计及信号传输时延的电力系统阻尼控制器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
区域联网运行已成为现代电力系统的重要特点,伴随着大电网的发展而日益严重的低频振荡问题更加引起电力工作者的关注,尽管有关低频振荡的研究进行了很多,但是仍有很多问题未能很好解决。在所有这些问题中时滞就是一个需要迫切研究的问题,从工程实践的角度来看,时滞的存在往往会导致系统的性能指标下降,甚至使系统失去稳定性。
     一般认为电力系统稳定器是增强系统阻尼、抑制电网低频振荡的主要措施,实际运行的系统在安装了电力系统稳定器仍然会诱发低频振荡,这就需要从新的角度引入新的控制对象和控制原理,以提高本地振荡模式的阻尼比,抑制低频振荡的发生。
     传统的电力系统稳定器,往往只采用机组本地信号,虽然对局部振荡模式有很好的阻尼作用,但对区域间振荡模式的抑制效果欠佳。近来受到广泛关注的广域测量系统可以在同一参考时间框架下捕捉到大规模互联电力系统各地点的实时稳态、动态信息,这些信息可应用于电力系统稳态及动态分析与控制的许多领域,给大规模互联电力系统的运行和控制提供了新的方法。广域测量系统给电力系统的运行和控制带来了新的契机,但也带来了新的问题,如反馈信号的传输时延问题,在广域测量系统的环境下,信号传输的时延是不可忽略的。
     针对目前的研究状况,本文提出了计及信号传输时延的阻尼控制器设计,综合利用若干理论设计了计及信号传输时延的电力系统稳定器、附加调速阻尼控制器和广域阻尼控制器。主要内容和研究成果归纳如下:
     1.采用Pade逼近的方法对于时延进行建模,分析了信号传输时延对电力系统稳定器控制效果的影响。计算得到了维持系统渐近稳定的时滞稳定裕度,研究表明二阶Pade时延逼近效果较好。对于多机运行方式下,研究了发电机输出有功功率变化对时滞稳定裕度的影响,得出了一些初步的结论。并在此基础上研究了计及信号传输时延的电力系统稳定器设计方法,结合线性矩阵不等式和粒子群优化理论分析计算得出了合适的电力系统稳定器参数,通过仿真分析验证了该方法的有效性。
     2.研究了附加调速控制器抑制电力系统低频振荡的可行性,并在此基础上探讨了计及信号传输时延的附加调速阻尼控制器设计方法,提出了基于校正补偿原理和基于粒子群优化算法的附加调速阻尼控制器设计策略。通过仿真表明附加调速阻尼控制能够达到抑制电力系统低频振荡的效果。
     3.探讨了计及信号传输时延的广域阻尼控制器的设计方法,采用二阶Pade时延逼近对时延进行建模,运用粒子群优化算法获得广域阻尼控制器参数,针对广域阻尼控制器的引入会造成原有系统区间振荡范围内特征值数量的增加,提出了基于Routh降阶算法的等效阻尼比的分析方法,对于广域阻尼控制器的引入会造成大干扰情况下相对功角第一摆振荡幅值较大的现象,优化了集中广域控制器的结构参数。通过大扰动和小扰动仿真实验表明,通过以上分析获得的广域阻尼控制器对区间振荡具有很好的抑制效果。
     对测试系统仿真结果的分析表明论文中提出的理论,能够为电力系统低频振荡研究提供新的分析方法和控制策略,在保障电网安全稳定的同时提高其运行的经济性。
Inter-regional connection is an important characteristic of modern power system. As the power grid develop,the increasingly serious low-frequency oscillations problems has become quite prominent. Though there are lots of references concentrating on the low-frequency oscillations problem, many problems have not been yet well solved. Among these problems, the signal transmision delay is a significant problem. A long time delay may be a detriment to system stability and degrade system robustness.
     The basic function of. a power system stabilizer(PSS)is to add damping to the generator rotor oscillations. PSS based on shaft speed signal has been used successfully on generator unit. However, the low-frequency oscillation still happened even some PSS were installed in generator unit. The new principles of controller design should be study so as to increase damping ratio to the local oscillation mode and inhibit the low frequency oscillation.
