骨质疏松评价指标—股骨颈压缩强度指数与人类遗传学相互关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前言
     骨质疏松症是最常见的老年性疾病,骨质疏松症的严重后果是骨质疏松性骨折。随着人口老龄化日趋明显,骨质疏松症以及其所导致的严重后果骨质疏松性骨折已成为一个社会性的健康问题,备受老年病学者的关注,并引起了各国政府的高度重视。骨质疏松症是以骨量减少,骨的微观结构退化为特征,致使骨的脆性增加,并易于发生骨折的全身性骨骼疾病。
     低骨密度(Bone Mineral Density, BMD)是骨质疏松性骨折(Osteoporotic Fracture, OF)的重要危险因子。骨密度是一种由多基因和环境因素共同决定的复杂性状,它有很强的遗传性,其遗传率高达50%-90%。目前,大多数的研究以骨密度作为骨质疏松性骨折的替代研究表型运用于遗传学和临床等方面的研究。然而,流行病学调查已经证实骨密度在不同的人群和种群中存在较大的异质性,因此若运用BMD来评估种族间的骨折风险差异,往往有失精准。在临床上或是遗传研究中,正确的运用合适的表型指标,对于准确诊断疾病和研究疾病的发病机理都是极为重要的。因此,一个良好的可以准确评估种族间骨折风险差异的指标急待发掘。股骨颈压缩强度指数(Compression strength index, CSI)是独立于BMD的OF风险因子,CSI用于测量个体对于作用于股骨颈主轴上面相当于体重重量的压力的抵抗能力。此指数提供大量骨强度相关信息,进而更有助于对股骨颈骨折风险的评估。该指数的遗传性易很高。
     本文主要目的是:比较评估骨折风险的新复合指标——CSI与BMD和股骨颈宽度(Femoral Neck Width, FNW)两个普遍应用的骨学表型指标在预测骨折风险中的差异;以CSI作为骨质疏松性骨折的替代表性,运用全基因组关联研究和全基因组连锁研究的方法,找出与CSI变量相关的骨折相关基因和区域,并研究相关基因和区域在骨质疏松和骨折风险中的可能潜在意义。
     实验材料和方法
     1、材料
     此次试验研究,以来自于中国人群和高加索人群的两个特大样本作为实验对象。研究志愿者一部分是来自美国中部内布拉斯加州奥马哈市周边和密苏里州堪萨斯城周边的高加索起源白人(Caucasian Whites),研究从一个大的样本库中挑选出所有符合本研究要求的个体,该部分样本即具有相关的表型指标信息、骨折信息史又具有完整的遗传信息。本人亲自参与该部分数据库的构建,其中包括数据的采集、样本的制备和最后的统计分析。研究志愿者另一部分是来自中国西安和湖南的中国汉人(Chinese Han),研究也是从一个大的样本库中挑选出所有符合本研究要求的个体,该部分样本仅具有相关的表型指标而不具有相关的遗传信息。这部分数据的采集工作由合作单位西安交通大学和湖南师范大学的相关部门完成,本人仅负责该部分数据的统计与分析。
     研究使用美国Hologic公司生产的Quantitative Digital Radiography (QDR)系列1000,2000+或4500型双能X线骨密度仪来测量股骨颈骨密度和骨的投照面积,单位分别是g/cm2和cm2。
     本研究的全基因组SNP分型采用Affymetrix公司的500K芯片套装完成,实验工作由合作方美国范德堡大学(Vanderbilt University)的Vanderbilt Microarray SharedResource (http://array.mc.vanderbilt.edu/)完成。
     连锁分析的基因分型由Marshfield医学中心完成,每个样本均采用410个微卫星标记进行基因分型,微卫星标记的平均群体杂合度为0.75,相邻标记间的平均距离为8.9cM。
     2.方法
     一般的统计分析运用SPSS统计分析软件包完成(SPSS Corp, Chicago, IL, USA);关联分析由HelixTree软件完成;连锁分析由SOLOR (Sequential Oligogenic Linkage Analysis Routines)软件完成。
     结果
     本文的主要创新之处在于本实验研究第一次就CSI特点以及其与BMD和FNW在预测股骨颈骨折风险中的差异进行研究,第一次运用CSI作为遗传学指标,运用于寻找与骨质疏松或骨折相关的基因和位点区域。
     结果发现:
     1、CSI是与FNK BMD和FNW相比,能更好的反映和预测股骨颈骨折风险的因子。首先,中国人群样本的CSI值高于高加索人群,这一发现与流行病学中对于两种族间股骨颈骨折发生率的调查结果相一致——中国人群股骨颈骨折发生率低于高加索人群。本实验研究对于CSI在反映不同种族骨折发生率中是一个极大的突破。其次,通过计算三者的比对比发现,CSI在预测骨折风险中也是一个良好的指标,特别是在校正了相关协变量之后。最后,在研究样本中,CSI随年龄的增高逐年递减,同老年人的骨折发生率较高相一致,从而进一步印证了CSI在预测股骨颈骨折风险中的全面性和正确性。
     2、CSI综合了BMD,股骨颈尺寸和体测指标的信息,准确衡量股骨颈承受作用于其主轴上相当于体重重量的压力的能力。而股骨颈骨折主要也是在这种力的作用下引起的, CSI将是一个既直接又可靠的股骨颈质量和强度预测指标。鉴于目前的骨质疏松学的遗传学研究主要集中以BMD为研究表型,如果将CSI运用于遗传学研究,作为遗传学表型探讨骨质疏松的遗传学规律,相信将会开辟一个崭新的领域。在本次研究中,首次运用CSI这一预测骨质疏松性骨折的新指标,对1000个高加索人群的随机样本,采用Affymetrix公司的500K芯片套装以及相关的统计学工具进行了该指标的首次全基因组关联分析。关联分析的结果是,发现了一个与骨质疏松相关的新基因HS3STl,其29个SNP位点的P值均小于0.05,两个位点(rs4916641和rs6448751)的P值最为显著,达到了全基因组的显著水平。HS3ST1基因有硫酸乙酰肝-葡萄糖胺3-氧硫转移酶的活性,硫酸乙酰肝转换的活性,以及限制乙酰胺合成速度的作用。其对于骨质疏松的影响作用还有待进一步的研究。
