超声速壁面涡流发生器流场精细结构与动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声速/高超声速飞行器内、外流场中普遍存在着部件之间的耦合影响,部件之间相互干扰涉及多种复杂流动现象,如边界层转捩、复杂激波干扰、激波诱导边界层分离、再附激波与尾迹的相互作用等,对飞行器的气动、动力和控制等性能具有十分重要的影响。这些复杂流场结构体现了典型壁面突起物绕流特征,是当前流动控制研究中的热点和难点问题,因此,相关流场的精细结构与动力学特性研究,具有重要的理论研究价值和广泛的工程应用价值。
     超声速壁面涡流发生器绕流流场受到可压缩性、湍流、大尺度涡结构、激波、滑移线等强间断和强非线性因素的影响,导致绕流流场精细结构的高分辨率数值模拟和测量十分困难。本文采用高分辨率NPLS技术,从涡结构、速度场和密度场三个方面,分别对三角翼、圆柱和半球三种构型附壁涡流发生器的超声速绕流流场的空间精细结构、时间演化特征及动力学特性进行了深入研究。由于涡流发生器附近流场区域的流动结构变化快、时间相关性差,某些特征通过实验直接辨识存在一定的困难,本文结合数值模拟技术与实验结果进行了相互验证。
     多视角和多分辨率NPLS图像再现了超声速壁面涡流发生器绕流流场的复杂结构。超声速气流与不同构型涡流发生器相互作用,可能产生前缘三维压缩激波、三维脱体激波、再附激波、小激波等复杂波系结构,及上游分离区、壁面三维拓扑结构、下游回流区、尾迹和流向涡等复杂流动结构。基于时间相关的NPLS图像,系统研究和分析了不同构型涡流发生器绕流流场结构随时间的演化特征;根据不同流向和展向平面绕流流场结构的时空结构特征,发现了不同构型涡流发生器涡结构的周期性脱落模式;建立了不同构型涡流发生器绕流流场的激波结构和拟序结构模型。
     超声速绕流流场一般具有较大的速度梯度,特别是激波前后会存在间断,相应的速度场测量极具挑战性。本文利用NPLS系统中纳米粒子的高动态响应特性,结合当前PIV测速技术,对超声速三角翼、圆柱和半球三种涡流发生器绕流速度场进行了深入研究。不同流向切面的速度分布表明,不同构型超声速附壁涡流发生器绕流的速度场结构及其动力学成因存在较大的区别;发现了尾流区拟序结构所表征的涡结构特征,并据此建立了尾流区拟序结构模型。
     基于NPLS图像,实现了对三种构型涡流发生器的超声速绕流密度场的瞬态测量。根据相应绕流流场的密度分布情况,发现超声速绕流流场在激波前后、涡流发生器附近、主流与边界层和尾流区拟序涡结构之间存在较大的密度梯度。分别对尾流涡结构和壁面效应对密度脉动的作用效应及密度脉动的非定常性进行了研究,并由此分析了激波结构、尾流区拟序涡结构对超声速绕流流场密度脉动造成的影响;频域特征分析表明尾流区大尺度涡结构是尾流区拟序涡结构质量、动量和能量的主要载体,主导着与高密度高速主流的质量、动量和能量的交换,其沿流向的发展和演化是导致超声速壁面涡流发生器尾流区发生密度脉动的主要因素。
     论文研究过程中,提出了基于NPLS技术的超声速附壁涡流发生器绕流密度场和速度场的测量方法;发现了超声速附壁涡流发生器绕流流场的三维激波/边界层相互干扰、波-涡相互作用和尾流区拟序结构等复杂流场结构;建立了超声速附壁涡流发生器绕流流场激波结构和尾流区的流动结构模型,对利用涡流发生器干扰和控制超声速流场具有重要的意义。由于绕流流场结构比较复杂,需要采用更高分辨率的测量技术,对绕流流场更加精细的结构特征和复杂动力学过程进行更加深入的研究。
The mutual interference between the components of a vehicle in the supersonic orhypersonic flow field generates complex flow field structures, which contain theboundary layer transition, the interaction between shock waves, the boundary layerseparation, the reattached shock wave and the wake. Controlling and disturbing of theflow field by using vortex generator has been becoming a research hotspot but alsodifficulty in the study of the flow control. The study of the fine structures and dynamicbehaviors of the flow field has an important theoretical and engineering practical value.
     The influences of strong nonlinearity and diffusion factors, such as compressibility,turbulence, large scale structure, shock waves and slip line, make it difficult to study thefine structures of supersonic flow over a protuberance by means of high resolutionnumerical simulation and measurement. Based on the high resolution NPLS(Nano-tracer Planar Laser Scattering) technique, the spatial fine structures and temporalevolution characteristics of supersonic flow over various models (the delta wing, thecylinder and the hemisphere) on the flat plate were studied. The distortion of the flowstructures is rapider and the time correlation is worse near the vortex generators.Considering the difficulty of identifying the evolutionary characteristics of the flowstructures only using the experimental images, the method of numerical simulation isused in the thesis to mutually verify the results with the experimental.
     The complex flow field structures of supersonic flow over the varied vortexgenerator on the flate plate were observed based on the multi-view and multi-resolutionNPLS images, which contain the three-dimensional detached shock wave, the separationregion, the recirculating region in the downstream, the reattached shock wave, the wakeand so on. Based on the time correlation NPLS images, the temporal evolutioncharacteristics of supersonic flow over the various vortex generators weresystematically studied. According to the space-time structure characteristics of the flowfield, the modes of the vortexes shedding off were discovered. Naturally the shock wavestructures and the vortex structure modes in the wake flow were modeled.