     The input signals of the conventional PSS come from local generator, can damp the local mode oscillations well, but not the inter-area mode oscillations. Wide-area Measurement System can retrieval the real time dynamic and static information of the large scale power system under the same time reference, helping to resolve the problems of the dynamic analysis and control for an interconnected power system, especially the low-frequency oscillation. However, communication delay is a non-ignorable factor for the stability of wide-area control.
     To improve the existing methods, the damping controller including the power system stabilizer,the governor damping controller and the wide area damping controller considering signals transmission delay for power system is presented for the first time in the dissertation. The main works presented in the dissertation contain:
     1. The Pade approximation method is used to express time delay, Analysis of the influence of the signal transmission delay on the power system stabilizer, and calculate the delay margin to maintain the system asymptotic stability. Research shows that the second-order Pade approximation has better accuracy. The power system stabilizer considering signals transmission delay is proposed for generators excitation controllers, Simulations in a single-machine infinite bus test system are given to demonstrate the advantages of the proposed.
     2. The principle of the governor damping control is discussed. The governor damping controller considering signals transmission delay is designed. Simulations in a single-machine infinite bus test system are given to demonstrate the advantages of the governor damping controller.
     3. The principle of the wide area damping control is discussed, The second-order Pade approximation method is used to express time delay. The equivalent damping ratio conception based on the Routh algorithm is proposed,Simulations in a 4-machine test system are given to demonstrate the dvantages of the wide area damping controller.
     The theoretical results proposed in the dissertation establishes the control theory and engineering application foundation for the low-frequency oscillations. The economical efficiency can be improved on the promise of safe operation of power grid.
引文
[1]印永华,郭剑波,赵建军.美加“8.14”大停电事故初步分析以及应吸取的教训[J].电网技术.2003,27(10):8-11.
    [2]李再华,白晓民,丁剑.西欧大停电事故分析[J].电力系统自动化.2007,31(1):1-3.
    [3]薛禹胜,郝思鹏,刘俊勇.关于低频振荡分析方法的评述[J].电力系统自动化.2009,33(3):1-8.
    [4]De M F. Concepts of Synchronous Machine Stability as Affected by Excitation Control[J]. IEEE Trans. on Power Apparatus and System.1969,88(4):316-329.
    [5]王铁强.电力系统低频振荡机理的研究[J].中国电机工程学报.2002(2):21-25.
    [6]刘取.电力系统稳定性及发电机励磁控制[M].北京:中国电力出版社,2007.
    [7]国家电力调度通信中心编.电网典型事故分析:1999-2007年 [M].北京:中国电力出版社,2008.
    [8]鞠平.电力系统广域测量技术[M].北京:机械工业出版社,2008.
    [9]H. Li G W R J. Strategic power infrastructure defense[J]. Proceedings of the IEEE.2005,93(5):918-933.
    [10]余贻鑫,李鹏.大区电网弱互联对互联系统阻尼和动态稳定性的影响[J].中国电机工程学报.2005,25(11):6-11.
    [11]陈建业,王仲鸣.1996年夏季美国西部电力系统停电事故[J].国际电力.1998,2(2):52-56.
    [12]何大愚.对于美国西部电力系统1996年7月2日大停电事故的初步认识[J].电网技术.1996,20(9):35-39.
    [13]刘宪林.基于同步机和水系统详细模型的电力系统小扰动稳定研究[D].哈尔滨工业大学,2001.
    [14]Kunder. Power system stability and control(影印版)[M].北京:中国电力出版社,2002.
    [15]A P G. Synchronized phasor measurements in power system[J]. IEEE Computer Applications in Power.1993,6(2):10-15.
    [16]Saitoh H. GPS sychronized measurement applications in Japan[C]. IEEE/PES Transmission and Districution Conference and Exhibiton,Asia Pacific:2002.
    [17]Liu Chih Wen. Phasor measurement application in Taiwan[C]. IEEE/PES Transmission and Distribution Conference and Exhibition, Asia Pacific:2002.
    [18]Rasmussen J J P. Sychronized phasor measurements of a power system event in Eastern Denmark[C].2003 Bologna IEEE Power Tech Conference Proceedings, Bologna:2003.