     3、在本次研究中,首次运用CSI这一预测骨质疏松性骨折的新指标对来自451个家庭的4,498个高加索人样本,使用SOLAR (Sequential Oligogenic Linkage Analysis Routines)软件对所有个体进行首次全基因组范围的多点连锁扫描。连锁分析的结果是,发现了三个连锁信号较强的染色体区域按LOD值大小依次为20p11.23、6q22.33、2q36.1。将本次的研究成果与早前的研究成果加以比对,发现有重叠的区域存在。另外在本次研究中,把“关联分析和连锁分析等的研究结果适于进一步的整合”的实验理念运用于本次研究中,简单的以染色体物理厘摩为桥梁,将本次全基因组连锁分析(Genome-Wide Linkage Studies, GWLS)结果和全基因组关联分析(Genome-Wide Association Studies, GWAS)结果相结合,并且发现了一个可能的骨质疏松相关基因ARFGEF2。而且ARFGEF2基因中有8个单核苷酸多态性(Single-Nucleotide Polymorphism, SNP)位点连锁不平衡,并且与CSI的变异高度相关。目前发现该基因与大脑皮质结构畸形以及重复感染相关,其对于骨质疏松的影响作用还有待进一步的研究。
     结论
     研究首次证明了CSI是较BMD和FNW更好的预测骨折风险的表型指标。其次,研究首次以CSI作为遗传学表型指标,进行了全基因组关联分析和全基因组连锁分析,发现了两个基因,HS3ST1和ARFGEF2,以及三个染色体区域20p11.23、6q22.33、2q36.1,可能与CSI的变异密切相关。研究结果对于在人群中预防、治疗及诊断骨质疏松症有重要的实用价值。
Osteoporosis is one of the most popular old people's diseases. Along with aging population, osteoporosis as a degenerative disease or a complication, has become a social health issue. It is getting great attention world widely. A lot of geriatrists are working in this area. The most serious result of osteoporosis is osteoporotic fracture.
     Osteoporosis is characterized by low bone mineral density (BMD) and deterioration of skeletal microarchitecture, leading to increased risk of fragility fracture. Low BMD is recognized as a major risk factor for osteoporotic fracture (OF). BMD is a quantitative trait determined by genetic and environmental factors, with heritability estimates ranging from 50% to 90%. A large number of studies used BMD as the major surrogate phenotype for osteoporotic fracture in the genetic studies and clinical works, et al. Many epidemiologic studies have indicated that BMD, as a major phenotype predicting fracture risk, has population- and ethnic-specificity. Therefore, studies clearly demonstrate that BMD, by itself, falls short of capturing the entire variation in fracture risk. In clinical work and genetic studies, the properly use of a surrogate is the key of disease diagnosis and studying pathogenesis. Compression strength index (CSI) is another independent risk factor for OF under strong genetic determination. Since CSI measures the capacity of withstanding compressive forces proportional to body weight along the main femoral neck axis, it may provide more information than BMD alone in assessing the risk of hip fracture.
     The purpose of this study is:to investigate the characteristics of compression strength index (CSI), a new parameter for measuring bone strength at the hip, in Caucasian and Chinese populations; to compare CSI with hip BMD and femoral neck width (FNW) in predicting the risk of hip fracture; by using genome-wide association analysis and genome-wide linkage analysis, looking for the fracture related gene or locus with CSI, and their potential function in osteoporosis and fracture risk.