     In general, the supersonic flow over a protuberance possesses the characteristics oflarger velocity gradient. The disconnected will be generated when the supersonic flowpasses through the shock wave, which makes the velocity field measurement verydifficult. Here, the high dynamic response characteristics of nanoparticles of NPLSsystem were used and associate the PIV (Particle Image Velocimetry) technique toprofoundly study the velocity distribution of supersonic flow over various models. Theanalysis of the velocity distribution at the different streamwise planes indicates that thevelocity field and the dynamics origin are different. According to the measurementresults of supersonic PIV in the streamwise planes at different positions, the velocity field structures of supersonic flow over the various vortex generators on the wall wereprofoundly studied. The vortex structure characteristics of the coherent structure werediscovered. And the mode of the coherent structures in the wake was modeled.
     The transient measurement of the density field on the supersonic flow over thevaried vortex generators was achieved. According to the density distributioncharacteristics of the flow field, a larger density gradient occurs in front and back of theshock waves, between the main stream flow and boundary layer/coherent structures inthe wake flow and in the vicinity of the vortex generators. The influences of the vortexstructures and the wall on the density fluctuation were studied. And the unsteady of thedensity fluctuation was also studied. Consequently the influences of the shock wavesand the coherent structures on the density fluctuation were analyzed. The spectrumanalysis indicates the large-scale vortex structures are the main carrier of mass,momentum and energy in the wake flow, and predominates the exchange of thembetween the main stream flow and the coherent structures. The evolution of thelarge-scale vortex structures is the major factor of the density fluctuation in the wakeflow.
     Based on the NPLS technique, the method of measuring the distribution of thevelocity and density on the supersonic flow over a vortex generator was put forward.The complex flow structures, such as the mutual interference between thethree-dimensional shock waves and the boundary layer, the interaction between wavesand vortexes, and the coherent structure in the wake flow, were discovered. And themodes of shock waves and flow structures in the wake flow were modeled. It ismeaningful to achieve the control and disturbance of the flow field by using vortexgenerator. Due to the complexity of supersonic flow over a vortex generator, it isnecessary to study further into the finer structures characteristics and the complexdynamic behavior.
引文
[1] Kevin G. Bowcut. A Perspective on the Future of Aerospace Vehicle Design [C].12th AIAA International Space Planes and Hypersonic Systems and Technologies.AIAA2003-6957,2003.
    [2] Charles E. Cockrell, Jr. Aaron H. Auslender, R. Wayne Guy, Charles R.McClinton, Sharon S. Welch. Technology Roadmap for Dual-Mode ScramjetPropulsion to Support Space-Access Vision Vehicle Development [C].11thAIAA/AAAF International Space Planes and Hypersonic Systems andTechnologies Conference, AIAA2002-5188,2002.
    [3] Gad-el-Hak, Pollard A and Bonnet J-P (eds.). Flow control: Fundamentals andPractices [M]. Berlin: Springer,1998.
    [4] Gad-el-Hak M and Tsai H M (eds.). Transition and turbulence control [M]. WorldScientific,2006.
    [5]崔尔杰.空天技术发展与现代空气动力学[J].力学进展.2005,35(2):145-152.
    [6] Taylor HD. The elimination of diffuser separation by vortex generators [R].United Aircraft Corporation Report No. R-4012-3, June1947.
    [7] Haines AB. Know your flow: the key to better prediction and successfulinnovation [C]. AIAA Paper98-0221,36thAIAA Aerospace Sciences Meetingand Exhibit, Reno, NV, January12–15,1998.
    [8] Gad-el-Hak M, Bushnell DM. Separation control: review [J]. Fluids Eng.,113:5–30,1991.
    [9] L. C. Squire. Control of flow separation. Hemisphere, Washinhgton,1976[J].International Journal of Heat and Mass Transfer,20(10):1095-1095,1977.
    [10] Lee C, Hong G, Ha Q. A piezoelectrically actuated micro synthetic jet for activeflow control [J]. Sensors and Actuators A: Physical,108:168-174,2003.
    [11] Gilarranz J L. Development of high-power, compact synthetic jet actuators forflow separation control [D]. Texas A&M University (PHD),2001.
    [12] Gilarranz J L, Rediniotis O K. Compact, high-power synthetic jet actuators forflow separation control [C]. AIAA Paper2001-0737,2001.
    [13] Gilarranz J L, Traub L W, Rediniotis O K. A new class of synthetic jet actuatorspart II application to flow separation control [J]. Journal of Fluids Engineering,127:377-387,2005.
    [14] Gilarranz J L, Yue X, Rediniotis O K. Compact, high-power synthetic jets forflow separation control [C] Proceedings of the Sixth National Congress onMechanics. Thessaloniki, Greece, p371-378,2001.
    [15] Amitay M, Glezer A. Role of actuation frequency in controlled flow reattachmentover a stalled airfoil [J]. AIAA J,40(2):209-216,2002.
    [16] Mittal R, Rampunggoon P. On the virtual aero-shaping effect of synthetic jets [J].Phys. Fluids,14(4):1533-1536,2002.
    [17] Kuethe AM. Effect of streamwise vortices on wake properties associated withsound generation [J]. Journal of Aircraft,9(10):715–9,1972.
    [18] Kerho M, Hutcherson S, Blackwelder RF, Liebeck RH. Vortex generators used tocontrol laminar separation bubbles [J]. Journal of Aircraft,30(3):315–9,1993.
    [19] Lin JC, Robinson SK, McGhee RJ, Valarezo WO. Separation control on high-liftairfoils via micro-vortex generators [J]. Journal of Aircraft,31(6):1317–23,1994.
    [20] Ashill PR, Riddle GL. Control of leading-edge separation on a cambered deltawing [J]. AGARD CP-548, p11-1–11-13, March1994.
    [21] Ashill PR, Fulker JL. A review of flow control research at DERA. Mechanics ofPassive and Active Flow Control [M]. IUTAM Symposium, Gottingen, Germany,p.43–56, September7–11,1998.
    [22] Hong G, Lee C, Ha Q. Effectiveness of synthetic jets enhanced by instability ofT-S waves [C]. AIAA Paper2002-2832,2002.
