空间数据集可视化绘制的关键方法与技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间数据集可视化是当前计算机图形学领域的热门研究课题,它通过分析、抽象和处理表示各种物体和场景的海量数据,实现了在计算机中真实模拟现实世界的目的,因此在医学、地球科学、天文物理、化学、机械工程等许多方面有广阔的应用前景。 它是将某个物体的几何模型转变成我们视觉上清晰直观图像供进一步研究、分析,图像的绘制质量将直接影响工程技术人员对原始数据的理解,因此对可视化图形绘制的研究具有突出的现实意义。空间数据可视化绘制的主要研究内容包括光照模型、纹理技术和图形生成等。
    光照模型是最常用的绘制技术之一。经典的基于物理的反射模型在象素级都是一个表面几何的函数,且表示成光照明的模式,但是它不能反映随着视点的变化而产生的反射特征的变化。一种基于几何的分辨率反射模型适用于表示不同级别的反射影象,但是这种量化由分辨率来确定的并被记录在多分辨率mipmaps中,为此一种多分辨率反射技术可以用来有效记录这些基于分布的参数。该技术使用基于几何的反射函数来表示,并且通过显示硬件的支持来实现实时绘制比较好的反射细节。
    纹理映射和调度是可视化绘制研究的一个重要内容。以前的自动纹理映射算法存在效率低或只能基于模型特征点的约束等缺点。因此针对平面网格,可以将特征点的约束推广到基于特征曲线的约束就产生了一种新的纹理映射算法。该算法首先对每一个由待求顶点和特征曲线面上由两个构成的三角形使用共形映射计算出一个可能的纹理映射,然后使用高斯正态分布概率密度来对这些可能的纹理映射进行加权平均得到最后的结果。另外针对地形可视化中纹理映射和调度进行了改进:首先为了使得地形块边界处的纹理实现无缝连接,在数据的初始化阶段提出了一种基于重复采样的实现分块纹理无缝拼接的纹理映射算法;然后定义了纹理误差,给出了详细的数学表达式,并证明了它具有良好的性质;在此基础上综合考虑了地形纹理的屏幕投影大小和位置,给出了一个确定纹理分辨率的算法;最后提出了一种预估计的算法来控制纹理释放的调度,该算法预先调度出可能不可见的纹理块以减少内外存的数据交换。实验比较结果表明该调度算法不仅速度快而且画面质量好。
    模型简化是图形生成的研究重点。模型简化是图形生成的研究重点。一种新的
    