     Materials and Methods
     1. Materials
     Samples:Two large samples were used in this study, including a Chinese Han sample from Xian'an province and Hu'nan province, recruited by related department in Xi'an Jiaotong University and Hunan Normal University, and a US Caucasian sample of Turopean origin, recruited by myself and some group members in University of Missouri-Kansas City.
     2. Methods
     Measurements:All the subjects were measured for hip BMD and FNW using the DEXA machine Hologic QDR4500. CSI was calculated as CSI=(BMD×FNW)/Weight.
     In the GWA study, genotyping with the Affymetrix arrays was performed at the Vanderbilt Microarray Shared Resource at Vanderbilt University Medical Center.
     In the linkage study, all the subjects were genotyped with 410 microsatellite markers from the Marshfield screening set 14 by Marsh Weld Center for Medical Genetics (Marshfield, WI, USA). These markers have an average population heterozygosity of 0.75 and were spaced, on the average, 8.9 cM apart.
     Statistical analyses:Regular ANOVA and regression analyses were conducted using the SPSS statistical package.
     In the linkage study, variance component linkage analyses for quantitative traits were performed using SOLAR (Sequential Oligogenic Linkage Analysis Routines).
     All GWA statistical analyses were performed using various statistical tests implemented in HelixTree 5.3.1 (Golden Helix, Bozeman, MT, USA).
     Results
     The innovation in this study is that this is the first study investigating basic characteristics of CSI and comparing CSI with BMD and FNW in predicting hip fracture in populations of different ethnicities, and this is the first study using CSI as a surrogate to search the fracture related gene or locus.
     Our results showed as follows:
     1. An important finding in this study is that Chinese had higher CSI values than Caucasians, which is consistent with the observed lower hip fracture rates in Chinese compared to Caucasians in previous epidemiology studies. This finding may explain the discrepancy observed between BMD and hip fracture rates in Caucasian and Chinese populations. In addition, in the Chinese sample, after adjusting for covariates, CSI was the only bone phenotype that was significantly associated with the odds ratios for hip fracture. Our findings suggest that CSI may be a better predictor of incident hip fracture risk than FNK BMD or FNW. Moreover, the age-related decrease in CSI, as shown in this study in both Caucasians and Chinese, is consistent with the observation of higher hip fracture risk in the elderly.
     2. CSI, calculated as CSI=(BMD×FNW)/Weight, measures the ability of withstanding compressive forces proportional to body weight along the main femoral neck axis. Hip fracture is often a direct consequence of this compressive force and thus, CSI may represent a more direct and reliable measure of hip bone quality and strength than other commonly used phenotypic traits (e.g. BMD and FNW). Given the advantages of CSI in assessing risk of hip fracture and its strong genetic basis, it may serve as a useful complementary phenotype to BMD for gene identification for osteoporotic fractures at the hip. In this study, we report the first genome-wide association studies (GWAS) for CSI variation. Using Affymetrix 500 K arrays, we successfully genotyped and analyzed an independent cohort containing 1,000 homogeneous unrelated Caucasian subjects, including 501 females and 499 males. We identified a gene, HS3ST1, that was associated with CSI at the genome-wide significance level in subjects. HS3ST1 gene possesses both heparan sulfate glucosaminyl 3-O-sulfotransferase activity, anticoagulant heparan sulfate conversion activity, and is a rate limiting enzyme for synthesis of anticoagulant heparan. Our findings strongly support the importance of the HS3ST1 gene to CSI, and the function of HS3STl in osteoporosis need to be further studied.
     3. For a sample of pedigrees that contain 4,498 subjects from 451 families, we performed the first genome-wide linkage studies (GWLS) using 410 microsatellite markers to identify genomic regions that may contain quantitative trait loci (QTL) of CSI. The variance component linkage analysis for QTL was performed by using SOLAR. Several potentially important genomic regions (20p11.23、6q22.33、2q36.1) were identified. Some of the regions we identified are supported by earlier findings. In addition, to improve the power of WGLS, we conduct genomic convergence of WGLS results with our GWAS data here. We identified a gene, ARFGEF2, that was associated with CSI at the genome-wide significance level in subjects. Haplotype analyses using the Haploview program and our own genotype data indicated that strong LD exists among 8 single-nucleotide polymorphisms (SNPs) in ARFGEF2 gene, which form a single haplotype block. As a whole, the block is also strongly associated with CSI, with the p value approaching the genome-wide significance level. ARFGEF2 gene may relate to severe malformation of the cerebral cortex and recurrent infections, and the function of ARFGEF2 gene in osteoporosis need to be further studied.
     Conclusions
     Our study for the first time suggests that, in comparison to BMD and FNW, CSI is a much improved parameter in predicting hip fracture, in particular when assessing fracture risk across different ethnic groups. We performed the first GWAS and GWLS for CSI variation. We identified two genes, HS3ST1 and ARFGEF2, which were associated with CSI. Our findings may have significant clinical implications.
