基于表面波驱动的等离子体天线及其阵列技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代移动通信系统的高速发展对通信系统前端的天线提出了更高的要求。通信天线正在向着频率可重构和方向图可重构的方向发展。相比传统金属天线,等离子体天线具有其独特的优点:通过控制等离子体参数,可以使天线的输入阻抗、辐射方向图、效率和工作带宽等特性实现动态重构;其次,等离子体天线在没有激发的时候是普通介质,雷达散射截面极小,因此它在军事及民用领域具有重要的战略意义。
     本文首先分析了表面波驱动等离子体天线的辐射原理,建立了非磁化等离子体天线分析的DI-FDTD(Direct Integration Finite-Difference Time-Domain,直接积分FDTD)数值模型和磁化等离子体天线分析的PLRC-FDTD(Piecewise Linear Recursive Convolution FDTD,分段线性卷积FDTD)模型。在此基础上,探讨了等离子体参数对天线近场与远场特性的影响,以及等离子体天线阵列的方向图可重构性。论文的主要工作和创新点如下:
     (1)非磁化等离子体天线辐射性能研究和优化设计。针对实际天线应用的需要,建立了容性激励馈电的介质管圆柱状等离子体天线模型。采用DI-FDTD算法对非磁化等离子体天线的远场辐射方向图和天线效率等性能指标进行了分析。仿真结果表明:介质管的介电常数对于天线的远场辐射强度和效率有比较明显的作用,设计实际天线时可以通过设置恰当的介质管介电常数完成对等离子体天线的辐射性能的优化。
     (2)磁化等离子体天线辐射特性研究与动态控制技术。采用PLRC-FDTD算法对磁化等离子体天线的输入阻抗、远场辐射方向图、天线效率等性能指标进行模拟分析。仿真结果表明:外磁场的强弱变化对天线的输入阻抗与辐射功率有比较明显的作用,因此可以利用外磁场实现磁化等离子体天线工作带宽和辐射强度的动态控制。
     (3)磁化等离子体天线具有非均匀等离子体分布时的数值建模与分析。针对等离子体天线激发之后介质管中的等离子体密度可能具有非均匀分布的实际情况,建立了轴向和径向非均匀分布的磁化等离子体天线模型。采用PLRC-FDTD算法对其影响进行了仿真分析,仿真结果表明:等离子体的非均匀分布使磁化等离子体天线的输入阻抗略向低频移动,而辐射强度略有降低。但是在轴向和径向非均匀分布分别为15%和10%的情况下,非均匀分布的磁化等离子体天线的效率仍然达到76%。
     (4)等离子体天线阵列辐射特性研究及方向图动态可重构设计。建立了等离子体天线阵列的DI-FDTD数值模型,并对等离子体天线多元阵列的辐射性能进行仿真分析。仿真结果表明:等离子体天线阵列中一个天线单元的等离子体参数变化,可以使整个天线阵列的辐射方向图的强度和指向性发生较明显的变化。在此基础上设计了四阵元、六阵元和八阵元的等离子体天线阵列,以实现方向图的动态可重构特性。
The rapid development of modern mobile communication systems set higher demands toward antennas in front of communication systems. Communication antennas are developing towards the trend of frequency reconfiguration and pattern reconfiguration. Compared with traditional metal antennas, plasma antennas have their special characteristics: Firstly, by controlling the parameters of the plasma, the input impedance, radiation pattern, antenna efficiency and bandwidth of the plasma antenna can be dynamically reconfigured. Secondly, the plasma antenna would turn into a normal dielectric material without excitation, letting its radar cross section negligible. Thus plasma antennas have strategic significance in the military and civil field.
     The thesis theoretically analyses the radiation mechanism of the surface driven plasma antenna. The numerical model of DI-FDTD (Direct Integration Finite-Difference Time-Domain) method is constructed for the unmagnetized plasma antenna and the model of PLRC-FDTD (Piecewise Linear Recursive Convolution FDTD) method is constructed for the magnetized plasma antenna. On the basis of these models, the influences of plasma parameters on the antenna’s near and far field characteristics and the pattern reconfigurability of the antenna is discussed. The main work and creative points of the thesis are as follows:
     (1) Research on the radiation performance of the unmagnetized plasma antenna and optimization of its performance. Considering requirements in real applications of antennas, a model of a cylindrical plasma antenna encapsulated in a dielectric tube and excited by a capacitively coupling sleeve is built. The DI-FDTD algorithm is utilized to perform simulation on the far-field radiation pattern and the antenna efficiency of the unmagnetized plasma antenna. Simulation results show that the permittivity of the dielectric tube have obvious effects on the far-field radiation pattern and efficiency of the antenna. Thus the radiation performance of a plasma antenna can be optimized by properly setting the permittivity of the dielectric tube.