    
    度量简化误差的算法对以前的误差度量算法进行了改进,使用c-误差来度量那些在边收缩过程中顶点发生了移动的三角形面的误差,使用d-误差来度量那些在边收缩过程中退化的面产生的误差。这种将两种误差同时考虑得新的误差度量算法可以得到更高得效率和图像质量。另外,在这种误差度量的基础上提出了一种基于自适应空间刨分的模型简化算法。该算法的思路是对模型中的所有的顶点进行量化赋予一个二次误差阵,并将它们视为一个簇,沿坐标轴方向将它们刨分成八个子簇并不断迭代刨分生成新的子簇直至达到指定的精度,将最终的离散点集用适当的算法重新进行三角化得到简化模型。根据上一个算法中的自适应空间刨分思想又可以得到一个与视点相关又无须对原来的复杂模型进行预处理的简化算法,即每次绘制都根据视点位置,视方向和模型每部分产生的误差,对影响视觉效果大的部分进行自适应空间刨分从而逐步产生可显示的模型。
    在许多实际应用中需要保持模型的拓扑连通性,但以前的算法不可避免的会损失模型的连通信息。基于拓扑连通保持的外存模型简化算法是一种适用于任意大型复杂物体的模型简化算法。它不仅能实现产生很简单的近似模型,而且还快速地保持了拓扑连通性。首先,算法根据自适应的栅格分辨率使用外存一致聚类的得到一些簇和误差矩阵,然后使用八叉树空间剖分和一种新的拓扑连通检查算法来保持其拓扑连通性,接着根据得到的蔟集使用顶点聚类的算法将物体简化到中等规模的简化模型,最后用面收缩的内存简化算法法得到最终简化模型。通过误差传递结合连续的几个步骤,新算法与以前的外存简化模型算法相比,可以保留更多的物体原有的拓扑连通信息。该算法被证明是正确的,同时实验结果也表明简化后模型的质量也优于其它已有的外存简化算法。
Visualization for spatial dataset has received increasing attention and has reached a great achievement in the field of medicine, geoscience, astronomy, chemistry, mechanical engineering et al. It is release a large number of engineer and technologist from large scale and fussy data. Rendering technique for visualization is a fundamental tool by which the spatial dataset are outputted and transformed into meaningful visual images. The rendering quality is promising for recognition of original data to engineer and technologist. Besides, the application of graphics rendering for visualization is very wide and spreads most field of industry and society. It is foreseeable that this technique will be more and more important in the future. Visualization for rendering research covers illumination model, texture technique and graphics generation.
    Illumination model is one of the commonest rendering techniques. Physically-based reflectance models typically represent light scattering as a function of surface geometry at the pixel level. With changes in viewing resolution, the geometry imaged within a pixel can undergo significant variations that can result in changing reflectance characteristics. To address these transformations, we present a multiresolution reflectance framework based on geometric descriptors appropriate for representing reflectance effects over different scales. Since these quantities must be efficiently determined with respect to resolution, they are recorded at multiple resolution levels in mipmaps, for which we present a technique for efficient filtering of these distribution-based parameters. This framework can be used with common geometry-based reflectance functions, and can be implemented in graphics hardware for real-time processing. With this multiresolution reflectance technique, our system can rapidly render the fine reflectance detail that is customarily disregarded in multiresolution rendering methods.
    Texture mapping and caching is playing a key role in many study for visualization. Most previous automatic texture mapping algorithms have suffered from been too slowly or could only use a limit set of feature points of the model. We introduce in this paper a
    
    
    new constrained-based method for automatic texture mapping that deal with these problems for planar meshes. Our critical improvements include generalizing feature point to feature curve to fit some application and also simplified computation through efficient weighted of texture mapping. We generalize by parameterizing each vertex at two passes. Firstly we compute all the possible mapping along the feature curve consecutively where every triangle that consists of the computed vertex and two points in the curve can be deduced a conformal mapping result with minimum deformations. Then we combine all the possible mapping using normalization distribution to get the final one. Our results show that this texture mapping algorithm makes a great mapping for the planar meshes. Besides, this paper proposes a system that improves the texturing technique for large scale terrain visualization. A texture mapping method based on overlap sampling is presented for tiling textures without seams during initialization phase. And then this paper defines a texture error, presents its detail math expression and proves that it has very good character. An algorithm based on the texture error proposed to confirm texture resolution considers not only screen projection but also position. Finally advanced estimate method can control schedule for texture release that unload possible invisible texture patches to induce data commute of main and second memory. The experiments show that result has high quality with high speed.
    Model simplification is an important tool for graphics generation. At first, given the framework of incremental mesh simplification based on edge collapse, the paper proposes a mesh simplification algorithm using an improved approach for measuring simplification error. The algorithm uses edge collapse to simplify the triangle mesh and maintains
引文
Gross M. Visual computing: the integration of computer graphics, visual perception. New York:Springer-Verlag, 1994. 5~22
    张茂军. 虚拟现实系统. 北京:科学出版社, 2001. 1~80
    唐泽圣. 三维数据场可视化. 北京: 清华大学出版社, 2000. 1~14
    彭群生. 计算机真实感的算法基础. 北京:科学出版社, 2001. 221~278
    David F. Procedural elements for computer graphics. (Second Edition). New York: McGraw-Hill, 1998. 221~278
    Demirer M., Grimsdale R. Approximation techniques for high performance texture mapping. Computer & Graphics, 1996, 20(4):483~490
    Cabral B., Max N., Spingmeyer R. Bidirectional reflection function from surfaceBump maps. Compuer & Graphics, 1987, 21(4):273~281
    Phone B. T. Illumination for computer generated images: [Ph.D. thesis]. Utah: University of Utah, 1973
    Cook R., Torrance K. A reflectance model for computer graphics. in: Pocock L. ed. Proceedings of SIGGRAPH 1981. Dallas, Texas. 1981. New York: ACM Press, 1981. 307~316
    Marschner S.R., Westin S.H., Lafortune E.P.F. et al. Image-based brdf measurement including human skin. in: Eurographics Rendering Workshop. New York: ACM Press, 1999. 23~31
    Debevec P., Wenger A., Tchou C. et al. A lighting reproduction approach to liveaction compositing. in: Appolloni T. ed. Proceedings of SIGGRAPH 2002. San Antonio, Texas. 2002. New York: ACM Press, 2002. 31~40
    Matusik W., Pfister H. Brand M. et al. A data-driven reflectance model. in: Tran M., Lam H. eds. Proceedings of SIGGRAPH 2003. San Diego, California. 2003. New York: ACM Press, 2003. 32~40
    