引文
1 Cummings SR, Karpf DB, Harris F, et al. Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs. Am J Med.2002; 112: 281-289.
    2 Lauritzen JB. Hip fractures. Epidemiology, risk factors, falls, energy absorption, hip protectors, and prevention. Dan Med Bull.1997; 4:155-168.
    3 Prevention and management of osteoporosis. World Health Organ Tech Rep Ser. 2003; 921:1-164.
    4 Siris ES, Chen YT, Abbott TA, et al Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med.2004; 164:1108-1112.
    5 Babbar RK, Handa AB, Lo CM, et al. Bone health of immigrant Chinese women living in New York City. J Community Health.2006; 31:7-23.
    6 Lau EM, Lynn H, Woo J, et al. Areal and volumetric bone density in Hong Kong Chinese:a comparison with Caucasians living in the United State. Osteoporos Int.2003; 14:583-588.
    7 Roy D, Swarbrick C, King Y, et al. Differences in peak bone mass in women of European and South Asian origin can be explained by differences in body size. Osteoporos Int.2005; 16: 1254-1262.
    8 Cheung AM, Detsky AS. Osteoporosis and fractures:missing the bridge? JAMA.2008; 299: 1468-1470.
    9 Michelotti J, Clark J. Femoral neck length and hip fracture risk. J Bone Miner Res.1999; 14: 1714-1720.
    10 Faulkner KG, Cummings SR, Black D, et al. Simple measurement of femoral geometry predicts hip fracture:the study of osteoporotic fractures. J Bone Miner Res.1993; 8:1211-1217.
    11 Bergot C, Bousson V, Meunier A, et al. Hip fracture risk and proximal femur geometry from DXA scans. Osteoporos Int.2002; 13:542-550.
    12 Karlsson KM, Sernbo I, Obrant KJ, et al. Femoral neck geometry and radiographic signs of osteoporosis as predictors of hip fracture. Bone.1996; 18:327-330.
    13 Calis HT, Eryavuz M, Calis M. Comparison of femoral geometry among cases with and without hip fractures. Yonsei Med J.2004; 45:901-907.
    14 Seeman E, Duan Y, Fong C, et al. Fracture site-specific deficits in bone size and volumetric density in men with spine or hip fractures. J Bone Miner Res.2001; 16:120-127.
    15 Alonso CG, Curiel MD, Carranza FH, et al. Femoral bone mineral density, neck-shaft angle and mean femoral neck width as predictors of hip fracture in men and women. Multicenter Project for Research in Osteoporosis. Osteoporos Int.2000; 11:714-720.
    16 Karlamangla AS, Barrett-Connor E, Young J, et al. Hip fracture risk assessment using composite indices of femoral neck strength:the Rancho Bernardo study. Osteoporos Int.2004; 15:62-70.
    17 Genant HK, Grampp S, Gluer CC, et al. Universal standardization for dual x-ray absorptiometry:patient and phantom cross-calibration results. J Bone Miner Res.1994; 9: 1503-1514.
    18 Wu XP, Liao EY, Huang G, et al. A comparison study of the reference curves of bone mineral density at different skeletal sites in native Chinese, Japanese, and American Caucasian women. Calcif Tissue Int.2003; 73:122-132.
    19 Bhudhikanok GS, Wang MC, Eckert K, et al. Differences in bone mineral in young Asian and Caucasian Americans may reflect differences in bone size. J Bone Miner Res.1996; 11:1545-1556.
    20 Cundy T, Cornish J, Evans MC, et al. Sources of interracial variation in bone mineral density. J Bone Miner Res.1995; 10:368-373.
    21 Bachrach LK, Hastie T, Wang MC, et al. Bone mineral acquisition in healthy Asian, Hispanic, black, and Caucasian youth:a longitudinal study. J Clin Endocrinol Metab.1999; 84:4702-4712.
    22 Filardi S, Zebaze RM, Duan Y, et al. Femoral neck fragility in women has its structural and biomechanical basis established by periosteal modeling during growth and endocortical remodeling during aging. Osteoporos Int.2004; 15:103-107.
    23 Rivadeneira F, Houwing-Duistermaat JJ, Beck TJ, et al. The influence of an insulin-like growth factor I gene promoter polymorphism on hip bone geometry and the risk of nonvertebral fracture in the elderly:the Rotterdam Study. J Bone Miner Res.2004; 19:1280-1290.
    24 Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet.2005; 6:95-108.
    25 Giroux S, Elfassihi L, Cole DE, et al. Replication of associations between LRP5 and ESRRA variants and bone density in premenopausal women. Osteoporos Int.2008.
    26 Tse KY, Macias BR, Meyer RS, et al. Heritability of bone density:regional and gender differences in monozygotic twins. J Orthop Res.2009; 27:150-154.
