离心压气机气动设计程序开发及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
叶轮机械作为国民经济的支柱产业,其运行效率决定了能耗的高低,稳定性直接影响着整个机组的安全。对于其中的高端产品离心压气机而言,目前各行业的需求朝着高压比、高效率及高稳定性的方向发展。例如:军方无人机等应用领域需要高压比离心压气机,过程工业需要高效率、高稳定性的多级离心压气机产品等等。从近年来离心压气机的市场份额来看,在制冷和天然气输送等领域,国外多级离心压气机产品一直占据垄断地位。加之国防领域对无人机的需求,很有必要加强离心压气机的设计研究。较为有效的途径为自主开发高适应性、高性能的离心压气机气动设计程序,开展不同产品研发工作,掌握不同流量系数类型、不同压比离心压气机的关键设计技术,最终服务于我国军用、民用离心压气机产品的开发。
     本文以自主研发离心压气机气动设计程序为主,采用不同流量系数离心压气机的数值模拟和试验数据对设计程序性能进行了验证;然后利用所开发的设计程序,针对各领域对离心压气机新的需求,研发多款不同流量系数的单级离心压气机;最后将单级离心压气机设计技术集中体现在一款1.5MW、总压比为12的单轴多级离心压气机上,从而积累掌握单、多级离心压气机关键设计技术。与此同时,开展了离心叶轮-扩压器之间的局部流动研究,探讨该区域流动状况与离心压气机扩稳的关联性。
     本文的核心内容主要分为以下几个部分:(1)自主研发离心压气机气动设计程序,包含设计模块和分析模块,采用不同流量系数离心压气机的试验和数值模拟数据整体验证设计程序的性能;(2)基于开发的气动设计程序,结合不同的实际工程应用背景,设计了涵盖低、中、高流量系数的单级离心压气机,其中包括:为某款多级离心压气机设计的一款以天然气为工作介质的离心压气机,用作于最后一级;为碟式太阳能空气涡轮发电系统设计的小流量、高压比单级离心压气机;为美国密歇根州立大学改进设计了一款高流量系数(0.2)离心压气机;为企业开发了一款用于电厂脱硫氧化和生物发酵的大流量、高压比离心压气机产品,并通过样机试验进行了性能验证;(3)研发了一款1.5MW、总压比为12、以空气为介质的单轴多级离心压气机,前后5级离心压气机采用“背靠背”结构布置,以相互抵消部分轴向力。由于涵盖不同流量系数类型的单级离心压气机,该多级离心压气机设计工作既可集中检验本文开发的气动设计程序性能,又可以积累和掌握多级离心压气机诸如级数分配、各级功率和压比分配、单根轴上性能指标限制值等关键设计技术;(4)开展了离心压气机叶轮-扩压器无叶扩压段流路扩稳的机理研究。提出了先缩后扩的叶轮-扩压器间轮盖型线,通过控制与利用叶轮-扩压器间轮盖区域的分流涡,以达到扩稳的目的。
Turbomachinery has already become a mainstay in our national economy. Its performance affects power consumption and machine running safety directly. The demands on the centrifugal compressors with higher efficiency and total pressure ratio are increasing. For example, military UAV (Unmanned Aerial Vehicle) employs centrifugal compressors with high pressure ratio. Those centrifugal compressors with high efficiency and excellent stability are needed in process industry. Moreover, foreign multistage centrifugal compressor products applied in the air-conditioning and natural gas transportation fields take the main share of China market. Therefore, the effective solution is to develop aerodynamic design program for centrifugal compressors including different flow coefficient type. Through this process, key design technologies can be accumulated and served for the corresponding application areas.
     Aerodynamic design program for centrifugal compressors was developed based on empirical loss models and calibrated by three centrifugal compressors having experimental and numerical simulation data. Then, four single stage centrifugal compressors with different inlet flow coefficient were designed for specific projects by means of the self-developed design program. One of the four centrifugal compressors has been manufactured and will be tested by a coorperative company to confirm its performance.