    Phone B. T. Illumination for computer generated images. Communications of the ACM, 1975, 18(6):311~377
    Lafortune E.P.F., Foo S. C., Torrance K.E. et al. Non-linear approximation of reflectance functions. Computer Graphics, 1997, 31(2):117~126
    Westin S., Arvo J.R., Torrance K.E. Predicting reflectance functions form complex surfaces. in: Edwin E. ed. Proceedings of SIGGRAPH 1992. Chicago, Illinois. 1992. New York: ACM Press, 1992. 255~263
    Cook R. Shader trees. in: Proceedings of SIGGRAPH 1984. New York: ACM Press, 1984. 223~231
    Ashikhmin M., Premoze S. Shirley P. A microfacet-based brdf generator. in: Akeley K. ed. Proceedings of SIGGRAPH 2000. New Orleans, Louisiana. New York: ACM Press. 2000. 65~74
    Becker B.G., Max N.L. Smooth transitions between bump rendering algorithm. in: James T. ed. Proceedings of SIGGRAPH 1993. Anaheim, California. 1993. New York: ACM Press, 1993. 183~190
    Heidrich W., Daubert K., Kaut J. et al. Illuminating micro-geometry based on precomputed visibility. in: Akeley K. ed. Proceedings of SIGGRAPH 2000. New Orleans, Louisiana. New York: ACM Press. 455~464
    Catmull E. Subdivision algorithm for computer display of curved surfaces: [Ph.D. thesis]. Utah: University of Utah, 1974
    Redersen H. A framework for interactive texturing on curved surfaces. Computer Graphics, 1996, 30(4):295~302
    Smith A. Planar 2-pass texture mapping. Computer Graphics, 1987, 21(4): 11~23
    Peachey, Darwyn R. Solid texturing of complex surfaces. in: Maureen C., Stone. ed. Proceedings of SIGGRAPH 1985. Anaheim, California. 1985. New York: ACM Press, 1985. 287~296
    
    Khodakovsky A. Globally smooth parameterization with low distortion. in: Tran M., Lam H. Proceedings of SIGGRAPH 2003. San Diego, California. 2003. New York: ACM Press, 2003. 350~357
    Levy B. Constrain texture mapping for polygonal meshes. in: Pocock L. ed. Proceedings of SIGGRAPH 2001. Los Angeles, California. 2001. New York: ACM Press, 2001. 417~424
    Levy B., Petijean S., Ray N. et al. Least squares conformal maps for automatic texture atlas generation. in: Appolloni T. ed. Proceedings of SIGGRAPH 2002. San Antonio, Texas. 2002. New York: ACM Press, 2002. 362~371
    Levy B., Mallet J. Non-distorted texture mapping for sheared triangulated meshes. in: Cohen M. ed. Proceedings of SIGGRAPH 1998. Orlando, Florida. 1998. New York: ACM Press, 1998. 343~352
    K. Singh, E. Fiume. Wire: a geometric deformation technique. in: Cohen M. ed. Proceedings of SIGGRAPH 1998. Orlando, Florida. 1998. New York: ACM Press, 1998. 405~414
    Huttner T., Strasser W. FlyAway: a 3D terrain visualization system using multi-resolution principles. Computer and Graphics, 1999, 23(4): 479~485
    Tanner C., Migdal C. Jones M. The clipmap: a virtual mipmap. in: Cohen M. ed., Proceedings of SIGGRAPH 1998. Orlando, Florida. 1998. New York: ACM Press, 1998. 415~422
    Dollner J., Baumann K., Hinrichs K. Texturing techniques for terrain visualization. in: Ertl T., Hamann B., Varshney A. eds. Proceedings of IEEE Visualization 2000. Salt Lake City. 2000. CA: IEEE Computer Society Press, 2000. 227~234
    Blow J. Terrain rendering at high levels of detail. in: Proceedings of the Game Developers Conference 2000. California, 2000. 119~124
    何晖光, 田捷, 张晓鹏等. 网格模型化简综述. 软件学报, 2002, 13(12):2215~2224
    