    [19]Cai J Y H Z. Current status and experience of WAMS implementation in north america[C]. Transmission and Distribution Conference and Exhibition, Asia and Pacific,2005 IEEE/PES:2005.
    [20]Leirbukt A B G J O. Wide area monitoring experiences in norway[C]. Power systems Conference and Exposition, PSCE06:2006.
    [21]Yi K K C J B. Development of wide area measurement and dyamic security assessment systems in Korea[C]. Power Engineering Society Summer Meeting: 2001.
    [22]Bahnik T G U. Wide area measurement system in action[C]. Power Tech:2007.
    [23]Martin K. E. Phasor measurement systems in the WECC[C]. Power Ebgubeerubg Society General Meeting,2006 IEEE.
    [24]H. Wu S T A G. Evaluation of time delay effects to wide area power system stabilizer design[J]. IEEE Trans. Power System.2004,19(4):1935-1941.
    [25]Naduvathuparambil B, Valenti M C, Feliachi A. Communication delays in wide area measurement systems[C].2002.
    [26]余耀南.动态电力系统[M].水利电力出版社,1985.
    [27]邵俊松,李庚银,周明.电力系统低频振荡及振荡解列策略研究综述[J].电力情报.2000,(2):1-5.
    [28]Demello F. Concepts of Synchronous Machine Stability as Affected by Excitation Control[J]. IEEE Trans. On PAS.1969,4.
    [29]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析[M].北京:清华大学出版社,2002.
    [30]Craham. Power System structure and oscillations[M]. IEEE-Computer Applications in Power,1999.
    [31]Liu S M A R V. A normal form analysis approach to sitting power system stabilizers (PSSs) and assessing power system nonliner behavior [J]. IEEE Trans. on Power System.2006,21(4):1755-1760.
    [32]Sarasua A. e R C H E. Analysis of system-inherent oscillations in power systems with several load models[C].2001.
    [33]孙街,徐光虎,陈陈.负荷模型动态特性小确定性对低频振荡的影响[J].电力系统自动化.2003,27(10):11-14.
    [34]朱芳,汤勇,张东霞,等.我国交流互联电网动态稳定性的研究及解决策略[J].电网技术.2004,28(15):1-5.
    [35]James T. Learning to Live with Power System Oscillation[J]. IEE Colloquium on Power System Dynamics Stabilization.1998.
    [36]Rogers G. Power. System structure and oscillations[J]. IEEE Computer Applications in Power.1999.
    [37]郝思鹏,薛禹胜,张晓明,等.基于EEAC理论反洗低频振荡[J].电力系统自动化.2009,33(4):11-15.
    [38]王青,闵勇,张毅威.低频振荡的功率振荡增量分布计算新方法[J].电力系统自动化.2008,32(6):1-4.
    [39]Functional S H. Design for A system-Wide Multivariable Damping Controller [J]. IEEE Trans. On P. S.1990,5 (4).
    [40]Lee Y. Damping of Power System Oscillations with Output Feedback and Strip Eigenvalue Assignmen[J]. IEEE Trans.on P. S.1995,10(3).
    [41]Quinot H. Robust Coordinate AVR+PSS for Damping Large Scale Power Systems [J]. IEEE Trans on P. S.1999,14(4).
    [42]Lerch E. Advanced SVC Control for Damping Large Scale Oscillations [J]. IEEE Trans on P. S.1991,14(4).
    [43]A E. Formula for the effect of a static Var compensator of synchronizing torque coefficient[J]. IEEE Proc.-Gener. Transm. Distrib.1996,143(6).
    [44]J S F. Application of the controllable series compensator in damping power system oscillations[J]. lee Proc.-Gener. Transm. Distrib.1996,143(4).
    [45]F W H. A,Unified Model for the Analysis if FACTS Devices in Damping Power System Oscillations Part Ⅰ:Sigle-machine Infinite-bus Power System [J]. IEEE Trans on Power System.1997,12(2).
    [46]F W H. A Unified Model for te Analysis of FACTS Devices in Damping Power System Oscillations-Part Ⅲ:Unified Power Flow Controller [J]. IEEE Trans on P. S. 1997,15(3).