    [23]郑新前,侯安平,周盛.二维扩压叶栅非定常分离流控制途径探索[J].力学学报,2003,35(5):599-605.
    [24]郑新前,侯安平,周盛.利用合成射流控制轴流压气机中的非定常分离[C].第十届全国分离流、漩涡和流动控制会议论文集.南京,解放军理工大学:2004:286-293.
    [25] Rediniotis O K, J. K, Yue X. Synthetic jets, their reduced order modeling andapplications to flow control [C]. AIAA Paper99-1000,1999.
    [26] Ashill PR, Riddle GL, Stanley MJ. Control of three-dimensional separation onhighly swept wings [J]. ICAS-94-4.6.2, September1994.
    [27] Ashill PR, Riddle GL, Stanley MJ. Separation control on highly swept wings withfixed or variable camber [J]. Aeronaut,99(988):317–27,1995.
    [28] Holmes AE, Hickey PK, Murphy WR, Hilton DA. The application ofsub-boundary layer vortex generators to reduce canopy Mach rumble interiornoise on the Gulf-stream III [C]. AIAA Paper87-0084, AIAA25th AerospaceSciences Meeting, Reno, NV, January12–15,1987.
    [29] Hassan A. Numerical simulation enhanced rotorcraft aerodynamic performance[C]. AIAA Paper98-0211,1998.
    [30] Ahmed A, Hassan R D. Effects of zero-mass “synthetic”jets on the NACA-0012airfoil [C]. AIAA Paper97-2326,1997.
    [31] Catalin N. Synthetic jets influence on NACA-0012airfoil at high angles of attack[C]. AIAA Paper98-4523,1998.
    [32] Ashill PR, Fulker JL, Hackett, KC. Research at DERA on sub boundary layervortex generators (SBVGs)[C]. AIAA Paper2001-0887,39th AIAA AerospaceSciences Meeting and Exhibit, Reno, NV, January8–11,2001.
    [33] Ashill PR, Fulker JL, Hackett, KC. Studies of flows induced by sub boundarylayer vortex generators (SBVGs)[C]. AIAA Paper2002-0968,40th AIAAAerospace Sciences Meeting and Exhibit, Reno, NV, January14–17,2002.
    [34] Chen F J, Yao C, Beeler G B. Virtual shaping of a two-dimensional NACA0015airfoil using synthetic jet actuator[C]. AIAA Paper2002-3273,2002.
    [35] Cain A B, Kral L D. Numerical simulation of compressible synthetic jet flows [C].AIAA Paper98-0105,1999.
    [36] Seifert A, Pack L G. Oscillatory excitation of unsteady compressible flows overairfoils at flight Reynolds numbers [C]. AIAA Paper99-0925,1999.
    [37] Yao C-S, Lin JC, Allan BG. Flowfield measurement of device-induced embeddedstreamwise vortex on a flat plate [C]. AIAA Paper2002-3162,1st AIAA FlowControl Conference, St. Louis, MO, June24–27,2002.
    [38] Kerho M, Hutcherson S, Blackwelder RF, Liebeck RH. Vortex generators used tocontrol laminar separation bubbles [J]. Journal of Aircraft,30(3):315–319,1993.
    [39] Cattafesta, L., Garg, S., and Shukla, D.. Development of piezoelectric actuatorsfor active flow control [J]. AIAA,39(8):1562-1568,2001.
    [40] Gad-el Hak, M., Flow Control: Passive, Active, and Reactive Flow Control [M].Cambridge University Press, Cambridge, United Kingdom,2000.
    [41] Jones, G., Washburn, A., Jenkins, L., and Viken, S.. An Active Flow CirculationControlled Flap Concept for General Aviation Aircraft Applications [C]. AIAAPaper2002-3157,2002.
    [42] Amitay, M., Smith, B. L., and Glezer, A.. Aerodynamic Flow Control UsingSynthetic Jet Technology [C]. AIAA Paper98-0208,1998.
    [43] Pack, L. G. and Joslin, R. D.. Overview of Active Flow Control at NASA LangleyResearch Center [R]. SPIE5th International Symposium on Smart Structuresand Materials, San Diego, California, SPIE,1998.
    [44] Washburn, A., Althoff Gorton, S., and Anders, A.. A Snapshot of Active FlowControl Research at NASA Langley [C]. AIAA Paper2002-3155,2002.
    [45] Gad-el-Hak M, Pollard A, Bonnet J, editors. Flow control: fundamentals andpractices [M]. Berlin: Springer,1998.
    [46] Pack, L., Schaeffler, N. W., Yao, C., and Seifert, A.. Active Control of FlowSeparation from the Slat Shoulder of a Supercritical Airfoil [C]. AIAA Paper2002-3156,2002.
    [47] Joslin RD. Using DNS for active flow control [C]. AIAA Paper2001-2544,2001.
    [48] Joslin RD, Gunzburger MD, Nicolaides RA, Erlebacher G, Hussaini MY.Self-contained automated methodology for optimal flow control [J]. AIAA,35(5):816–24,1997.
    [49] Jenkins, L., Althoff Gorton, S., and Anders, A.. Flow Control Device Evaluationfor an Internal Flow with an Adverse Pressure Gradient [C]. AIAA Paper2002-0266,2002.
    [50] Chang Y, Collis SS, Ramakrishnan S. Viscous effects in control of near-wallturbulence [J]. Phys Fluids,14(11):4069–80,2002.
    [51] Abergel F, Temam R. On some control problems in fluid mechanics [J].Theoretical and Computational Fluid Dynamics,1(6):303–325,1990.
    [52] Gunzburger MD, editor. Flow control [M]. New York: Springer,1995.
    [53] Halfon E, Nishri B, Seifert A, Wygnanski I. Effects of elevated free-streamturbulence on active control of a transitional separation bubble [C]. AIAA Paper2002-3169,2002.
    [54]罗振兵,夏智勋.合成射流技术及其在流动控制中应用的进展[J].力学进展,2005,35(2):221-234.