    Luebke D., Reddy M., Cohen, J., et al. Level of detail for 3d graphics. CA: Morgan Kaufmann, 2002. 156~191
    Hoppe H. Progressive meshes. in: Rushmeier H. ed. Proceedings of SIGGRAPH 1996. New Orleans, Louisiana. 1996. New York: ACM Press, 1996. 99~108
    Hamann B. A data reduction scheme for triangulated surfaces. Computer Aided Geometric Design, 1994, 11(2):197~214
    Lindstrom P. Model simplification using image and geometry-based metrics: [Ph.D. thesis]. Atlanta: Georgia Institute of Technology, 2000
    Cohen J. Measuring simplification error. in: Pocock L. ed. Proceedings of SIGGRAPH 2001. Los Angele, California. 2001. New York: ACM Press, 2001. Technical Report. 21~30
    Rossignac J., Borrel P. Multi-resolution 3d approximations for rendering. Modeling in Computer Graphics. New York: Springer-Verlag, 1993. 455~465
    李捷,唐泽圣. 三维复杂模型的实时连续多分辨率绘制. 计算机学报, 1998, 9(6): 481~491
    Garland M. and Heckbert P. Surface simplification using quadric error bounds metrics. in: Whitted T. ed. Proceedings of SIGGRAPH 1997. Los Angeles, California. 1997. New York: ACM Press, 1997. 209~216
    Hoppe H., DeRose T., Duchamp T, et al. Mesh optimization. in: James T. ed. Proceedings of SIGGRAPH 1993. Anaheim, California. 1993. New York: ACM Press, 1993. 19~26
    Cohen J., Varshney A., Manocha D., et al. Simplification envelopes. in: Rushmeier H. ed. Proceedings of SIGGRAPH 1996. New Orleans, Louisiana. 1996. New York: ACM Press, 1996. 119~128
    Li J., Tang Z. An improved greedy algorithm for simplification of triangular meshes. in: Proceedings of CAD & Graphics 1997. New York: ACM Press, 1997. 119~122
    曹卫群,鲍虎军,彭群生. 基于高斯球的近似共面合并层次细节模型. 软件学报, 2000, 11(12):1607~1613
    
    Garland M., Paul S. Simplifying surfaces with color and texture using quadric error metrics. in: Ebert D., Hagen H., Rushmeier H. eds. Proceedings of IEEE Visualization 1998. Research Triangle Park, North Carolina. 1998. CA: IEEE Computer Society Press, 1998. 263~270
    Hoppe H. New quadric metric for simplifying meshes with appearance attributes. in: Ebert D., Gross M., Hamann B. eds. Proceedings of IEEE Visualization 1999. Francisco, California. 1999. CA: IEEE Computer Society Press, 1999. 59~66
    Cignoni P., Montani R. Simplification of tetrahedral meshes with accurate error evaluation. in: Ertl T., Hamann B., Varshney A. eds. Proceedings of IEEE Visualization 2000. Salt Lake City, Utah. 2000. CA: IEEE Computer Society Press, 2000. 480~502
    Low K. L., Tan T. S. Modeling simplification using vertex-clustering. in: Dam A., Cohen M. eds. Proceeding of 1997 Symposium on Interactive 3D Graphics. New Orleans, Louisiana. 1997. New York: ACM Press, 1997. 75~82
    Lindstrom P. Out-of-core simplification of large polygonal models. in: Akeley K. ed. Proceedings of SIGGRAPH 2000. New Orleans, Louisiana. 2000. New York: ACM Press, 2000. 259~262
    Yemez Y., Schmitt F. Progressive multi-lever meshes from octree particles. in: Proceeding of 3-D Digital and Modeling 1999. CA: IEEE Computer Society Press, 1999. 128~137
    Brodsky D., Waston B. Modeling simplification through refinement. in: MacKenzie S., Stewart J. eds. Proceeding of Graphics Interface. Montreal, Canada. 2000. CA: IEEE Computer Society Press, 2000. 221~228
    Haemer M. J., Zyda M. J. Simplification of objects rendered by polygonal approximation. Computer & Graphics, 1991, 15(2): 175~184
    Hinker P., Hansen C. Geometric optimization. in: Rosenblum L. ed. Proceedings of Visualization 1993. Los Alamitos. 1993. CA: IEEE Computer Society Press, 1993. 189~195
    