     A low flow coefficient centrifugal compressor was developed as the last stage of a multistage compressor. The flow medium was natural gas. The design goal was to achieve higher efficiency. According to the requirements of a solar dish-brayton system, a centrifugal compressor stage with a minimum total pressure ratio of5, an adiabatic efficiency above75%and a surge margin more than12%needs to be designed. A single stage, which consists of impeller, radial vaned diffuser,90°crossover and two rows of axial stators, has been designed to satisfy the requirement of the solar dish-brayton system. To achieve the specific stage performance, an impeller with a6:1total pressure ratio and an adiabatic efficiency of90%was designed and its preliminary geometry came from an in-house one-dimensional program. Radial vaned diffuser was applied downstream of the impeller. Two rows of axial stators after90°crossover were added to guide the flow into axial direction. This centrifugal compressor belonged to medium flow coefficient type. A centrifugal compressor with high inlet flow coefficient of0.2, having a narrow operating range and unstable running situation even at design speed during the test, was investigated. To better reveal flow details in this centrifugal compressor, numerical simulations have been carried out and indicate that excessive impeller flow diffusion results in the poor performance of this centrifugal compressor. For the same inlet flow coefficient, six redesign cases coming from an in-house one-dimensional analysis program were proposed together with impeller trimming and equal flow area design method for corresponding vaneless diffuser. Finally, a suitable redesign case was selected and analyzed.
     Based on the accumulated design technology regarding different coefficient centrifugal compressors, a multistage centrifugal compressor with the total pressure ratio of12was designed, which would either verify the performance of developed design system or satisfy the need of a project. This multistage centrifugal compressor employed a single shaft, back-to-back structure layout. An intercooler was added between the fifth stage and the sixth stage. The numerical simulation indicated that the performances of this multistage centrifugal compressor were satisfactory. During the design process, related key design technologies were also accumulated.
     The flow situation between impeller exit and diffuser inlet was thought to be critical to the aerodynamic performance and stability of centrifugal compressors. To investigate the stall improvement mechanism of vaneless diffuser flow path control, a centrifugal compressor is simulated and compared with existing experimental data. According to characteristics of flow field and stall mechanism, a convergent-divergent type of impeller-diffuser casing was designed and analyzed. The result showed that the stable flow range of centrifugal compressor increased by2.8%, however, no obvious positive effects were found on the adiabatic efficiency, which was slightly lower than that of prototype.
引文
[1]风机行业报告,2009.
    [2]Centrifugal Compressor Evolution, Proceedings of the Thirty-Ninth Turbomachinery Symposium, Turbomachinery Laboratory, Texas A&M Universigy, College Station Eexas, pp.59-70,2010.
    [3]A. Whitfield, N.C. Baines. Design of Radial Turbomachines. Essex, England:Longman Scientific & Technical,1990.
    [4]Hirsch C H, Kang S, Pointer G. Numerically Supported Investigation on the 3D Flow in Centrifugal Impeller, Part II:Second Flow Structure. ASME Paper 96-GT-152,1996.
    [5]Krain H. Review of Centrifugal Compressor's Application and Development. Journal of Turbomachinery.2005,127(1):25-34.
    [6]彭泽琰,刘刚.航空燃气轮机原理.北京:国防工业出版社,2007.
    [7]D. Eckardt. Detailed Flow Investigations within a High Speed Centrifugal Compressor Impeller. ASME Journal of Fluids Engineering.1976,98:390-402.
    [8]Dean R C, Senoo Y. Rotating Wakes in Vaneless Diffusers. ASME Journal of Basic Engineering,1960,82:563-574.
    [9]H. Krain. Swirling Impeller Flow. ASME Journal of Turbomachinery.1988,110:122-128.
    [10]M.D. Hathaway, R.M. Chriss, J.R. Wood, et al. Experimental and Computational Investigation of the NASA Low Speed Centrifugal Compressor Flow Field. ASME Journal of Turbomachinery.1993,115(3):527-542.
    [11]J.T. Hamrick, A. Ginsburg, W. Osborn. Method of Analysis for Compressible Flow through Mixed Flow Centrifugal Compressor of Arbitrary Design. Cleveland, USA,1950.
    [12]Wu Chung Hua. A General Theory of Three-Dimensional Flow in Subsonic and Supersonic Turbomachines of Axial-, Radial-, and Mixed-Flow Types. NACA TN 2604.
    [13]Moore, J., Moore, J.G. A Calculation Procedure for 3D Viscous Compressible Duct Flow. Trans ASME, Journal for Fuid Engineering,101,1979.
    [14]Hah C. A Navier Stokes Analysis of 3D Turbulent Flows inside Turbine Blade Rows at Design and Off-Design Conditions. ASME-Paper 83-GT-34,1983.
    [15]W. Dawes. Development of a 3D Navier-Stokes Solver for Application to all Types of Turbomachinery. ASME-Paper,88-GT-70.