    [47]Zhao Q. Robust SVC Controller Design for Improving Power System Damping[J]. IEEE Trans on P.S.1995,10(4).
    [48]A H.. A Fuzzy Logic Based Power System Stabilizer with Learning Ability[J]. IEEE Trans ON E. C.1996,11(4).
    [49]Kim K. Methods for Calculating Oscillations in Large Power Systems [J]., [J]. IEEE Trans on P. S.,1994,12(4).
    [50]Vouras C.d K N P B. Analysis of forced oscillations in a multimachine power system[C].1991.
    [51]汤涌. 电力系统强迫功率振荡的基础理论[J].电网技术.2006,30(10):29-33.
    [52]王铁强,贺仁睦,王卫国.电力系统低频振荡机理的研究[J].中国电机工程学报.2002,22(2):21-25.
    [53]韩志勇,贺仁睦,徐衍会.有汽轮机脉动引发的电力系统共振机理的低频振荡研究[J].中国电机工程学报.2005,25(21):14-18.
    [54]宋永华.电力系统在参数扰动下的混沌行为[J].中国电机工程学报.1990,10(增刊).
    [55]Chiang H. d L C. Chaos in a simple power system[J]. IEEE Trans on P. S.1993, 8(4):1407-1417.
    [56]张卫东,张伟年.电力系统混沌振荡的参数分析[J].电网技术.2000,(12):17-20.
    [57]贾宏杰,余怡鑫,王成山.考虑励磁顶值与PSS的混沌和分叉现象[J].电力系统自动化.2001,25(1):11-14.
    [58]邓集祥,刘广生.低频振荡中HHopf分歧研究[J]. 中国电机工程学报.1997,17(6).
    [59]袁斌.应用分支理论分析电力系统中的复杂振荡现象[J].电网技术.1994,18(4).
    [60]Frederic Howell V V. Transient stability assessment with unstable limit cycle approximation[J]. IEEE Trans. On P.S.1999,14(2):667-677.
    [61]Juan Li V V. Juan Li, Venkatasubramanian V. Study of unstable limit cycles in power system models[C].2000.
    [62]Dobson I Z J G S. Is strong model resonance a precursor to power system oscillation[J]. IEEE Trans. on Circuits and Systems.2001,48(3):340-349.
    [63]韩志勇,贺仁睦,马进.电力系统强迫功率振荡扰动源的对比分析[J].电力系统自动化.2009,33(3):16-19.
    [64]Kastuhiko著,卢伯英,于海勋等译.现代控制工程(第四版)[M].北京:电子工业出版社,2003.
    [65]俞立.现代控制理论[M].北京:清华大学出版社,2007.
    [66]Korba P L M R C. Detection of osillations in power systems using Kalman filtering technique[J]. IEEE Conference on Control Applications.2003(1).
    [67]张鹏飞,薛禹胜,张启平.电力系统时变振荡特性的小波脊分析[J].电力系统自动化.2004,28(16):32-35.
    [68]F H J. Application of Prony analysis to the determination of modal content and equivalent models for measured power system response [J]. IEEE Trans. On P.S.1991,6(3):1062-1068.
    [69]李大虎,曹一家.基于模糊滤波和Prony算法的低频振荡模式在线识别方法[J].电力系统自动化.2007,31(1):14-19.
    [70]卢强,孙元章.电力系统非线性控制[M].北京:科学出版社,1993.
    [71]De Mello F. p N P J L. Coordinated application of stabilizers in multimachine power systems[J].IEEE Trans. On A. C.1980,99(3):892-901.
    [72]Hsu Y. y C L C. Identification of optimum location for stabilizer applications Using participation factor[J]. IEE Proceedings on Generation, Transmissiong and Distribution.1987,134(3):238-244.
    [73]Wang K. w C C Y T. Probabilistic eigenvalue sensitivity indices for robust PSS site selection[J].,2001,148(6):603-609. [J]. IEE Proceedings on Generation, Transmissiong and Distribution.2001,148(6):603-609.