    27 Baptista F, Varela A, Sardinha LB. Bone mineral mass in males and females with and without Down syndrome. Osteoporos Int.2005; 16:380-388.
    28 Knapen MH, Schurgers LJ, Vermeer C. Vitamin K2 supplementation improves hip bone geometry and bone strength indices in postmenopausal women. Osteoporos Int.2007; 18:963-972.
    29 Rabbee N, Speed TP. A genotype calling algorithm for affymetrix SNP arrays. Bioinformatics. 2006; 22:7-12.
    30 Barrett JC, Fry B, Maller J, et al. Haploview:analysis and visualization of LD and haplotype maps. Bioinformatics.2005; 21:263-265.
    31 Benjamini Y, Heller R. Screening for partial conjunction hypotheses. Biometrics.2008; 64: 1215-1222.
    32 Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci U S A.2003; 100:9440-9445.
    33 Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics.2000; 155:945-959.
    34 Liu J, Shworak NW, Fritze LM, et al. Purification of heparan sulfate D-glucosaminyl 3-O-sulfotransferase. J Biol Chem.1996; 271:27072-27082.
    35 Klein RJ, Zeiss C, Chew EY, T et al. Complement factor H polymorphism in age-related macular degeneration. Science.2005; 308:385-389.
    36 Karasik D, Myers RH, Cupples LA, et al. Genome screen for quantitative trait loci contributing to normal variation in bone mineral density:the Framingham Study. J Bone Miner Res.2002; 17:1718-1727.
    37 Rosskopf D, Bornhorst A, Rimmbach C, et al. Comment on "A common genetic variant is associated with adult and childhood obesity". Science.2007; 315:187.
    38 Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science.2007; 316:889-894.
    39 Saxena R, Voight BF, Lyssenko V, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science.2007; 316:1331-1336.
    40 Ubeda M, Rukstalis JM, Habener JF. Inhibition of cyclin-dependent kinase 5 activity protects pancreatic beta cells from glucotoxicity. J Biol Chem.2006; 281:28858-28864.
    41 Foley AC, Mercola M. Heart induction by Wnt antagonists depends on the homeodomain transcription factor Hex. Genes Dev.2005; 19:387-396.
    42 Samani NJ, Erdmann J, Hall AS, et al. Genomewide association analysis of coronary artery disease. N Engl J Med.2007; 357:443-453.
    43 Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science. 1996; 273:1516-1517.
    44 Johnson ML, Gong G, Kimberling W, et al. Linkage of a gene causing high bone mass to human chromosome 11 (11q12-13). Am J Hum Genet.1997; 60:1326-1332.
    45 Koller DL, Rodriguez LA, Christian JC, et al. Linkage of a QTL contributing to normal variation in bone mineral density to chromosome 11q12-13. J Bone Miner Res.1998; 13: 1903-1908.
    46 Koller DL, Econs MJ, Morin PA, et al. Genome screen for QTLs contributing to normal variation in bone mineral density and osteoporosis. J Clin Endocrinol Metab.2000; 85:3116-3120.
    47 Allison DB. Transmission-disequilibrium tests for quantitative traits. Am J Hum Genet.1997; 60:676-690.
    48 Liu YZ, Liu YJ, Recker RR, et al. Molecular studies of identification of genes for osteoporosis: the 2002 update. J Endocrinol.2003; 177:147-196.
    49 Devoto M, Shimoya K, Caminis J, et al. First-stage autosomal genome screen in extended pedigrees suggests genes predisposing to low bone mineral density on chromosomes 1p,2p and 4q. Eur J Hum Genet.1998; 6:151-157.
    50 Devoto M, Specchia C, Li HH, et al. Variance component linkage analysis indicates a QTL for femoral neck bone mineral density on chromosome 1p36. Hum Mol Genet.2001; 10:2447-2452.
    51 Karasik D, Myers RH, Hannan MT, et al. Mapping of quantitative ultrasound of the calcaneus bone to chromosome 1 by genome-wide linkage analysis. Osteoporos Int.2002; 13:796-802.
    52 Niu T, Chen C, Cordell H, et al. A genome-wide scan for loci linked to forearm bone mineral density. Hum Genet.1999; 104:226-233.
    53 Deng HW, Xu FH, Huang QY, et al. A whole-genome linkage scan suggests several genomic regions potentially containing quantitative trait Loci for osteoporosis. J Clin Endocrinol Metab. 2002; 87:5151-5159.
    54 Duncan EL, Brown MA, Sinsheimer J, et al. Suggestive linkage of the parathyroid receptor type 1 to osteoporosis. J Bone Miner Res.1999; 14:1993-1999.
    55 Koller DL, Liu G, Econs MJ, et al. Genome screen for quantitative trait loci underlying normal variation in femoral structure. J Bone Miner Res.2001; 16:985-991.