    [55]赵宏,杨治国,娄慧娟.合成射流流动特性实验研究及在燃烧中的应用探讨[J].航空动力学报,19(4):512-519,2004.
    [56]郝礼书,乔志德.合成射流用于翼型分离流动控制的研究[J].西北工业大学学报,26(4):528-531,2006.
    [57]邵传平,王建明.较高雷诺数圆柱尾流的控制[J].力学学报,38(2):153-161,2006.
    [58]邵传平.钝体尾流控制机理及方法研究进展[J].力学进展,38(3),314-328,2008.
    [59]赵宏,杨治国,娄慧娟.合成射流流动特性实验研究及在燃烧中的应用探讨[J].航空动力学报,19(4):512-519,2004.
    [60]张堃元,李念,董玥,等.零质量自耦合射流控制喷流矢量实验[J].推进技术,25(3):224-226,2004.
    [61]郝礼书,乔志德.合成射流用于翼型分离流动控制的研究[J].西北工业大学学报,26(4):528-531,2006.
    [62]罗小兵,李志信,过增元.合成喷形成的机理分析[J].清华大学学报(自然科学版),40(12):24-28,2000.
    [63]罗小兵,李志信,过增元.不可压缩合成喷流场的数值模拟[J].工程热物理学报,22:56-58,2001.
    [64]张攀峰,王晋军,冯立好.零质量合成射流技术及其应用研究进展[J].中国科学E辑:技术科学,38(3),2008.
    [65] Ravindran SS. Active control of flow separation over an airfoil [R]. Technicalreport TM-1999-209838, NASA,1999.
    [66] Greenblatt D, Wygnanski IJ. The control of flow separation by periodic excitation[J]. Prog Aero Sci,36(7):487–545,2000.
    [67]庄逢甘,黄志澄.未来高技术战争对空气动力学传创新发展的需求[C].空气动力学前沿研究论文集.北京,2003:73-802003.
    [68] Lockheed-Martin. Future aircraft technology enhancement, FATE1Phase1,Final Report [EB/OL]. http://www.fas.org/man/dod101/sys/ac/docs/fate.report/index.htm.1997-09-24.
    [69] Multi-authors. Active control technology for enhanced performance operationalcapabilities of military aircraft, land vehicles and sea vehicles [R].ADA395700,1-1032,2001.
    [70]邓学蓥.前体非对称涡流动及其主动控制[C]2003空气动力学前沿研究论文集,2003:8-17,2003.
    [71]明晓.钝体尾流的特性及其控制[D].南京:南京航空学院(PHD),1988.
    [72]方昌德.流动控制技术在航空涡轮推进系统上的应用[J].燃气涡轮试验与研究,16(2):1-6,2003.
    [73]张汝麟.飞行控制及飞机发展[J].北京航空航天大学学报,29(12):1077-1082,2003.
    [74]吴锤结,王亮.完全消除圆柱绕流振荡尾迹的动波浪壁流动控制[C]第十届全国分离流、旋涡和流动控制会议论文集.南京,解放军理工大学,2004:230-239,2004.
    [75] Jacot D, Mabe J. Boeing active flow control system for the V-22[C]. AIAA Paper2000-2473,2000.
    [76]范杰川.空气动力学发展中值得关注的一些问题[J].气动研究与实验,20(1):1-16,2003.
    [77] Mounts J S, Barber T J. Numerical Analysis of Shock-induced SeparationAlleviation using Vortex Generators [C]. AIAA92-0751,1992.
    [78] McCormick D C. Shock-Boundary Layer Interaction Control with Low ProfileVortex Generators and Passive Cavity [C]. AIAA92-0064,1992.
    [79] Rozario D, Zouaoui Z. Computational Fluid Dynamics Analysis of Scramjet Inlet[C]. AIAA2007-30,2007.
    [80] Holden H A, Babinsky H. Vortex Generators near Shock/Boundary LayerInteractions [C]. AIAA2004-1242,2004.
    [81] Kanda T, Hiraiwa T, Izumikawa M, Mitani T. Measurement of Mass CaptureRatio of Scramjet Inlet Models [C]. AIAA2003-0011,2003.
    [82] Srinivasan K R, Roth E, Dutton J C. Aerodynamics of Recirculating Flow ControlDevices for Normal Shock/Boundary Layer Interactions [C]. AIAA2004-426,2004.
    [83] Loth E. Smart Mesoflaps for Control of Shock Boundary Layer Interactions [C].AIAA2000-2476,2000.
    [84] Couldrick J S, Gai S L, Holden H A, etc. Active Control of Normal ShockWave/Turbulent Boundary Layer Interaction using “Smart”Piezoelectric FlapActuators [C]. AIAA2004-2701,2004.
    [85] Holden H A, Babinsky H. Shock/Boundary Layer Interaction Control using3dDevices [C]. AIAA2003-447,2003.
    [86] Lee Y, Hafenrichter E S. Skin Friction Measurements in Normal ShockWave/Turbulent Boundary-layer Interaction Control with Aeroelastic Mesoflaps[C]. AIAA2002-0979,2002.
    [87] Schubauer GB, Spangenber WG. Forced mixing in boundary layers [J]. FluidMech,8:10–32,1960.
    [88] Brown AC, Nawrocki HF, Paley PN. Subsonic diffusers designed integrally withvortex generators [J]. Aircr,5(3):221–9,1968.
    [89] Bragg MB, Gregorek GM. Experimental study of airfoil performance with vortexgenerators [J]. Aircr,24(5):305–9,1987.
    [90] Pearcey HH. Shock induced separation and its prevention by design andboundary-layer control. Boundary layer and flow control, vol.2. New York:Pergamon Press, p.1166–344,1961.
    [91] Calarese W, Crisler WP, Gustsfson GL. Afterbody drag reduction by vortexgenerators [C]. AIAA Paper85-0354,1985.
    [92] Pearcey HH. Shock induced separation and its prevention by design andboundary-layer control [J]. Boundary layer and flow control, vol.2,1166–344,1961.