    [74]Nelson L L T. Determination of suitable locations for Power, system stabilizers and static VAR compensators for damping electromechanical oscillations in large scale power systems[J]. IEEE Trans on P.S.1990,5(4):1445-1463.
    [75]G R. Power System Oscillations[M]. USA:Kluwer Academic Publishers,2000.
    [76]Chilali M G P. H∞ design with pole placement constraints:an LMI approach [J]. IEEE Transaction on Automatic Control.1996,41(3):358-367.
    [77]Chen G S T. μ-analysis and synthesis of state feedback systems based on multipliers and LMI's[C].1998.
    [78]J. He M 0 P. An adaptive power·system stabilizer based on recurrent neural networks[J]. IEEE Trans.on Energy Conversion.1997,12(4).
    [79]Ravi Segal K M L S. Application of an iverse input/output mapped ANN as power system stabilizer[J]. IEEE Trans. on Energy Conversion.2000,15(2).
    [80]I. Kamwa T G. Robust Design and Coordination of Multiple Damping Controllers Using Nonliear Constrained Optimization[J]. IEEE Trans. on Power System.2000, 15(3):1083-1092.
    [81]Abdel-Magid Y B M S S. Genetic Algorithm Based Simultaneous Eigenvalue Placement of Power Systems [J]. The Arabian Journal for Science adn Engineering. 2000,25(1).
    [82]Ruhua You E H J. An online adaptive neuro-fuzzy power system stabilizer for multimachine systems[J]. IEEE Trans. On P. S.2003,18(1):128-135.
    [83]杨晓东,房大中,刘长胜.阻尼联络线低频振荡的SvC自适应模糊控制其研究[J].中国电机工程学报.2003,23(1):55-59.
    [84]Murdoch A S. Excitation conrtol of high side voltage regulation[C].2000.
    [85]葛俊,童陆圆,耿俊成.基于电容电压同步信号TCSC阻抗阶跃特性研究[J].电力系统自动化.2001(2):37-40.
    [86]江全元,白碧蓉,邹振宇.计及广域测量系统时滞影响的TCSC控制器设计[J].电力系统自动化.2004,28(20):21-25.
    [87]刘赘,吕厚余,候世英.利用统一潮流控制器抑制电力系统低频振荡[J].重庆大学 学报.2003,26(7):74-77.
    [88]J. a Momoh M X W.Overview and Literature Survey of Fuzzy Set Theory in Power Systems[J]. IEEE Trans. on Power System.2005,20(3):1676-1690.
    [89]T.k Mok Y N F F. Design of Fuzzy Damping Controller of UPFC through Genetic Algorithm[J]. IEEE Trans. On P.S.2004,19(4):1889-1994.
    [90]房大中,杨晓东,宋文南.提高交直流电力系统稳定性的HVDC模糊逻辑控制器[J].电力系统自动化.2002,26(6):23-27.
    [91]谢小荣,肖晋宇,童陆园.采用广域量测信号的互联电网区间阻尼控制[J].电力系统自动化.2004,28(2):37-40.
    [92]C C B P B. Robust damping of multiple swing modes employing global stabilizing signals with TCSC[J]. IEEE Trans.on Power System.2004,19(1):499-506.
    [93]邱夕兆,于占勋,雷鸣,等.山东电网基于WAMS低频振荡统计与评估[J].电力系统自动化.2008,32(6):95-98.
    [94]王康,兰洲,甘德强,等.基于超导储能装置的联络线功率控制[J].电力系统自动化.2008,32(8):5-9.
    [95]戚军,江全元,曹一家.基于系统辨识的广域时滞鲁棒阻尼控制[J].电力系统自动化.2008,32(6):35-39.
    [96]许洪强,于占勋,牟宏,等.山东电网广域阻尼控制系统设计与分析[J].电力系统自动化.2008,32(5):99-103.
    [97]M.e Aboul-Ela S A A M. Damping Controller dsign for power system osillation using global signals[J]. IEEE Trans. On P.S.1996,1(11):767-773.
    [98]鞠平,谢欢,孟远景.基于广域量测信息的在线辨识低频振荡[J].中国电机工程学报.2005,25(22):56-60.