    56 Mitchell BD, Kammerer CM, Schneider JL, et al. Genetic and environmental determinants of bone mineral density in Mexican Americans:results from the San Antonio Family Osteoporosis Study. Bone.2003; 33:839-846.
    57 Deng HW, Shen H, Xu FH, et al. Tests of linkage and/or association of genes for vitamin D receptor, osteocalcin, and parathyroid hormone with bone mineral density. J Bone Miner Res. 2002; 17:678-686.
    58 Peacock M, Koller DL, Hui S, et al. Peak bone mineral density at the hip is linked to chromosomes 14q and 15q. Osteoporos Int.2004; 15:489-496.
    59 Mitchell BD, Cole SA, Bauer RL, et al. Genes influencing variation in serum osteocalcin concentrations are linked to markers on chromosomes 16q and 20q. J Clin Endocrinol Metab. 2000; 85:1362-1366.
    60'Connell JR, Weeks DE. PedCheck:a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet.1998; 63:259-266.
    61 Almasy L, Blangero J. Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet.1998; 62:1198-1211.
    62 Elia M, Fuller NJ, Hardingham CR, et al. Modeling leg sections by bioelectrical impedance analysis, dual-energy X-ray absorptiometry, and anthropometry:assessing segmental muscle volume using magnetic resonance imaging as a reference. Ann N Y Acad Sci.2000; 904:298-305.
    63 Buscemi S, Verga S, Caimi G, et al. A low resting metabolic rate is associated with metabolic syndrome. Clin Nutr.2007; 26:806-809.
    64 Cesari M, Leeuwenburgh C, Lauretani F, et al. Frailty syndrome and skeletal muscle:results from the Invecchiare in Chianti study. Am J Clin Nutr.2006; 83:1142-1148.
    65 Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc. 2002; 50:889-896.
    66 Basit S, Naqvi SK, Wasif N, et al.A novel insertion mutation in the cartilage-derived morphogenetic protein-1 (CDMP1) gene underlies Grebe-type chondrodysplasia in a consanguineous Pakistani family. BMC Med Genet.2008; 9:102.
    67 Khosla S, Atkinson EJ, Melton LJ, et al. Effects of age and estrogen status on serum parathyroid hormone levels and biochemical markers of bone turnover in women:a population-based study. J Clin Endocrinol Metab.1997; 82:1522-1527.
    68 Sheen VL, Topcu M, Berkovic S, et al. Autosomal recessive form of periventricular heterotopia. Neurology.2003; 60:1108-1112.
    1 Prevention and management of osteoporosis. World Health Organ Tech Rep Ser.2003; 921:1-164.
    2 Seeman E, Delmas PD. Bone quality--the material and structural basis of bone strength and fragility. N Engl J Med.2006; 354:2250-2261.
    3 Kanis JA, Melton LJ3rd, Christiansen C, et al. The diagnosis of osteoporosis. J Bone Miner Res.1994; 9:1137-1141.
    4 Mazess RB, Barden H, Mautalen C, et al. Normalization of spine densitometry. J Bone Miner Res.1994; 9:541-548.
    5 Lotz JC, Hayes WC. The use of quantitative computed tomography to estimate risk of fracture of the hip from falls. J Bone Joint Surg Am.1990; 72:689-700.
    6 Vega E, Ghiringhelli G, Mautalen C, et al. Bone mineral density and bone size in men with primary osteoporosis and vertebral fractures. Calcif Tissue Int.1998; 62:465-469.
    7 Cheng XG, Lowet G, Boonen S, et al. Assessment of the strength of proximal femur in vitro: relationship to femoral bone mineral density and femoral geometry. Bone.1997; 20:213-218.
    8 Cordey J, Schneider M, Belendez C, et al. Effect of bone size, not density, on the stiffness of the proximal part of normal and osteoporotic human femora. J Bone Miner Res.1992; 7:S437-444.
    9 Tabensky AD, Williams J, DeLuca V, et al. Bone mass, areal, and volumetric bone density are equally accurate, sensitive, and specific surrogates of the breaking strength of the vertebral body:an in vitro study. J Bone Miner Res.1996; 11:1981-1988.
    10 Edmondston SJ, Singer KP, Day RE, et al. Ex vivo estimation of thoracolumbar vertebral body compressive strength:the relative contributions of bone densitometry and vertebral morphometry. Osteoporos Int.1997; 7:142-148.
    11 Sowers MR, Boehnke M, Jannausch ML, et al. Familiality and partitioning the variability of femoral bone mineral density in women of child-bearing age. Calcif Tissue Int.1992; 50:110-114.
    12 Deng HW, Chen WM, Conway T, et al. Determination of bone mineral density of the hip and spine in human pedigrees by genetic and life-style factors. Genet Epidemiol.2000; 19:160-177.
    13 Deng HW, Livshits G, Yakovenko K, et al. Evidence for a major gene for bone mineral density/content in human pedigrees identified via probands with extreme bone mineral density. Ann Hum Genet.2002; 66:61-74.