    [16]Dean R C, Senoo Y. Rotating wakes in vaneless diffusers. ASME J. Basic Eng.190,82: 563-574.
    [17]Fowler H. S. Research on the Internal Aerodynamics of the Centrifugal Compressor.11th Anglo-American Aeronautical Conference. London 8-12. September,1969.
    [18]Eckardt D. Instantaneous Measurements in the Jet-Wake Discharge Flow of a Cetrifugal Compressor Impeller. Journal of Engineering for Power, Transaction ASME.1975,97(3): 337-345.
    [19]Eckardt D. Flow Field Analysis of Radial and Backswept Centrifugal Compressor Impellers. Part I:Flow Measurements Using a Laser Velocimeter. In Performance Prediction of Centrifugal Pumps and Compressors,1979.
    [20]Japikse D. Assessment of Single and Two-Zone Modeling of Centrifugal Compressors. Studies in Component Performance:Part 3. ASME Paper,85-GT:73,1985.
    [21]王毅.一种新颖结构布局的斜流-离心组合压气机设计关键技术研究.中国科学院工程热物理研究所博士论文.2010.
    [22]Schumann L F, Wood J R, Clark D A. Effect of Area Ratio on the Performance of a 5.5:1 Pressure Ratio Centrifugal Impeller. Journal of Turbomachinery,1987,109(1):10-19.
    [23]Eisenlohr G, Krain H, Richter F A, et al. Investigations of the Flow through a High Pressure Ratio Centrifugal Impeller. ASME Turbo Expo 2002:Power for Land, Sea, and Air. American Society of Mechanical Engineers,2002:649-657.
    [24]Colantuoni S, Colella A. Aerodesign and Performance Analysis of a Radial Transonic Impeller for a 9:1 Pressure Ratio Compressor. Journal of Turbomachinery,1993,115(3): 573-581.
    [25]Vagani M, Bolin C D. Design and Performance Evaluation of a 10:1 Pressure Ratio Centrifugal Compressor Impeller. ASME 2010 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers,2010:133-142.
    [26]Higashimori H, Hasagawa K, Sumida K, et al. Detailed Flow Study of Mach Number 1.6 High Transonic Flow with a Shock Wave in a Pressure Ratio 11 Centrifugal Compressor Impeller. ASME Turbo Expo 2004:Power for Land, Sea, and Air. American Society of Mechanical Engineers,2004:771-779.
    [27]Yongsheng Wang, Kai Wang, Zhiting Tong, etc. Design and Optimization of a Single Stage Centrifugal Compressor for a Solar Dish-Brayton System. Journal of Thermal Science, 2013,22(5):402-412.
    [28]郑新前,张扬军,郭宫达,等.车用跨声速离心压气机设计.航空动力学报,2008,23(10):1903-1907.
    [29]杨策,闫兆梅,张广,等.带楔形扩压器的跨声速离心压气机设计及内部流场计算.机械工程学报,2006,42(2):71-74.
    [30]Birdi, K. Mixed Flow Compressors. Cranfield University Short Course on Centrifugal Compressors,1992.
    [31]Ronald H. Aungier, Centrifugal Compressor:A Strategy for Aerodynamic Design and Analysis, New York, ASME Press,2000.
    [32]Sorokes J M, Kopko J A, Geise P R, et al. The Influence of Shroud Curvature and Other Related Factors on Impeller Performance Characteristics. ASME Turbo Expo 2009:Power for Land, Sea, and Air. American Society of Mechanical Engineers,2009:1397-1406.
    [33]Im K. Design Consideration of a Centrifugal Compressor Impeller with High Mach Number and High Swirl Angle at Exit. ASME 2010 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers,2010:115-122.
    [34]J. Al-Zubaidy S N. Axial Length Influence on the Performance of Cent rifugal Impellers. Journal of Propulsion and Power,1992,8(6):1245-1251.
    [35]Came P M, Robinson C J. Centrifugal Compressor Design. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science,1998,213(2): 139-155.
    [36]Zhang D, Di Liberti J L, Cave M. Blade Thickness Effect on Impeller Slip Factor. ASME Turbo Expo 2010:Power for Land, Sea, and Air. American Society of Mechanical Engineers,2010:1871-1878.
    [37]Rodgers C. Centrifugal Compressor Blade Trimming for a Range of Flows. ASME Paper, 2001.