    [99]Wu hongxia, Konstantinos S,Gerald Thomas Heydt. Evaluation of Time Delay Effects to Wide-Area Power System Stabilizer Design [J]. IEEE Transaction on Power System.2004,19(4):1935-1941.
    [100]胡志祥,谢小荣,童陆园.广域阻尼控制延迟特性分析及其多项式拟合补偿[J].电力系统自动化.2005,29(20):29-34.
    [101]王伟岸,王俊,蔡兴国.基于史密斯预估器的互联电网阻尼控制[J].电力系统自动化.2008,32(20):37-41.
    [102]Balarko Chaudhuri B C P. Wide area measurement based stabilizing control of power system considering signal transmission delay[J]. IEEE Transaction on Power System.2004,19(4):1971-1979.
    [103]贾宏杰,宋婷婷,余晓丹.一种电力系统实用时滞稳定裕度曲线追踪法[J].电力系统自动化.2009,33(4):1-5.
    [104]贾宏杰,安海云,余晓丹.电力系统改进的时滞依赖型稳定判据[J].电力系统自动化.2008,32(19):15-19.
    [105]王绍部,江全元,刘兆燕.计及反馈信号多时滞特性的广域阻尼控制[J].电力系统自动化.2008,32(10):18-22.
    [106]Zhijian Hu J V M. The effectiveness of WAM based adaptive supervisory controller for global stabilization of power systems, [C]. Proc. of IEEE PowerTech 2007, Lausanne, Switzerland,1-5, July 2007:1-8.
    [107]张翼飞,曾亮,邓方林.时滞系统控制反战历程综述[J].控制工程.2004,11(5):4-7.
    [108]张冬梅,俞立.线性时滞系统稳定性分析综述[J].控制与决策.2008,23(8):841-849.
    [109]Mori T K H. Stability of x(t)=Ax(t)+Bx(t-d).[J]. IEEE Trans Automat Contr. 1989,34(4):460-462.
    [110]Brierley S D C J N. On stability independent of delay. [J]. IEEE Trans, Automat. Contr.1982,27(1):252-254.
    [111]Hale J. Theory of functional differential equations[M]. New York:Springer verlag,1977.
    [112]Li Xi S C E. Delay dependent robust stability and stabilization of uncertain linear delay systems:a matix inequality approach[J]. IEEE Tranns Automat Control.1997,42(8):1144-1148.
    [113]Li Xi S C E. Criteria for robust stability and stabilization of uncertain linear systems with state delay[J]. Automatica.1997,33(9):1657-1662.
    [114]Papachristodoulou A P M. Constructing Lyapunov-Krasocaskii functionals for linear time delay systems[C]. Proc of American Control Conf, Portland,2005, 4:2845-2850.
    [115]Parrilo Pablo A. Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization[D]. California Institute of Technology,2000.
    [116]薛定宇.控制系统计算机辅助设计-MATLAB语言与应用(第2版)[M].北京:清华大学出版社,2006.
    [117]俞立.鲁棒控制-线性矩阵不等式处理方法[M].北京:清华大学出版社,2002.
    [118]Schools R C W F. A Distributed Behavioral Model[J]. Cmputer Graphics.1987, 21(4):25-34.
    [119]J. Kennedy R E. Particle Swarm Optimization[C]. Perth, Australia:1995.
    [120]Shi Y R E. Parameter Selection in Particle Swarm Optimization[J].1998.
    [121]El-Gallad A E M S A. Enhancing the Particles Swarm Optimizer via Proper Parameters Selection[C]. Piscataway:IEEE Service Center,2002.
    [122]卢志刚,董玉香.基于改进二进制粒子群算法的配电网故障恢复[J].电力系统自动化.2006,30(24):39-43.
    [123]王义红,梅生伟,陈家荣.考虑动态电压安全约束的预防控制粒子群优化算法[J].电力系统自动化.2008,32(12):1-6.
    [124]程改红,徐政.基于粒子群优化的最优负荷恢复算法[J].电力系统自动化.2007,31(16):62-65.
    [125]王义红,梅生伟,陈家荣.考虑动态电压安全约束的预防控制粒子群优化算法[J].电力系统自动化.2008,32(12):1-5.