    14 Livshits G, Karasik D, Pavlovsky O, et al. Segregation analysis reveals a major gene effect in compact and cancellous bone mineral density in 2 populations. Hum Biol.1999; 71:155-172.
    15 Flicker L, Faulkner KG, Hopper JL, et al. Determinants of hip axis length in women aged 10-89 years:a twin study. Bone.1996; 18:41-45.
    16 Heaney RP, Barger-Lux MJ, Davies KM, et al. Bone dimensional change with age:interactions of genetic, hormonal, and body size variables. Osteoporos Int.1997; 7:426-431.
    17 Deng HW, Deng XT, Conway T, et al. Determination of bone size of hip, spine, and wrist in human pedigrees by genetic and lifestyle factors. J Clin Densitom.2002; 5:45-56.
    18 Jian WX, Long JR, Deng HW. High heritability of bone size at the hip and spine in Chinese. J Hum Genet.2004; 49:87-91.
    19 Lee NK, Sowa H, Hinoi E, et al. Endocrine regulation of energy metabolism by the skeleton. Cell.2007; 130:456-469.
    20 Cummings SR, Karpf DB, Harris F, et al. Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs. Am J Med.2002; 112: 281-289.
    21 Cauley JA, Hochberg MC, Lui LY, et al. Long-term risk of incident vertebral fractures. Jama 2007; 298:2761-2767.
    22 Adachi JD, Loannidis G, Berger C, et al. The influence of osteoporotic fractures on health-related quality of life in community-dwelling men and women across Canada. Osteoporos Int. 2001; 12:903-908.
    23 Ensrud KE, Thompson DE, Cauley JA, et al. Prevalent vertebral deformities predict mortality and hospitalization in older women with low bone mass. Fracture Intervention Trial Research Group. J Am Geriatr Soc.2000; 48:241-249.
    24 Greendale GA, Barrett-Connor E, Ingles S, et al. Late physical and functional effects of osteoporotic fracture in women:the Rancho Bernardo Study. J Am Geriatr Soc.1995; 43:955-961.
    25 Robbins JA, Biggs ML, Cauley J. Adjusted mortality after hip fracture:From the cardiovascular health study. J Am Geriatr Soc.2006; 54:1885-1891.
    26 Osteoporosis prevention, diagnosis, and therapy. NIH Consens Statement.2000; 17:1-45.
    27 Kaptoge S, Benevolenskaya LI, Bhalla AK, et al. Low BMD is less predictive than reported falls for future limb fractures in women across Europe:results from the European Prospective Osteoporosis Study. Bone.2005; 36:387-398.
    28 Nyberg L, Gustafson Y, Berggren D, et al. Falls leading to femoral neck fractures in lucid older people. J Am Geriatr Soc.1996; 44:156-160.
    29 Tinetti ME. Clinical practice. Preventing falls in elderly persons. N Engl J Med.2003; 348:42-49.
    30 Kanis JA, Johnell O, Oden A, et al. Ten year probabilities of osteoporotic fractures according to BMD and diagnostic thresholds. Osteoporos Int.2001; 12:989-995.
    31 Pasco JA, Seeman E, Henry MJ, et al. The population burden of fractures originates in women with osteopenia, not osteoporosis. Osteoporos Int.2006; 17:1404-1409.
    32 Kanis JA, Oden A, Johnell O, et al. The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int. 2007; 18:1033-1046.
    33 Siminoski K, Leslie WD, Frame H, et al. Recommendations for bone mineral density reporting in Canada. Can Assoc Radiol J.2005; 56:178-188.
    34 NOF's New clinician's guide to prevention and treatment of osteoporosis. National Osteoporosis Foundation.2008.
    35 FRAX:WHO fracture risk assessment tool.2008.
    36 Cranney A, Guyatt G, Griffith L, et al. Meta-analyses of therapies for postmenopausal osteoporosis. IX:Summary of meta-analyses of therapies for postmenopausal osteoporosis. Endocr Rev.2002; 23:570-578.
    37 Lyles KW, Colon-Emeric CS, Magaziner JS, et al. Zoledronic acid and clinical fractures and mortality after hip fracture. N Engl J Med.2007; 357:1799-1809.
    38 McClung MR, Geusens P, Miller PD, et al. Effect of risedronate on the risk of hip fracture in elderly women. Hip Intervention Program Study Group. N Engl J Med.2001; 344:333-340.
    39 McCloskey EV, Beneton M, Charlesworth D, et al. Clodronate reduces the incidence of fractures in community-dwelling elderly women unselected for osteoporosis:results of a double-blind, placebo-controlled randomized study. J Bone Miner Res.2007; 22:135-141.
    40 Jarvinen TL, Sievanen H, Khan KM, et al. Shifting the focus in fracture prevention from osteoporosis to falls. Bmj.2008; 336:124-126.