    Kalvin A., Cutting C. Constructing topologically connected surfaces for comprehensive analysis of 3D medical structures. in: Proceeding of SPIE Image Processing 1991. CA: IEEE Computer Society Press, 1991. 247~259
    Kalvin A., Taylor R. Superfaces: polygonal mesh simplification with bounded error. IEEE Transaction on Computer Graphics and Applications, 1996, 16(3): 64~77
    Schroeder W., Zarge J. Decimation of triangle meshes. Computer Graphics, 1992, 26(2): 65~70
    Turk G. Re-tiling polygon surfaces. Computer Graphics, 1992, 26(2): 55~64
    Schroeder W. A topology modifying progressive decimation algorithm. in: Storms P. ed. Proceedings of Visualization 1997. Phoenix, Arizona. 1997. CA: IEEE Computer Society Press, 1997. 205~212
    Soucy M., Laurendeau D. Multiresolution surface modeling based on hierarchical triangulation. Computer Vision and Image Understanding, 1996, 63(1): 1~14
    Klein R., Liebich G., Straber W. Mesh reduction with error control. in: Yagel R. Gregory M. eds. Proceedings of IEEE Visualization 1996. San Francisco, California. 1996. CA: IEEE Computer Society Press, 1996. 311~318
    Giampalini A., Cignoni P. Mutiresolution decimation based on global error. The Visual Computer, 1997, 13(5): 228~246
    潘志庚, 马小虎, 石教英. 虚拟环境中多层次细节模型自动生成算法. 软件学报, 1996, 7(9): 526~531
    张明敏, 周昆, 潘志庚. 基于包络的三角形网格简化算法. 软件学报, 1999, 10(6): 584~588
    陶志良, 潘志庚, 石教英. 基于能量评估的网格简化算法极其应用. 软件学报, 1997, 8(12): 881~888
    Chang E., Ho Y. Three-dimensional mesh simplification by subdivided edge classification. in: Tien D. ed. Proceedings of TENCON 2001. CA: IEEE Region 10, 2001. 39~42
    
    Gieng T., Hamann B. Smooth hierarchical surface triangulations. in: Storms P. ed. Proceedings of Visualization 97. Phoenix, Arizona. 1997. CA: IEEE Computer Society Press, 1997. 379~386
    El-Sana J., Varshney A. Controlled simplification of genus for polygonal models. in: Yagel R. Hagen H. eds. Proceedings of IEEE Visualization 1997. Phoenix, Arizona. 1997. CA: IEEE Computer Society Press, 1997. 403~412
    Pajarola R. Fastmesh: efficient view-dependent meshing. in: Proceedings of Computer Graphics and Applications 2001. Tokyo, Japan. 2001. CA: IEEE Computer Society Press, 2001. 22~30
    Xia J., Varshney A. Dynamic view-dependent simplification for polygonal models. in: Yagel R., Nielson G. eds. Proceedings of IEEE Visualization 1996. San Francisco, California. 1996. CA: IEEE Computer Society Press, 1996. 327~334
    Xia J., El-Sana J., Varshney A. Adaptive real-time level-of-detail-based rendering for polygonal models. IEEE Transactions on Visualization and Computer Graphics, 1997, 3(2):171~183
    Hoppe H. View-dependent refinement of progressive meshes. in: Whitted T. ed. Proceedings of SIGGRAPH 1997. Los Angeles, California. 1997. New York: ACM Press, 1997. 189~198
    Leubke D., Erikson C. View-dependent simplification of arbitrary polygonal environments. in: Whitted T. ed. Proceedings of SIGGRAPH 1997. Los Angeles, California. 1997. New York: ACM Press, 1997. 198~208
    李捷, 唐泽圣, 郭红晖. 基于分形维数的层次多分辨率模型. 计算机学报, 1998, 21(9):780~786
    El-Sana J., Varshney A. generalized view-dependent simplification. Computer Graphics Forum, 1999, 18(3): 83~94
    El-Sana, J., Azanli E., Varshney A. Skip strips: maintaining triangle strips for view-dependent rendering. in: Ebert D., Gross M., Hamann B. eds. Proceedings of
    