    [38]Senoo Y, Ishida M. Deterioration of Compressor Performance Due to Tip Clearance of Centrifugal Impellers. Journal of Turbo machinery,1987,109(1):55-61.
    [39]B Q里斯.离心压缩机械.北京:机械工业出版社,1986.
    [40]Inoue M., Cumpsty N.A., Experimental Study of Centrifugal Impeller Discharge Flow in Vaneless and Vaned Diffuser. ASME Journal of Engineering for Gas Tuebine and Power, 1984,106:455-467.
    [41]Pinarbasi A., Johnson M.W. Detailed Flow Measurements in a Centrifugal Compressor Vaneless Diffuser. ASME Journal of Turbomachinery,1994,116:453-461.
    [42]席光.离心式叶轮及其无叶扩压器内部三维紊流流场数值分析及实验研究.西安交通大学博士学位论文,1990.
    [43]Ubaldi M, Zunino P, Barigozzi G, et al. An Experimental Investigation of Stator Induced Unsteadiness on Centrifugal Impeller Outflow. ASME Journal of turbomachinery,1996, 118(1):41-51.
    [44]David Japikse, Nicholas C. Baines. Diffuser Design Technology, Concepts ETI Inc, White River Junction, Vermont, USA, June 2000 (Second Edition).
    [45]Krain H, Hoffman W. Verification of an Impeller Design by Laser Measurements and 3D-Viscous Flow Calculations. ASME Paper 89-GT-159,1989.
    [46]Dawes W N. A Simulation of the Unsteady Interaction of a Centrifugal Impeller with Its Vaned Diffuser:Flow Analysis. ASME Journal of Turbomachinery,1995,117:213-222.
    [47]He N, Tourlidakis A. Analysis of Diffusers with Different Number of Vanes in a Centrifugal Compressor Stage. ASME Paper GT2001-0321,2001.
    [48]刘小民,席光.叶片扩压器内跨盘-盖流场的实验研究.流体机械,1997,25(12):6-10.
    [49]席光,周莉,丁海萍,等.叶片扩压器进口安装角对离心压缩机性影响的数值与实验研究.工程热物理学报,2006(1):61-64.
    [50]刘小民,席光.叶片扩压器进口角度对离心压缩机性能的影响.流体机械,1998,26(1):3-5.
    [51]张伟,宫武旗,樊孝华,等.高速离心风机叶片扩压器前缘倾角对其性能影响的实验研究.工程热物理学报,2009(8):1306-1308.
    [52]李凯,曹淑珍,林梅,等.直板型叶片扩压器流场的实验测量与数值研究.西安交通大学学报,2006,40(3):279-283.
    [53]谈伟,祁明旭,林彤.扭叶片扩压器对离心压气机性能影响.中国科技论文在线,2013.
    [54]Marconcini M, Ibaraki S, Rubechini F, et al. Numerical Analysis of the Vaned Diffuser of a Transonic Centrifugal Compressor. Journal of Turbomachinery,2010,132(4):041012.
    [55]杜建一,李雪松,初雷哲,等.有叶扩压器的流场分析.工程热物理学报,2005,26(1):43-46.
    [56]汪润生.小流量离心叶轮内部流动分析及其叶片扩压器的设计.大氮肥,2009,32(5):324-327.
    [57]李新宏,李连生,黄淑娟,等.采用叶片扩压器时单级离心叶轮内流分析.风机技术,2010(1):3-6.
    [58]崔伟伟,杜建一,徐建中.离心压气机的叶片扩压器设计及流场分析.工程热物理学报,2010(2):259-262.
    [59]曹四,刘宝杰.叶片式径向扩压器负荷分布影响.航空动力学报,2011,26(3):662-669.
    [60]Spakovszky Z S, Roduner C H. Spike and Modal Stall Inception in an Advanced Turbocharger Centrifugal Compressor. Journal of Turbomachinery,2009,131(3):031012.
    [61]Marsan A, Trebinjac I, Coste S, et al. Study and Control of a Radial Vaned Diffuser Stall. International Journal of Rotating Machinery,2012,2012.
    [62]Everitt J N, Spakovszky Z A S. An Investigation of Stall Inception in Centrifugal Compressor Vaned Diffuser. Journal of Turbomachinery,2013,135(1):011025.
    [63]冀春俊,刘赫,陈曦.叶片扩压器对小流量模型级性能的影响.风机技术,2009(1):8-9.