    41 Devoto M, Shimoya K, Caminis J, et al. First-stage autosomal genome screen in extended pedigrees suggests genes predisposing to low bone mineral density on chromosomes 1p,2p and 4q. Eur J Hum Genet.1998; 6:151-157.
    42 Devoto M, Specchia C, Li HH, et al. Variance component linkage analysis indicates a QTL for femoral neck bone mineral density on chromosome 1p36. Hum Mol Genet.2001; 10:2447-2452.
    43 Karasik D, Myers RH, Hannan MT, et al. Mapping of quantitative ultrasound of the calcaneus bone to chromosome 1 by genome-wide linkage analysis. Osteoporos Int.2002; 13:796-802.
    44 Koller DL, Econs MJ, Morin PA, et al. Genome screen for QTLs contributing to normal variation in bone mineral density and osteoporosis. J Clin Endocrinol Metab.2000; 85:3116-3120.
    45 Niu T, Chen C, Cordell H, et al. A genome-wide scan for loci linked to forearm bone mineral density. Hum Genet.1999; 104:226-233.
    46 Deng HW, Xu FH, Huang QY, et al. A whole-genome linkage scan suggests several genomic regions potentially containing quantitative trait Loci for osteoporosis. J Clin Endocrinol Metab. 2002; 87:5151-5159.
    47 Duncan EL, Brown MA, Sinsheimer J, et al. Suggestive linkage of the parathyroid receptor type 1 to osteoporosis. J Bone Miner Res.1999; 14:1993-1999.
    48 Koller DL, Liu G, Econs MJ, et al. Genome screen for quantitative trait loci underlying normal variation in femoral structure. J Bone Miner Res.2001; 16:985-991.
    49 Mitchell BD, Kammerer CM, Schneider JL, et al. Genetic and environmental determinants of bone mineral density in Mexican Americans:results from the San Antonio Family Osteoporosis Study. Bone.2003; 33:839-846.
    50 Karasik D, Myers RH, Cupples LA, et al. Genome screen for quantitative trait loci contributing to normal variation in bone mineral density:the Framingham Study. J Bone Miner Res.2002; 17:1718-1727.
    51 Deng HW, Shen H, Xu FH, et al. Tests of linkage and/or association of genes for vitamin D receptor, osteocalcin, and parathyroid hormone with bone mineral density. J Bone Miner Res. 2002; 17:678-686.
    52 Johnson ML, Gong G, Kimberling W, et al. Linkage of a gene causing high bone mass to human chromosome 11 (11q12-13). Am J Hum Genet.1997; 60:1326-1332.
    53 Peacock M, Koller DL, Hui S, et al. Peak bone mineral density at the hip is linked to chromosomes 14q and 15q. Osteoporos Int.2004; 15:489-496.
    54 Mitchell BD, Cole SA, Bauer RL, et al. Genes influencing variation in serum osteocalcin concentrations are linked to markers on chromosomes 16q and 20q. J Clin Endocrinol Metab. 2000; 85:1362-1366.
    55 Beck GR, Jr., Zerler B, Moran E. Gene array analysis of osteoblast differentiation. Cell Growth Differ.2001; 12:61-83.
    56 Chen J, Zhong Q, Wang J, et al. Microarray analysis of Tbx2-directed gene expression:a possible role in osteogenesis. Mol Cell Endocrinol.2001; 177:43-54.
    57 Doi M, Nagano A, Nakamura Y. Genome-wide screening by cDNA microarray of genes associated with matrix mineralization by human mesenchymal stem cells in vitro. Biochem Biophys Res Commun.2002; 290:381-390.
    58 Locklin RM, Riggs BL, Hicok KC, et al. Assessment of gene regulation by bone morphogenetic protein 2 in human marrow stromal cells using gene array technology. J Bone Miner Res.2001; 16:2192-2204.
    59 Raouf A, Seth A. Discovery of osteoblast-associated genes using cDNA microarrays. Bone. 2002; 30:463-471.
    60 Vaes BL, Dechering KJ, Feijen A, et al. Comprehensive microarray analysis of bone morphogenetic protein 2-induced osteoblast differentiation resulting in the identification of novel markers for bone development. J Bone Miner Res.2002; 17:2106-2118.
    61 Theilhaber J, Connolly T, Roman-Roman S, et al. Finding genes in the C2C12 osteogenic pathway by k-nearest-neighbor classification of expression data. Genome Res.2002; 12:165- 176.
    62 Connor JR, Kumar S, Sathe G, et al. Clusterin expression in adult human normal and osteoarthritic articular cartilage. Osteoarthritis Cartilage.2001; 9:727-737.
    63 Vincenti MP, Brinckerhoff CE. Early response genes induced in chondrocytes stimulated with the inflammatory cytokine interleukin-1beta. Arthritis Res.2001; 3:381-388.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700