    
    IEEE Visualization 1999. Francisco, California. 1999. CA: IEEE Computer Society Press, 1999. 131~138
    Lindstorm P., Pascucci V. Visualization of large terrains made easy. in: Proceedings of IEEE Visualization 2001. San Diego, California. 2001. CA: IEEE Computer Society Press, 2001. 363~370
    Garland M., Shaffer E. A multiphase approach to efficient surface simplification. in: Fister P., Bailey M. eds. Proceedings of IEEE Visualization 2002. Boston, Massachusetts. 2002. CA: IEEE Computer Society Press, 2000. 117~124
    Lindstrom P., Silva C.T. A memory insensitive technique for large model simplification. in: Akeley K. ed. Proceedings of IEEE Visualization 2001. San Diego, California. 2001. CA: IEEE Computer Society Press, 2001. 121~126
    Shaffer E., Garland M. Efficient adaptive simplification of massive meshes. in: Akeley K. ed. Proceedings of IEEE Visualization 2001. San Diego, California. 2001. CA: IEEE Computer Society Press, 2001. 127~134
    费广正, 蔡康颖, 吴恩华. 基于细节迁移的快速外存模型简化方法. 软件学报, 2001, 12(11): 1630~1638
    Bernardini F., Mittleman J. The ball-pivoting algorithm for surface reconstruction. IEEE Transaction on Visualization and Computer Graphics, 1999, 5(4): 349~359
    Hoppe H. Smooth view-dependent level-of-detail control and it application to terrain rendering. In Ebert D., Hagen H., Rushmeier H. eds. Proceedings of IEEE Visualization 1998. North Carolina. 1998. CA: IEEE Computer Society Press, 1998. 35~42
    Cignoni P., Montani C., Rocchi C. et al. External memory management and simplification of huge meshes. IEEE Transactions on Visualization and Computer Graphics, 2003, 9(4):525~537
    Williams L. Pyramidal parametrics. in: Proceedings of SIGGRAPH 1983. New York: ACM Press, 1983. 1~11
    
    He X.D., Torrance K.E., Sillion F.X. et al. A comprehensive physical model for light reflection. in: Glassner A. ed. Proceedings of SIGGRAPH 1991. Orlando, Florida. 1991. New York: ACM Press, 1991. 175~186
    Stam J. Diffraction shaders. in: Rockwood A. ed. Proc of SIGGRAPH 1999. Los Angeles, California. 1999. New York: ACM Press, 1999. 101~110
    Torrance K.E., Sparrow E.M. Theory for off-specular refelcion from roughened surfaces. Journal of the Optical Society of America, 1967, 57(3): 1105~1114
    Max N. Horizon mapping: shadows for bump-mapped surfaces. The Visual Computer, 1998, 4(2): 109~117
    Fournier A. Normal distribution functions and multiple surfaces. in: Graphics Interface Workshop on Local Illumination 1992. New York: ACM Press, 1992. 45~52
    Schlick C. A survey of shading and reflectance models. Computer Graphics Forum, 1994, 13(3): 233~246
    Pajarola R. Access to large scale terrain and image databases in geoinformation systems: [Ph.D. Thesis]. California: University of California, Irvine, 1998
    Lindstrom P., Koller D., Ribarsky W. et al. Real-time, continuous level of detail rendering of height fields. in: Rushmeier, H., ed. Proceedings of SIGGRAPH 1996. New Orleans, Louisiana. 1996. New York: ACM Press, 1996. 109~118
    Duchaineau M., Wolinsky M., Sigeti D. et al. ROAMing terrain: real-time optimally adapting meshes. in: Yagel R., Hagen H. eds. Proceedings of IEEE Visualization 1997. Arizona. 1997. CA: IEEE Computer Society Press, 1997. 81~88
    Pajarola R. Large scale terrain visualization using the restricted quadtree triangulation. in: Ebert D., Hagen H., Rushmeier H. eds. Proceedings of IEEE Visualization 1998. North Carolina. 1998. CA: IEEE Computer Society Press, 1998. 19~26
    淮永建, 郝重阳, 范养余等. 基于自适应四叉树视相关的多分辨率地形简化. 系统仿真学报, 2002, 14(6): 748~751
    