     (2) Research on the radiation performance of the magnetized plasma antenna and the technology of dynamically tuning its performance. The PLRC-FDTD method is employed to numerically analysis the input impedance, radiation pattern and antenna efficiency of the magnetized plasma antenna. Numerical results show that the variation of the external magnetic fields have obvious effects on the performance of the antenna. Thus the external magnetic field can be used to dynamically control the bandwidth and radiation pattern of the magnetized plasma antenna.
     (3) Investigation on the performance of the magnetized plasma antenna with a non-uniform plasma distribution. Considering the situation that the plasma excited in a dielectric tube may be non-uniformly distributed, the model of a both axially and radically non-uniformly distributed magnetized plasma antenna is designed. By using the PLRC-FDTD method, its influence is numerically analyzed. Simulation results show that the non-uniform plasma distribution leads the input impedance of the antenna to shift slightly toward lower frequency and causes the radiation efficiency to fall a bit. However, the magnetized plasma antenna with 15% axial-nonuniform and 10% radial-nonuniform distribution has still achieved 76% radiation efficiency.
     (4) Research on the radiation performance of the plasma antenna array and design of the pattern reconfiguration. The DI?FDTD numerical model of the plasma antenna array is constructed and utilized to simulation its radiation performance. Simulation results show that the change of plasma parameters of one antenna in the array will draw obvious influences on the radiation pattern and direction of the array. On this basis, the plasma antenna arrays of four elements, six elements and eight elements are designed to realize the dynamic reconfigurability of the radiation pattern.
引文
[1] Trivelpiece A.W.a.G., R. W. Space charge waves in cylindrical plasma columns [J]. Journal of Applied Physics, 1959, 30 (11): 1784-1793
    [2] Lin C.C., Chen K.M. Improved radiation from a spherical antenna by overdense plasma coating [J]. IEEE Transcations on Antennas and Propagation, 1969, 17 (5): 675-678
    [3] Lin C.C., Chen K.M. Effect of electroacoustic wave on the radiation of a plasma-coated spherical antenna [J]. IEEE Transactions on Antennas and Propagation, 1970, 18 (6): 831-834
    [4] Moisan M. Description and properties of an RF plasma used for the study of parametric interaction of a strong e-m field with plasma [J]. Plasma Physics, 1974, 16 (1): 1-17
    [5] Moisan M., Zakrzewski Z., Pantel R. Theory and characteristics of an efficient surface wave launcher (surfatron) producing long plasma columns [J]. Journal of Physics D: Applied Physics, 1979, 12 (2): 219-237
    [6] Moisan M., Zakrzewski Z. Plasma sources based on the propagation of electromagnetic surface waves [J]. Journal of Physics D: Applied Physics, 1991, 24 (7): 1025-1048
    [7] Nowakowska H., Zakrzewski Z., Moisan M., et al. Propagation characteristics of surface waves sustaining atmospheric pressure discharges:the influence of the discharge processes [J]. Journal of Physics D: Applied Physics, 1998, 31 (12): 1422-1432
    [8] Nowakowska H., Zakrzewski Z., Moisan M. Propagation characteristics of electromagnetic waves along a dense plasma filament [J]. Journal of Physics D: Applied Physics, 2001, 34 (10): 1474-1478
    [9] Moisan M., Chaker M., Zakrzewski Z., et al. Waveguide surfatron:a high power surface-wave launcher to sustain large-diameter dense plasma columns [J]. Journal of Physics E: Scientific Instruments, 1987, 20 (11): 1356-1361
    [10] Levesque S., Moisan M., Hubert J. Experimental properties of surface wave sustained plasma columns close to and above the atmospheric pressure [A]. In: IEEE International Conference on Plasma Science 1989 [C]. Buffalo, NY, USA: IEEE, 1989: 76-77