    [126]吴方劫,张承学,段志远.基于动态多种群粒子群算法的无功优化[J].电网技术.2007,31(24):35-39.
    [127]Zhiyuan Duan. Design for Multi-machine Power System;Damping Controller Based on Particle Swarm Optimization, (ISA2009) [C].2009 International Workshop on Intelligent Systems and Applications(ISA2009), Wu Han.
    [128]贾宏杰,尚蕊,张宝贵.电力系统时滞稳定裕度的求解方法[J].电力系统自动化.2007,31(2):5-11.
    [129]刘兆燕,戚军,苗轶群,等.单时滞电力系统时滞稳定裕度的简便求解方法[J].电 力系统自动化.2008,32(18):8-13.
    [130]郝玉山,王海风,韩祯祥,等.电力系统稳定器实现于调速系统之研究—第1部分:可行性分析[J].电力系统自动化.1992,16(5):36-42.
    [131]郝玉山,王海风,韩祯祥,等.电力系统稳定器实现于调速系统之研究—第2部分:多机系统中特性分析[J].电力系统自动化.1993,17(3):26-32.
    [132]林其友,陈星莺,曹智峰.多机系统调速侧电力系统稳定器GPSS的设计[J].电网技术.2007,31(3):54-58.
    [133]梅晓榕.自动控制原理[M].北京:科学出版社,2003.
    [134]Naduvathuparambil B V M C F. Communication Delays in Wide Area Measurement System. [C]. Huntsville:2002.
    [135]胡志祥,谢小荣,童陆园.广域测量系统的延迟分析及其测试[J].电力系统自动化.2004,28(15):39-43.
    [136]Jonathan William Stahlhut T J G T. Latency Viewed as a Stochastic Process and its Impact on Wide Area Power System Control Signals[J]. IEEE TRANSACTIONS ON POWER SYSTEMS.2008,23(1):84-91.
    [137]刘红超,李兴源.基于Prony辨识的交直流并联输电系统电流阻尼控制的研究[J].中国电机工程学报.2002,22(7):54-57.
    [138]徐东杰,贺仁睦,高海龙.基于迭代Prony算法的传递函数辨识[J].中国电机工程学报.2004,24(6):40-43.
    [139]Hauer J F D C J S. Initial results in Prony analusis of power system response signals[J]. IEEE TRANSACTIONS ON. POWER SYSTEMS.1989,5(1):80-89.
    [140]Trudowski D J S J R. AN application of Prony methods in pss design for multimachine system[J]. IEEE TRANSACTIONS ON POWER SYSTEMS.1991,6(1): 118-126.
    [141]肖晋宇,谢小荣,胡志祥,等.电力系统低频振荡在线辨识的改进Prony算法[J].清华大学学报(自然科学版).2004,44(7):883-887.
    [142]袁野,程林,孙元章.采用广域测量信号的2级PSS控制策略[J].电力系统自动化.2006,30(24):11-16.
    [143]D Dotta, a Silva I C D. Wide area measurements based two-lecel control design considering signal transmission delay[J]. IEEE Transaction on Power System. 2009,24(1):208-216.
    [144]De H. k, clark M P F. The Grid in Teansiton-FACTS or fiction when dealing with reliability?[J]. IEEE Power & Energy Sep./Qct.1995.
    [145]石颉,王成山.基于线性矩阵不等式理论的广域电力系统状态反馈控制器设计[J].电网技术.2008,32(6):36-41.
    [146]袁野,程林,孙元章.广域阻尼控制的时滞影响分析及时滞补偿设计[J].电力系统自动化.2006,30(14):6-9.
    [147]吴敏,桂卫华,何勇.现代鲁棒控制(第二版)[M].长沙:中南大学出版社,2006.
    [148]F H M. Routh appeoximation for high-order linear system. [J]. Proceedings of 9th Allerton Conference.1971:160-169.
    [149]沙智明.电力系统广域实时同步相量测量系统研究[D].华北电力大学博士学位论文,2006.
    [150]Yang Zhang A B. Design of Wide Area Damping Controller, for Interarea Oscillations[J]. IEEE Transaction on Power system.2008,23(3):1136-1143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700