    Zhao Y., Shi J., Zhou Y. et al. A fast algorithm for large scale terrain walkthrough. in: Proceeding of International Conference on CAD & Graphics 2001. Kunming, China. 2001. CA: International Academic Publishers, 2001. 22~24
    Gerstner T. Top-down view-dependent terrain triangulation using the octagon metric. in: Kobbelt L., Schroder P., Hoppe H. eds. Eurographics Symposium on Geometry Processing 2003. Aachen, Germany. 2003. CA: Springer-Verlag, 2003. 1~11
    Cline D., Egbert P. Terrain decimation through quadtree morphing. IEEE Transactions on Visualization and Computer Graphics, 2001, 7(1): 62~69
    Lindstrom P., Pascucci V. Terrain simplification simplified: a general framework for view-dependent out-of-core visualization. IEEE Transactions on Visualization and Computer Graphics, 2002, 8(3): 239~254
    Stewart A. Fast horizon computation at all points of a terrain with visibility and shading application. IEEE Transactions on Visualization and Computer Graphics, 1998, 4(1): 82~93
    李胜, 刘学慧, 王文成等. 层次可见性与层次细节地表模型相结合的快速绘制. 计算机学报, 2002, 25(9): 1~8
    Zaugg B., Egbert K. Voxel column culling: occlusion culling for large terrain models. in: Eurographics Symposium on Visualization 2001. Ascona, Switzerland. 2001. CA: Springer-Verlag, 2001. 28~30
    Haeberli P., Segal M. Texture mapping as a fundamental drawing primitive. in: Cohen M., Puech C., Sillion F. eds. Proceeding of the 4th Eurographics Workshop on Rendering. Edinburgh. 1993. CA: Springer-Verlag, 1993. 259~266
    Wonka P., Wimmer M., Sillion F. Instant visibility. Computer Graphics Forum, 2001, 20(3): 71~82
    Lindstorm P., Turk G. Image-driven simplification. ACM Transactions on Graphics, 2000, 19(3): 204~241
    
    Cohen J. Concepts and algorithms for polygon simplification. in: Rockwood A. ed. Proceedings of SIGGRAPH 99. Los Angeles, California. 1999. New York: ACM Press, 1999. Course Notes. C1~C34
    周昆, 潘志耕, 石教英. 基于混合多层次细节技术的实时绘制算法. 软件学报, 2001, 12(1):74~82.
    Cignoni P., Rocchini C, Scopigno R. Metro: measuring error on simplified surfaces. Computer Graphics Forum, 1998, 17(2): 167~174
    Dey T. K., Edelsbrunner H., Guha S. et al. Topology preserving edge contraction. Publications de l'Institut Mathematique (Beograd), 1999, 60(80):23~45
    周昆, 潘志庚, 石教英. 基于三角形折叠的网格简化模型. 计算机学报, 1998, 21(6): 506~514
    Cohen M., Shade J., Hiller S. et al. Wang tiles for image and texture generation. in: Tran M., Lam H. eds. Proceedings of SIGGRAPH 2003. San Diego, California. 2003. New York: ACM Press, 2003. 287~294
    Sheffer A., Sturler E. Smoothing an overlay grid to minimize linear distortion in texture mapping. ACM Transactions on Graphics, 2002, 21(4):201~220
    Wu J. Realistic modeling of bird flight animations. in: Tran M., Lam H. eds. Proceedings of SIGGRAPH 2003. San Diego, California. 2003. New York: ACM Press, 2003. 888~895

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700