    [11] Moisan M., Shivarova A., Trivelpiece A.W. Experimental investigations of the propagation of surface waves along a plasma column [J]. Plasma Physics, 1982, 24 (11): 1331-1400
    [12] Nikitin P., Swenson C. Impedance of a dipole antenna in a cold collisional plasma:theory and ionospheric measurements [A]. In: 1998 IEEE International Conference on Plasma Science [C]. Raleigh, NC: IEEE, 1998: 122-123
    [13] Nikitin P., Swenson C. Impedance of a short dipole antenna in a cold plasma [J]. IEEE Transactions on Antennas and Propagation, 2001, 49 (10): 1377-1381
    [14] Dwyer T., Greig J., Murphy D., et al. On the feasibility of using an atmospheric discharge plasma as an RF antenna [J]. IEEE Transactions on Antennas and Propagation, 1984, 32 (2): 141-146
    [15] Alexeff I., Anderson T., Parameswaran S., et al. Advances in plasma antenna design [A]. In: 2005 IEEE International Conference on Plasma Science [C]. Monterey, CA, USA: IEEE, 2005: 259-260
    [16] Alexeff I., Anderson T., Parameswaran S., et al. Experimental and theoretical results with plasma antennas [J]. IEEE Transactions on Plasma Science, 2006, 34 (2): 166-172
    [17] Anderson T., Alexeff I., Farshi E., et al. An operating intelligent plasma antenna [A]. In: 2007 IEEE Pulsed Power Conference [C]. Albuquerque, NM, USA: IEEE, 2007: 353-356
    [18] Alexeff I., Anderson T.R. Plasma device with low thermal noise [P]. US: 2009134803-A1, 2009
    [19] Borg G.G., Harris J.H., Miljak D.G., et al. Application of plasma columns to radiofrequency antennas [J]. Applied Physics Letters, 1999, 74 (22): 3272-3274
    [20] Borg G.G., Harris J.H., Martin N.M., et al. Plasmas as antennas:theory, experiment and applications [J]. Physics of Plasmas, 2000, 7 (5): 2198-2202
    [21] Hargreave M., Rayner J.P., Cheetham A.D., et al. Coupling power and information to a plasma antenna [A]. In: International Congress on Plasma Physics [C]. Sydney, Australia: Australian Institute of Physics, 2003: 388-391
    [22] Rayner J.P., Whichello A.P., Cheetham A.D. Physical characteristics of a plasma antenna [A]. In: 11th International Congress on Plasma Physics [C]. Sydney, Australia: American Institute of Physics, 2003: 392-395
    [23] Rayner J.P., Whichello A.P., Cheetham A.D. Physical characteristics of plasma antennas [J]. IEEE Transactions on Plasma Science, 2004, 32 (1): 269-281
    [24] Whichello A.P., Rayner J.P., Cheetham A.D. Plasma antenna radiation patterns [A]. In: 11th International Congress on Plasma Physics [C]. Sydney, Australia: American Institute of Physics, 2003: 396-399
    [25] Shokri B., Niknam A.R. Field profiles of symmetric surface waves in diffusion-controlled regime of a non-isothermal plasma columns [J]. Plasma Physics and Controlled Fusion, 2005, 47 (10): 1805-1816
    [26] Volodin K.S., Minaev I.M., Rukhadze A.A., et al. Plasma control of the directional pattern of a multislot waveguide antenna [J]. Plasma Physics Reports, 2009, 35 (1): 50-53
    [27] Alexeff I., Anderson T., Farshi E., et al. Recent results for plasma antennas [J]. Physics of Plasmas, 2008, 15 (5): 1-4
    [28] Ovsyanikov V.V., Reznichenko I.A., Ol'shevs'kiy A.L., et al. Wideband properties of a new antenna made of cold plasma [A]. In: 2008 4th International Conference on Ultrawideband and Ultrashot Impulse Signals [C]. Sevastopol, Ukraine: IEEE, 2008: 77-79
    [29] Anderson T., Alexeff I. Stealthy, versatile, and jam resistant antennas made of gas [OL] http://www.aps.org/about/tipsheets/tip75.cfm, Nov. 11, 2007
    [30] Tret'yakov D.V. Spark plasma antenna [J]. Journal of Communications Technology and Electronics, 2008, 53 (7): 823-828