    [93] Ashill PR, Fulker JL, Hackett, KC. Research at DERA on sub boundary layervortex generators (SBVGs)[C]. AIAA2001-0887,2001.
    [94] Ashill PR, Riddle GL, Stanley MJ. Control of three-dimensional separation onhighly swept wings [J]. ICAS-94-4,6.2, September1994.
    [95] Ashill PR, Riddle GL. Control of leading-edge separation on a cambered deltawing [J]. AGARD CP-548, p1-13, March1994.
    [96] Ashill PR, Riddle GL, Stanley MJ. Separation control on highly swept wings withfixed or variable camber [J]. Aeronaut,99(988):317–27,1995.
    [97] Ashill PR, Fulker JL. A review of flow control research at DERA [R]. Mechanicsof Passive and Active Flow Control, IUTAM Symposium, Gottingen, Germany,p43–56, September1998.
    [98] Ashill PR, Fulker JL, Hackett, KC. Studies of flows induced by sub boundarylayer vortexgenerator s (SBVGs)[C]. AIAA2002-0968,2002.
    [99] Holmes AE, Hickey PK, Murphy WR, Hilton DA. The application ofsub-boundary layer vortexgenerators to reduce canopy Mach rumble interior noiseon the Gulf-stream III[C]. AIAA87-0084,1987.
    [100]Lin JC. Control of turbulent boundary-layer separation using micro-vortexgenerators [C]. AIAA99-3404,1999.
    [101]Jenkins L, Gorton SA, Anders S. Flow control device evaluation for an internalflow with an adverse pressure gradient [R]. AIAA2002-0266,2002.
    [102]Lin JC, Robinson SK, McGhee RJ, Valarezo WO. Separation control on high-liftairfoils via micro-vortex generators [J]. Aircr;31(6):1317–23,1994.
    [103]Tai TC. Effect of micro-vortex generators on V-22aircraft forward-flightaerodynamics [C]. AIAA2002-0553,2002.
    [104]Lin JC, Howard FG, Bushnell DM, Selby GV. Investigation of several passiveand active methods for turbulent flow separation control [C]. AIAA90-1598,1990.
    [105]Lin JC, Howard FG, Selby GV. Small submerged vortex generators for turbulentflow separation control [J]. Spacecr Rockets,27(5):503–7,1990.
    [106]Lin JC, Selby GV, Howard FG. Exploratory study of vortex-generating devicesfor turbulent flow separation control [C]. AIAA91-0042,1991.
    [107]Kerho M, Hutcherson S, Blackwelder RF, Liebeck RH. Vortexgenerators used tocontrol laminar separation bubbles [J]. Aircr,30(3):315–9,1993.
    [108]John.C.lin. Review of research on low-profile vortex generators to controlboundary-layer separation [J]. Progress in Aerospace Science,38:389-420,2002.
    [109]Rao DM, Kariya TT. Boundary-layer submerged vortex generators for separationcontrol—an exploratory study [C]. AIAA88-3546-CP,1988.
    [110]Kuethe AM. Effect of streamwise vortices on wake properties associated withsound generation [J]. Journal of Aircraft,9(10):715–9,1972.
    [111]Lin JC. Control of turbulent boundary-layer separation using micro-vortexgenerators [C]. AIAA99-3404,1999.
    [112]Jenkins L, Gorton SA, Anders S. Flow control device evaluation for an internalflow with an adverse pressure gradient [C]. AIAA2002-0266,2002.
    [113]Yao C-S, Lin JC, Allan BG. Flowfield measurement of device-induced embeddedstreamwise vortex on a flat plate [C]. AIAA2002-3162,2002.
    [114]Allan BG, Yao C-S, Lin JC. Numerical simulation of vortex generator vanes andjets [C]. AIAA2002-3160,2002.
    [115]Kerho M, Hutcherson S, Blackwelder RF, Liebeck RH. Vortexgenerators used tocontrol laminar separation bubbles [J]. Aircr,30(3):315–9,1993.
    [116]Valarezo WO. Topics in high-lift aerodynamics [C]. AIAA93-3136,1993.
    [117]Ringuette M J, Wu M and Martin M P. Coherent structures in direct numericalsimulation of turbulent boundary layers at Mach3[J]. Fluid Mech.,594:59~69,2008.
    [118]Rai M M, Gatski T B and Erlebacher G. Direct simulation of spatially evolvingcompressible turbulent boundary layers [C]. AIAA Paper95-0583,1995.
    [119]Rempfer D. On the structure of dynamical systems describing the evolution ofcoherent structures in a convective boundary layer [J]. Phys Fluids,6(3):1402,1994.
    [120]Holmes P, Lumley JL, Berkooz G. Turbulence, coherent structures, dynamicalsystems and symmetry [M]. Cambridge: Cambridge University Press;1996.
    [121]Guarini S E, Moser R D, Shariff K, et al. Direct numerical simulation of asupersonic turbulent boundary layer at Mach2.5[J]. Fluid Mech.,414:1~33,2000.
    [122]Pirozzoli S, Grasso F and Gatski T B. Direct numerical simulation and analysis ofa spatially evolving supersonic turbulent boundary layer at M=2.25[J]. Phys.Fluids,16:530~545,2004.
    [123]Aubry N, Holmes P, Lumley J, Stone E. The dynamics of coherent structures inthe wall region of a turbulent boundary layer [J]. Fluid Mech,192:115–73,1988.
    [124]Huang Z F, Cao W and Zhou H. The mechanism of breakdown inlaminar-turbulent transition of a supersonic boundary layer on a flatplate-temporal mode [J]. Science in China, Ser. G.,48:614~625,2005.
    [125]Spyropoulos E T and Blaisdell G A. Large-Eddy Simulation of a SpatiallyEvolving Supersonic Turbulent Boundary-Layer Flow [J]. AIAA Journal.1998,36:1983~1990.