    [64]冀春俊,肖蕾.离心压缩机小流量级扩压器的分析与优化.风机技术,2005(2):15-17.
    [65]张朝磊,邓清华,丰镇平.级环境下离心压气机扩压器叶片气动优化设计.西安交通大学学报,2009,43(11):32-36.
    [66]高丽敏,席光,周莉,等.级环境下叶片扩压器流场的实验与数值研究.力学学报,2005,37(1):110-119.
    [67]Shum Y K P, Cumpsty N A, Tan C S. Impeller-Diffuser Interaction in a Centrifugal Compressor. Journal of Turbomachinery,2000,122(4):777-786.
    [68]Ziegler K U, Gallus H E, Niehuis R. A Study on Impeller-Diffuser Interaction:Part Ⅰ-Influence on the Performance. ASME Turbo Expo 2002:Power for Land, Sea, and Air. American Society of Mechanical Engineers,2002:545-556.
    [69]Ziegler K U, Gallus H E, Niehuis R. A Study on Impeller-Diffuser Interaction-Part Ⅱ: Detailed Flow Analysis. Journal of turbomachinery,2003,125(1):183-192.
    [70]Ferrara G, Ferrari L, Mengoni C P, et al. Experimental Investigation and Characterization of the Rotating Stall in a High Pressure Centrifugal Compressor:Part Ⅰ-Influence of Diffuser Geometry on Stall Inception. ASME Turbo Expo 2002:Power for Land, Sea, and Air. American Society of Mechanical Engineers,2002:613-620.
    [71]Ferrara G, Ferrari L, Mengoni C P, et al. Experimental Investigation and Characterization of the Rotating Stall in a High Pressure Centrifugal Compressor:Part Ⅱ-Influence of Diffuser Geometry on stage performance. ASME Turbo Expo 2002:Power for Land, Sea, and Air. American Society of Mechanical Engineers,2002, GT-2002-30390.
    [72]Cellai A, Ferrara G, Ferrari L, et al. Experimental Investigation and Characterization of the Rotating Stall in a High Pressure Centrifugal Compressor:Part Ⅲ-Influence of Diffuser Geometry on Stall Inception and Performance (2nd Impeller Tested). ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference. American Society of Mechanical Engineers,2003:711-719.
    [73]柳阳威,刘宝杰.离心叶轮和扩压器相互作用.航空动力学报,2009(12):2695-2702
    [74]闻苏平,张楚华,李景银.旋转叶轮和叶片扩压器耦合的非定常流动计算.西安交通大学学报,2004,38(7):754-757.
    [75]Senoo Y. Japanese Patent Application Disclosure 119411/78.1978(in Japanese).
    [76]Kaneki T, Ohashi S. High Efficiency Multistage Centrifugal Compressor. Hitachi Rev,1982, 31:287-291.
    [77]Engeda A. Experimental and Numerical Investigation of the Performance of a 240 kW Centrifugal Compressor with Different Diffusers. Experimental Thermal and Fluid Science, 2003,28(1):55-72.
    [78]Hoshino Masakazu, Ohki Hiroshi, Yoshinaga Yoich. The Effect of Guide Vane Height on the Diffuser Flow in Centrifugal Compressors. Tran ASME,1985,51(470)B:3366-3369.
    [79]Vrana J. C. Diffuser for Centrifugal Compressors. U.S. Patent No:3.333.762, August 1,1967
    [80]石建成,刘保杰.混合型扩压器流动特点分析.航空动力学报,2008,29(5):583-590.
    [81]Zachau U, Niehuis R, Hoenen H, et al. Experimental Investigation of the Flow in the Pipe Diffuser of a Centrifugal Compressor Stage Under Selected Parameter Variations. ASME Turbo Expo 2009:Power for Land, Sea, and Air. American Society of Mechanical Engineers,2009:1213-1223.
    [82]王毅,卢新根,赵胜丰,朱俊强.高负荷离心压气机管式扩压器设计及机理分析.航空动力学报,2011,26(3):649-655.
    [83]Kunte R, Jeschke P, Smythe C. Experimental Investigation of a Truncated Pipe Diffuser With a Tandem Deswirler in a Centrifugal Compressor Stage. Journal of Turbomachinery, 2013,135(3).
    [84]Klaus H L. Process Centrifugal Compressors:Basics, Functions, Operation, Design, Application. Springer,2010.
