proc. of 3rd Asian Control Conference, P. 104, July, 2000
    [78] Cheng D Z, Martin C, Xiang J P. An algorithm for common quadratic Lyapunov function. Proc. of 3rd World Congress on Intelligent Control and Automation, Vol. 4, P. 2965, July, 2000
    [79] Shi X P, Wang X. Nonlinear attitude controller design based on variable structure control with sliding mode. Proc. of 3rd World Congress on Intel ligent Control and Automation, Vol. 4, P. 3017, July, 2000
    [80] Chen C Y, Song W Z. On Lyapunov control of one typical nonlinear chaotic system. Proc. of 3rd World Congress on Intelligent Control and Automation, Vol. 5, P. 3243, July, 2000
    [81] 申铁龙.H_∞控制理论及其应用.北京:清华大学出版社,1996
    [82] 冯纯伯,田玉平,忻欣.鲁棒控制系统设计.南京:东南大学出版社,1995
    [83] 龚诚,卢广山,王永年.一类非线性控制系统的反馈非线性化控制.航空学报,19(1):8~13,1998
    
    
    [84] Bach R. Paielli R. Linearization of attitude control error dynamics. IEEE Trans. on Automatic Control, 38(10): 1521~1525, 1993
    [85] Foshi S M, Kelkar A G, and Wen J T Y. Robust attitude stabilization of spacecraft using nonlinear quaternion feedback. IEEE Trans. on Automatic Control, 40: 1800~1803, 1995
    [86] Seto D, Baillieul J. Control problem in super-articulated mechanical system. IEEE Trans. on Automatic Control, 39(12), 1994
    [87] Ortega P. Passivity properties for stabilization of cascaded nonlinear system. Automatica, 27(2): 423~424, 1991
    [88] Lin W, Shen T. Robust passivity and feedback design for minimum phase nonlinear system with structural uncertainty. Automatica, 35(1): 35 48, 1999
    [89] Feng G, Cao S G, Rees N W. An approach to H_∞ control of a class of nonlinear system. Automatica, 32(10): 1469~1474, 1996
    [90] Sastry S, Bodson M. Adptive Control. Prentice Hall International, 1989
    [91] Wiess H. Quaternion-based rate/attitude tracking with appplication to gimbal attitude control. J. of Guidance, Control, and Dynamics, 16: 609~616: 1993
    [92] Yu F, Su H Y, Chu J. H_∞ Control for Lipschitz nonlinear systems via output feedback. Proc. of 3rd World Congress on Intelligent Control and Automation, Vol. 5, P. 3456, July, 2000
    [93] Ghorbel F. Modeling and PD control of closed-chain mechanical systems. Proc. of the 34th IEEE Conference on Decision and Control, 1995, P. 540
    [94] Gunawardana R, Ghorbel F. PD control of closed-chain mechanical system: An experimental study. Proc. of the 5 IFAC Symposium on Robot Control SYROCO'97, 1997, (1): 79~84
    [95] 程云鹏等编箸.矩阵论.西安:西北工业大学出版社,1989
    [96] Spong M W. Modeling and control of elastic joint robots. ASME J. of Dynamic Syst., Meas., Contr., 1987, 109:310~319
    [97] Tomei P. A simple PD controller for robots with elastic joints. IEEE Trans. on Automatic Control, 1991, 36(10): 1208~1213
    [98] Chen J, Lachman H A. Frequency sweeping test for stability independent of delay. IEEE Trans. on Automatic Control, AC-40(9). 1640~1645,1995
    
    
    [99] Trihn H and Aldeen M. On the stability of linear systems with delay perturbations. IEEE Trans. on Automatic Control, 39, 1948~1951, 1994
    [100] Mori T, Fukuma N, Kuwahare M. Simple stability criteria for single and composite linear systems with time delay. Int. J. Control, 34(6), 1175~1184, 1981
    [101] Su J H, Fong I K, Tseng C L. Stability analysis of linear systems with time delay. IEEE Trans. on Automatic Control, 39(6). 1341~1344,1994
    [102] Kim J K. Robust stability of linear system with delay perturbations. IEEE Trans. on Automatic Control, 41(1g), 1820~1822, 1996
    [103] Francis B A. course in control theory. New York: Springer-verlag, 1987
    [104] Doyle J C, Glover K, Khargonekar P P, Francis B A. State-space solutions to standard and control problems. IEEE Trans. on Automatic Control, 34(8), 831~847, 1989
    [105] 吴方向,周宗锡,史忠科,戴冠中.时滞系统的鲁棒稳定性分析.控制与决策,14(s),1999
    [106] 吴方向,史忠科,周宗锡,戴冠中.线性时变不确定系统的H_∞鲁棒容错控制及应用.西北工业大学学报,17(s),1999
    [107] 袁泉.喷浆机器人的工作空间分析.机械科学与技术,20(1):62,2001
    [108] Yin Y J, Ogata K, Hayakawa Y. Adaptive robust control for robot manipulator with H_∞ performance. Proc. of 3rd Asian Control Conference, P. 28, July, 2000
    [109] Wu F X, Zhou Z X, Gong C. Robot control without generalized velocity measurement. Proc. of 3rd Asian Control Conference, P. 171, July, 2000
    [110] Wu F X, Zhou Z X, Shi Z K. Stability and stabilization for linear systems with multiple delays. Proc. of 3rd Asian Control Conference, P. 156, July, 2000
    [111] Kim Y S, Kim H S, Kwon W H. A design of a network-based robot control system using FIP. Proc. of 3rd Asian Control Conference, P. 420,July, 2000
    
    
    [112] Mukaidani H, Kobayashi Y, Okita T. The high-order approximate controller for mixed H_2/H∞ problem. Proc. of 3rd Asian Control Conference, P. 291, July, 2000
    [113] Wu F X, Shi Z K, Zhou Z X. Robust stabilization of linear time-varying interval systems. Proc. of 3rd World Congress on Intelligent Control and Automation, Vol. 5, P. 3415, July, 2000
    [114] Xu X M, Li S, et al. A survey: Robocup and the research. Proc. of 3rd World Congress on Intelligent Control and Automation, Vol. 1, P. 207,July, 2000
    [115] 肖业伦.飞行器运动方程.北京:航空工业出版社,1987
    [116] 贾书惠.刚体动力学.北京:高等教育出版社,1987
    [117] Liu Y J, Tang G Y, Wang F. Delay dependent stabilization of a class of linear systems with state and control time-delays. Proc. of 3rd Asian Control Conference, Shanghai, 2000, P. 172
    [118] Shim D S. Decentralized robust passive control for linear interconnected uncertain system with time delay. Proc. of 3rd Asian Control Conference, Shanghai, 2000, P. 174

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700