    [126]Gao H, Fu D X, Ma Y W, et al. Direct numerical simulation of supersonicturbulent boundary layer flow [J]. Chin. Phys. Lett.,22:1709~1712,2005.
    [127]Zhou X, Sirovich L. Coherence and chaos in a model of turbulent boundary layer[J]. Phys Fluids A,4(12):2855–74,1992.
    [128]Martin M P. DNS of hypersonic turbulent boundary layers [C]. AIAA04-2337,2004.
    [129]Maeder T, Adams N A and Kleiser L. Direct simulation of turbulent supersonicboundary layers by an extended temporal approach [J]. Fluid Mech.,429:187~216,2001.
    [130]Pan H L,Ma H D and Wang Q.Large eddy simulation of transition coherentstructures in a supersonic boundary layer [J].Journal of Astronautics,27:498~502,2006.
    [131]Dubos S and Hadjadj A. Large-eddy simulation of a supersonic boundary layer atM=2.25[C]. In: Proceedings of the15th Int. Symp. Turbulence and Shear FlowPhenomena, Munchen, Germany,2007.
    [132]Fage A and Sargent R F. Shock Wave and Boundary Layer Phenomena Near aFlat Surface [J]. Proc. Roy, Soc. A,190:1~20,1947.
    [133]Ackeret J, Feldmann F and Rott N. Investigations of Compression Shocks andBoundary Layers in Gasses Moving at High Speed [R]. NACA TM1113,1947.
    [134]Kuehn D M. Experimental investigation of the pressure rise required for theincipient separation of turbulent boundary layers in two-dimensional supersonicflow [R]. NASA Memo,1-21-59A,1959.
    [135]Tanner L H, Gai S L. Effects of suction on the interaction between shock waveand boundary layer at a compression corner [R]. ARC CP1087,1970.
    [136]Hubbart J E, Bangert L H Turbulent boundary layer control by a wall jet [C].AIAA Paper70-107,1970.
    [137]Rose W C. The behaviour of a compressible turbulent boundary layer in ashock-wave induced adverse pressure gradient [R]. NASA TN D-7092,1973.
    [138]Grandc E, Oates G C. Unsteady flow generated by shock-turbulent boundary laverinteractions [C]. AIAA Paper73-168,1973.
    [139]Horstmann C C, Hung C M. Computation of three-dimensional turbulentseparated flows at supersonic speeds [C]. AIAA Paper79-002,1979.
    [140]Sawyer W G, East L F+Nash C R. A preliminary study of normal shock waveturbulent boundary layer interaction, RAE Tech [R]. Memo Aero.1714,1977.
    [141]Delcry J M. Investigation of strong shock-turbulent boundary layer interaction in2-D transonic flows with emphasis on turbulence phenomena [C]. AIAA Paper81-1245,1981.
    [142]Inger G R1981Transonic shock/turbulent boundary layer interaction andincipient separation on curved surfaces [C]. AIAA Paper81-1244,1981.
    [143]Dolling D S, Or C T1983Unsteadiness of shock-wave structure in attached andseparated compression corner ramp flow fields [C]. AIAA Paper83-1715,1983.
    [144]Bahi L, Ross J M, Nagamatsu I t T. Passive shock-wave/boundary layerinteraction control for transonic airfoil drag reduction [C]. AIAA Paper83-037,1983.
    [145]Delery J and Marvin J G. Shock-wave boundary layer interactions [R].AGARDograph280,1986.
    [146]Rempfer D, Fasel H. Evolution of three-dimensional structures in a flat-plateboundary layer [J]. Fluid Mech,260:351-75,1994.
    [147]Dolling D S. Fifty years of shock wave/boundary layer interaction research: whatnext?[J]. AIAA,39:1517~1531,2001.
    [148]Dussauge J P, Dupont P and Debieve J F. Unsteadiness in shock wave boundarylayer interactions with separation [J]. Aero. Sci. Technol,10:85~91,2006.
    [149]Pirozzoli S and Grasso F. Direct numerical simulation of impinging shockwave/turbulent boundary layer interaction at M=2.25[J]. Phys. Fluids,18:065113,2006.
    [150]Dupont P, Haddad C and Debieve J F. Space and time organization in ashock-induced separated boundary layer [J]. Fluid Mech.,559:255~277,2006.
    [151]Wu M and Martin M P. Analysis of shock motion in shockwave and turbulentboundary layer interaction using direct numerical simulation data [J]. Fluid Mech.,594:71~83,2008.
    [152]赵玉新,易仕和,何霖,程忠宇.激波与湍流相互作用的实验研究[J].科学通报,52:140~143,2007.
    [153]Schubauer GB, Skramstad HK. Laminar boundary layer oscillations andtransitions on a flat plate [J]. Aero Sci,14:69–79,1947.
    [154]Head M R and Bandyopadhyay P R. New aspects of turbulent boundary-layerstructure [J]. Fluid Mech.,107:297~338,1981.
    [155]Laurien E, Kleiser L. Numerical simulation of boundary layer transition andtransition control [J]. Fluid Mech,199:403–40,1989.
    [156]Lumley J, Blossey P. Control of turbulence [J]. Ann Rev Fluid Mech,30:311-27,1998.
    [157]Kachanov Y S. Physical mechanism of laminar boundary-layer transition [J].Annu. Rev. Fluid Mech.,26:41-482,1994.
    [158]Herbert Th. Analysis of subharmonic route to transition in boundary layer [C].AIAA84-0009,1984.
    [159]Lasseigne DG, Joslin RD, Jackson TL, Criminale WO. The transient period ofboundary layer disturbances [J]. Fluid Mech,381:89–119,1999.
    [160]Schmid P, Henningson D. Stability and transition in shear flows [M]. Berlin:Springer,2001.
    [161]He L, Yi S H, Zhao Y X, Tian L F, Chen Z. Experimental study of a supersonicturbulent boundary layer using PIV [J]. Sci China Ser G,54:1702~1709,2011.