    [85]何晓.离心压缩机技术的最新进展.化学工程与装备,2013(7):170-172.
    [86]燕冰川,税碧垣.国内外天然气管道压缩机组发展现状.通用机械,2009(11):16-19.
    [87]Sorokes J M. Selecting a Centrifugal Compressor.2013.
    [88]Casey, M.V., & Robinson, C.J. A Method to Estimate the Performance of a Centrifugal Compressor Stage. Proceedings of ASME Turbo Expo 2011:Power for Land, Sea and Air, Vancouver, Canada, GT2011-45502.
    [89]Qiu, X., Mallikarachchi, C., Anderson, M. A New Slip Factor for Axial and Radial Impellers. Proceedings of ASME Turbo Expo 2007:Power for Land, Sea and Air, Montreal, Canada, GT2007-27064.
    [90]Qiu, X., Japikse, D., & Anderson, M. A Meanline Model for Impeller Flow Recirculation. Proceedings of ASME Turbo Expo 2008:Power for Land, Sea and Air, Berlin, Germany, GT2008-51349.
    [91]Qiu, X., Krivitzky, E.M., etc. Meanline Modeling of Ported Shroud Turbocharger Compressor. Proceedings of ASME Turbo Expo 20012, Copenhagen, Denmark, GT2012-68915.
    [92]Dubitsky O, Japikse D. Vaneless diffuser advanced model. Journal of Turbomachinery, 2008,130(1):011020.
    [93]Galvas, M. R. Fortran Program for Predicting Off-Design Performance of Centrifugal Compressors. NASA TN D-7487,1973.
    [94]Aungier R H. Mean Streamline Aerodynamic Performance Analysis of Centrifugal Compressors. Journal of Turbomachinery,1995,117(3):360-366.
    [95]Coppage J E, Dallenbach F. Study of Supersonic Radial Compressors for Refrigeration and Pressurization Systems. WADC report 55-257,1956.
    [96]Krylov, P., Spunde, A. About the Influence of the Clearance between the Working Blades and Housing of a Radial Turbine on its Exponent. Izvestiya Vysshikh Uchebnykh Zavedeniy, Energetika (News of Institutions of Higher Learning),1965,7,66.
    [97]Jansen W. A Method for Calculating the Flow in a Centrifugal Impeller when Entropy Gradients are Present. Royal Society Conference on Internal Aerodynamics (Turbomachinery).1967:133-146.
    [98]Stanitz J D. One-dimensional Compressible Flow in Vaneless Diffusers of Radial-and Mixed-Flow Centrifugal Compressors, Including Effects of Friction, Heat Transfer and Area Change. National Advisory Committee for Aeronautics,1952.
    [99]Conrad O, Raif K, Wessels M. The Calculation of Performance Maps for Centrifugal Compressors with Vane-Island Diffusers. Performance Prediction of Centrifugal Pumps and Compressors.1979,1:135-147.
    [100]Johnston J P, Dean R C. Losses in Vaneless Diffusers of Centrifugal Compressors and Pumps:Analysis, Experiment, and Design. Journal for Engineering for Power,1966,88(1): 49-60.
    101] Oh H W, Yoon E S, Chung M K. An Optimum Set of Loss Models for Performance Prediction of Centrifugal Compressors. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy,1997,211(4):331-338.
    102] Harley P, Spence S, Filsinger D, et al. Assessing ID Loss Models for the Off-Design Performance Prediction of Automotive Turbocharger Compressors. ASME Turbo Expo 2013:Turbine Technical Conference and Exposition. American Society of Mechanical Engineers,2013:V06CT40A005-V06CT40A005.
    103] Senoo, Y., Kinoshita, Y., Limits of Rotating Stall and Stall in Vaneless Diffusers of Centrifugal Compressors, ASME Paper 78-GT-19.
    104] Krain H, Hoffmann B. Flow Physics in High Pressure Ratio Centrifugal Compressors. Summer Meeting of the American Society of Mechanical Engineers.1998:21-25.
    105] Sato T, Oh J M, Engeda A. Experimental and Numerical Investigation of the Flow in a Vaneless Diffuser of a Centrifugal Compressor Stage, Part 1:Experimental Investigation. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science,2005,219(10):1053-1059.
    106] Rusak, V. Development and Performance of the Wedge-Type Low Specific Speed Compressor Wheel, ASME Paper 82-GT-214.
    107] Casey, M.V. Dalbert, P. and Schurter, E. Radial Compressor Stages for Low Flow Coefficients, IMechE 1990.
    108] Koizumi, T. Experimental Studies on Performance of Centrifugal Compressors with Very Small Flow Coefficient, Mitsui Zosen Technical Review 117, pp.28-39.
    109] Paroubek, J., Cyrus, V, Kyncl, J. Experimental Investigation and Performance Analysis of Six Low Flow Coefficient Centrifugal Compressor Stages, ASME Paper 94-GT-43.
    110] Di Liberti, J.-L. Design and Development of Low-flow Coefficient Centrifugal Compressors for Industrial Application, Michigan State University, Doctoral Dissertation,1998.
    111] Yuri L Biba, David A. Nye, Zheji Liu. Performance Evaluation and Fluid Flow Analysis in Low Flow Stages of Industrial Centrifugal Compressor, International Journal of Rotating Machinery,8(5):309-317,2002.
    112] Takanori Shibata, Manabu Yagi, Hideo Nishida, et al. Performance Improvement of a Centrifugal Compressor Stage by Increasing Degree of Reaction and Optimizing Blade Loading of a 3D Impeller. ASME Journal of Turbomachinery,2011,133:041012.1-8.
    113]成大先.机械设计手册(第五版第2卷).北京:化学工业出版社,2007.
    [114]王永生,童志庭,林峰,等.离心压气机无叶扩压段流路控制扩稳机理,航空动力学报,2012,27(9):2106-2112.
    [115]Epstein, A.H., Ffowcs illiams, J.E., Greitzer, E.M. Active Aupppression of Aerodynamic Instabilities in Turbomachines. ASME Journal of Turbomachinery,1989,113(2):290-302.
    [116]Koch, C.C., Smith, L.H. Experimental Evaluation of Outer Case Blowing or Bleeding of Single Axial Flow Compressor, Part Ⅱ:Performance of Plain Casing Insert Configuration with Undistorted Inlet Flow and Boundary Layer Trip. NASA CR-54588,1968.
    [117]Day, I.J. Active Suppression of Rotating Stall and Surge in Axial Compressors. ASME Journal of Turbo machinery,1993,115:1-9.
    [118]胡良军,杨策,祁明旭,等.离心压气机机匣处理与导叶轮缘放气的扩稳机理分析及比较.机械工程学报,2009,45(7):138-144.
    [119]高鹏,楚武利,吴艳辉,等.带周向槽机匣处理的离心压气机扩稳机理分析.推进技术,2007,8(4):383-387.
    [120]Subenuka Sivagnanasundaram, Stephen Spence, Juliana Early, et al. An Investigation of Compressor Map Width Enhancement and the Inducer Flow Field Using Various Configurations of Shroud Bleed Slot. ASME Paper GT2010-22154.
    [121]Yutaka Ohta, Takashi Goto, Eisuke Outa. Unsteady Behavior and Control of Diffuser Leading-Vortex in a Centrifugal Compressor. ASME Paper GT2010-22394.
    [122]Z. S. Spakovszky. Backward Traveling Rotating Stall Waves in Centrifugal Compressors. ASME Journal of Turbomachinery,2004,126(1):1-12.
    [123]McKain, T. F., Holbrook, G. J. Coordinates for a High Performance 4:1 Pressure Ratio Centrifugal Compressor. NASA Contractor Report 203134, Detroit Diesel Allison, Indianapolis, Indiana.1997.
    [124]Skoch, G. J., Prast, P. S., Wernet, M. W, et al. Laser Anemometer Measurements of the Flow Field in a 4:1 Pressure Ratio Centrifugal Impeller. Technical Report ARLTR-1448, Army Research Laboratory, Lewis Research Center, U.S.1997.
    [125]Larosiliere, L.M., Skoch, G.J. Aerodynamic Synthesis of a Centrifugal Impeller Using CFD and Measurements. Technical Report ARL-TR-1461, Army Research Laboratory, Lewis Research Center, U.S.1997.
    [126]Mark P. Wernet, Michelle M. Bright, Gary J. Skoch. An Investigation of Surge In a High-Speed Centrifugal Compressor Using Digital PIV. Transactions of the ASME,2001, 12:418-428.
    [127]Michel Mansour, Ndaona Chokani, Anestis I Kalfas, et al. Time-Resolved Entropy Measurements Using a Fast Response Entropy Probe, Meas. Sci. Technol.,2008, 19:115401.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700