    [162]Blinde P L, Humble R A, van B W, Oudheusden, Scarano F. Effects ofmicro-ramps on a shock wave/turbulent boundary layer interaction [J]. ShockWave2009.
    [163]Thomas Herges, Erik Kroeker, Greg Elliott, and Craig Dutton. Micro-Ramp FlowControl of Normal Shock/Boundary Layer Interactions [C]. AIAA2009-920,2009.
    [164]Charles.W, Ford P, Babinsky H. Micro-Ramp Control for Oblique ShockWave/Boundary Layer Interactions [C]. AIAA2007-4115,2007.
    [165]Babinsky H. Understanding of Micro-Ramp Control of Supersonic Shock WaveBoundary Layer Interactions [R]. Grant No.: FA9550-06-1-0387,2007.
    [166]Lee S, Loth E, Wang C. LES of Supersonic Turbulent Boundary Layers withμVG's [C]. AIAA2007-3916,2007.
    [167]John.C.lin. Review of research on low-profile vortex generators to controlboundary-layer separation [J]. Progress in Aerospace Science,38:389-420,2002.
    [168]Anderson B H, Tinapple J, Surber L. Optimal Control of Shock Wave TurbulentBoundary Layer Interactions Using Micro-Array Actuation [C]. AIAA2006-3197,2006.
    [169]Marshall C. Galbraith, Paul D. Orkwis. Multi-Row Micro-Ramp Actuators forShock Wave Boundary-Layer Interaction Control [C]. AIAA2009-321,2009.
    [170]Li Q, Liu C. LES for Supersonic Ramp Control Flow Using MVG at M=2.5andRe=1440[C]. AIAA2010-592,2010.
    [171]Babinsky H, Makinson N J, Morgan C E. Micro-Vortex Generator Flow Controlfor Supersonic Engine Inlets [C]. AIAA2007-521,2007.
    [172]Burbank, P. B., Newlander, R. A., and Collins, I. K.. Heat Transfer and PressureMeasurements on a Flat Plate Surface and Heat Transfer Measurement onAttached Protuberances in a Supersonic Turbulent Boundary Layer at MachNumbers of2.65,3.51, and4.4[R]. NASA TN D-1372, Dec.1962.
    [173]D.M. Voitenko, A.I. Zubkov, and Yu. A. Panov. Supersonic Gas Flow Past aCylindrical Obstacle on a Plate [J]. Academy of Science Bulletin, USSR, Fluidand Mechanics, No.1, pp.121-125,1966.
    [174]Thomas, J. P. Flow Investigation about a Fin Plate Model at a Mach number of11.26[R]. ARL67-0188, Sept.1967.
    [175]Price, E. A., Jr. and Stallings, R. L. Jr. Investigation of Turbulent Separated Flowsin the Vicnity of Fin-Type Protuberances at Supersonic Mach Numbers [R].NASA TN D-3804, Feb.1967.
    [176]Hiers, R. S. and Loubsky, W. F. Effects of Shock-Wave Impingement on the HeatTransfer on a Cylindrical Leading Edge [R]. NASA TN D-3859, Feb.1967.
    [177]Oktay zcan, Maurice Holt. Supersonic Separated Flow past a CylindricalObstacle on a Flat Plate [J]. AIAA,22(5),1984.
    [178]V. A. Bashkin, I. V. Egorov, M. V. Egorova, and D. V. Ivanov. SupersonicLaminar-turbulent Gas Flow Past a Circular Cylinder [J]. Fluid Dynamics,35(5):652-662,2000.
    [179]D. S. Dolling, N. C. Clemens and E. Hood. Exploratory Experimental Study ofTransitional Shock Wave Boundary Layer Interactions [R]. AFRL-SR-AR-TR-03,JAN2003.
    [180]Z.R. Murphree, K.B. Yüceil, N.T. Clemens and D.S. Dolling. ExperimentalStudies of Transitional Boundary Layer Shock Wave Interactions [R]. AIAA2007-1139,2007.
    [181]马汉东,李素循,陈永康.变高度圆柱诱导的激波边界层干扰[J].力学学报,200032(4):486-490.
    [182]李素循,施岳定,蔡罕龙.绕凸台的高超声速分离流动研究[J].空气动力学半报,10(1):31-37,1992.
    [183]马汉东,李素循,吴礼义.高超声速绕平板上直立圆柱流动特性研究[J].宇航学报,21(1):1-5,2000.
    [184]D. S. Dolling, C. D. Cosad and S. M. An Examination of Blunt-Fin InducedShock Wave Turbulent Boundary Layer Interactions [C]. AIAA79-0068,1979.
    [185]Anthony E. Washburn, Luther N. Jenkins, Marty A. Ferman. ExperimentalInvestigation of Vortex-Fin Interaction [C]. AIAA93-0050,1993.
    [186]T. Gerhold and P. Krogmann. Investigation of the Hypersonic Turbulent FlowPast a Blunt Fin/Wedge Configuration [C]. AIAA93-5026,1993.
    [187]Satoru Yamamoto, Norinao Takasu. Numerical Study of UnsteadyShock/Boundary-Layer Interaction Induced by a Blunt Fin [R]. American Instituteof Aeronautics and Astronautics, Inc,1998.
    [188]Louis G. Kaufman II, Robert H. Korkegi. Shock Impingement Caused ByBoundary Layer Separation Ahead of Blunt Fins[C]. AIAA73-236,1973.
    [189]C. M. Hung and P. G. Buning. Simulation of Blunt-Fin Induced Shock Wave andTurbulent Boundary Layer Interaction [C]. AIAA84-0457,1984.
    [190]马汉东,李素循,吴礼义.钝舵绕流不同湍流模型数值模拟比较研究[J].数值计算与计算机应用,1:28-34,1993.
    [191]李艳丽,李素循.高超声速绕钝舵层流干扰流场特性研究[J].宇航学报,28(6):1472-1477,2007.
    [192]马汉东,李素循,吴礼义.高分辨率格式与钝舵绕流数值模拟[J].航空学报,18(4):390-394,1997.
    [193]Westkaemper, J. C.. Turbulent Boundary-Layer Separation Ahead of Cylinders [J].AIAA Journal, vol.6, No.7, pp.1352-1355, July.1968.
    [194]Young, F. L., Kaufman, L. G., H, and Korkegi, R. H.. Experimental Investigationof Interactions between Blunt Fin Shock Waves and Adjacent Boundary Layers atMach Numbers3and5[R]. ARL68-0214, Dec.1968.
    [195]Beckwith, I. E. Experimental Investigation of Heat Transfer and Pressures on aSwept Cylinder in the Vicinity of Its Intersection with a Wedge and Flat Plate atMach Number4.15and Hight Reynolds Numbers [R]. NASA TN D-2020,1964.
    [196]Bushnell, D. M. Interference Heating on a Swept Cylinder in the Region of ItsIntersection with a Wedge in Hypersonic Flow [R]. NASA TN D-3094,1965.
    [197]V. S. Avduevskii and K. I. Medvedev. Study of Laminar Boundary LayerSeparation on A Cone at An Angle of Attack [J]. Fluid Dynamics,1(3):78-80,1966.
    [198]V. S. Avduevskii and K. I. Medvedev. Separation of A Three-DimensionalBoundary Layer [J]. Fluid Dynamics,1(2):19-26,1966.
    [199]V, S. Avduevskii and V. K. Gretsov. Investigation of The Three-DimensionalSeparation Flow around Half-Cones on a Flat Plate [J]. Fluid Dynamics,5(6):1001-1004,1970.
    [200]A. I. Glagolev, A. I. Zubkov, B. E. Lyagushin and Yu. A. Panov. Supersonic FlowPast Obstacles on The Edges of Dihedrals. Mekhanika Zhidkosti i Gaza,5:181-184,1989.
    [201]Patrick Bookey, Christopher Wyckham and Alexander Smits. ExperimentalInvestigations of Mach3Shock-Wave Turbulent Boundary Layer Interactions [C].AIAA2005-4899,2005.
    [202]李素循,倪招勇.高超声速层流干扰流场研究[J].宇航学报,24(6):547-552,2003.
    [203]蔡罕龙,李素循.激波绕射方台的非定常流场研究[J].空气动力学学报,12(2):139-143,1994.
    [204]张卫民,李素循.裙后向台阶超声速绕流特性数值研究[J].空气动力学学报,12(3):332-337,1994.
    [205]李素循,陈永康,倪招勇.绕方柱类凸起物分离流研究[J].空气动力学学报,18:60-66,2000.
    [206]汪健生,汤俊洁,张金凤.半椭圆涡流发生器强化换热机理[J].机械工程学报,42(5):160-164,2006.
    [207]温娟,丁京伟,齐承英,杨历.壁面扰流影响边界层湍流拟序结构及强化传热机理的研究[J].河北工业大学学报,38(3):5-12,2009.
    [208]汪健生,刘志毅,张金凤,汤俊洁.斜截椭圆柱式涡流发生器强化传热的大涡模拟[J].机械工程学报,43(10):55-61,2007.
    [209]Elena M, Lacharme J P and Gaviglio J. Comparison of hot-wire and laser Doppleranemometry methods in supersonic turbulent boundary layers In: Dybb A andPfund P A [R]. International Symposium on Laser Anemometry. ASME,1985.
    [210]Settles G S. Schlieren and Shadowgraph Techniques [J]. Springer, Berlin, fluidflow. Int. J. Heat Fluid Flow,6:3~15,1985.
    [211]Garg S and Settles G S. Measurements of a supersonic turbulent boundary layerby focusing schlieren deflectometry [J]. Exps. Fluids,25:254~264,1998.
    [212]Schrijer F F, Scarano F and van Oudheusden B W. Application of PIV in a Mach7double-ramp flow [J]. Exps. Fluids,41:353~363,2006.
    [213]田立丰,易仕和,赵玉新等.超声速光学头罩流场的PIV研究[J].实验流体力学,24:26~29,2010.
    [214] Bathel B F, Danely P M, Inman J A, et al. PLIF visualization of active control ofhypersonic boundary layers using blowing [C]. AIAA Paper.2008-4266,2008.
    [215]Hutchins N, Hambleton W T and Marusic I. Inclined cross-stream stereo particleimage velocimetry measurements in turbulent boundary layers [J]. Fluid Mech.,541:21~54,2005.
    [216]赵玉新.超声速混合层时空结构的实验研究[D].工学博士学位论文.国防科技大学,2008.
    [217]王博.基于微型涡流发生器的激波/边界层干扰控制研究[D].工学硕士学位论文.国防科技大学,2010.
    [218]Zhao Yuxin, Tian Lifeng, Yi Shihe. Supersonic Flow Imaging Via Nanoparticles[J]. Sci China Ser E,52(12):3640-3648,2009.
    [219]Tian L F, Yi S H, Zhao Y X, et al. Study of density field measurement based onNPLS technique in supersonic flow [J]. Sci China Ser G,52(9):1357-1363,2009.
    [220]Tedeschi G, Gouin H, Elena M. Motion of tracer particles in supersonic flows [J].Exp Fluids,26:288-296,1999.
    [221]Samimy M and Lele S. Motion of particles with inertia in a compressible freeshear layer [J]. Phys Fluids,3:1915~1923,1991.
    [222]张兆顺.湍流[M].北京:国防工业出版社,2002.
    [223]Tennekes H, Lumley J L. A first course in turbulence [M]. London: MIT press,1972.
    [224]Rossmann T. An experimental investigation of high compressibility mixing layers[M]. Stanford University,2001.
    [225]范洁川.近代流动显示技术[M].北京:国防工业出版社,2002.
    [226]Robinson S K. Coherent motions in the turbulent boundary layer [J]. AnnualReview of Fluid Mechanics,23:601~639,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700