    [31] Moisan M., Zakrzewski Z., Rostaing J.C. Waveguide-based single and multiple nozzle plasma torches:the TIAGO concept [J]. Plasma Sources Science and Technology, 2001, 10 (3): 387-394
    [32] Novikov V.E., Puzanov A.O., Sin'kov V.V., et al. Plasma antenna for magneto cumulativegenerator [A]. In: 2003 4th International Conference on Antenna Theory and Techniques [C]. Sevastopol, Ukraine: IEEE, 2003: 692-695
    [33] Puzanov O., Soshenko V. Explosive plasma antennas [A]. In: 2005 15th International Crimean Conference Microwave and Telecommunication Technology [C]. Sevastopol, Crimea, Ukraine: IEEE, 2005: 695-696
    [34] Adzhiev A.H., Soshenko V.A., Sytnik O.V., et al. Experimental investigation of explosive plasma antennas [J]. Tech Phys, 2007, 52 (6): 765-769
    [35] Dartora C.A., Heilmann A., Nobrega K.Z., et al. Radiation pattern from a cold magnetoplasma antenna [J]. Physics of Plasmas, 2009, 16 (7): 1-6
    [36] Kumar R., Bora D. A reconfigurable plasma antenna [J]. Journal of Applied Physics, 2010, 107 (5): 1-9
    [37] Yee K. Numerical solution of inital boundary value problems involving maxwell's equations in isotropic media [J]. IEEE Transactions on Antennas and Propagation, 1966, 14 (3): 302-307
    [38] Luebbers R., Hunsberger F.P., Kunz K.S., et al. A frequency-dependent finite-difference time-domain formulation for dispersive materials [J]. IEEE Transactions on Electromagnetic Compatibility, 1990, 32 (3): 222-227
    [39] Luebbers R.J., Hunsberger F., Kunz K.S. A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma [J]. IEEE Transactions on Antennas and Propagation, 1991, 39 (1): 29-34
    [40] Hunsberger F., Luebbers R., Kunz K. Finite-difference time-domain analysis of gyrotropic media. I. Magnetized plasma [J]. IEEE Transactions on Antennas and Propagation, 1992, 40 (12): 1489-1495
    [41] Luebbers R., Steich D., Kunz K. FDTD calculation of scattering from frequency-dependent materials [J]. IEEE Transactions on Antennas and Propagation, 1993, 41 (9): 1249-1257
    [42] Kelley D.F., Luebbers R.J. Piecewise linear recursive convolution for dispersive media using FDTD [J]. IEEE Transcations on Antennas and Propagation, 1996, 44 (61):792-797
    [43] Chen Q., Katsurai M., Aoyagi P.H. An FDTD formulation for dispersive media using a current density [J]. IEEE Transactions on Antennas and Propagation, 1998, 46 (11): 1739-1746
    [44]刘少斌,莫锦军,袁乃昌.等离子体的分段线性电流密度递推卷积FDTD算法[J].物理学报, 2004, 53 (3): 778-782
    [45]刘少斌,莫锦军,袁乃昌.各向异性磁化等离子体JEC-FDTD算法[J].物理学报, 2004, 53 (3): 783-787
    [46] Nickisch L.J., Franke P.M. Finite-difference time-domain solution of maxwell's equations for the dispersive ionosphere [J]. IEEE Antennas and Propagation Magazine, 1992, 34 (5): 33-39
    [47] Gandhi O.P., Gao B.Q., Chen J.Y. A frequency-dependent finite-difference time-domain formulation for general dispersive media [J]. IEEE Transactions on Microwave Theory and Techniques, 1993, 41 (4): 658-665
    [48] Takayama Y., Klaus W. Reinterpretation of the auxiliary differential equation method for FDTD [J]. IEEE Microwave and Wireless Components Letters, 2002, 12 (3): 102-104
    [49]刘少斌,莫锦军,袁乃昌.各向异性磁等离子体的辅助方程FDTD算法[J].物理学报, 2004, 53 (7): 2233-2236
    [50] Sullivan D.M. Frequency-dependent FDTD methods using Z-transforms [J]. IEEE Transactions on Antennas and Propagation, 1992, 40 (10): 1223-1230
    [51] Sullivan D.M. Z-transform theory and the FDTD method [J]. IEEE Transactions on Antennas and Propagation, 1996, 44 (1): 28-34
    [52] Sullivan D. The use of Z-transform theory for numerical-simulation of dispersive and nonlinear materials with the FDTD method [A]. In: IEEE Antennas and Propagation Society International Symposium 1994 [C]. Seattle, WA, USA: IEEE, 1994: 1450-1453
    [53]夏新仁,尹成友,王光明.各向异性磁化等离子体的ZT-FDTD算法[J].微波学报, 2009, 25 (1): 23-28
    [54] Young J.L. A full finite-difference time-domain implementation for radio-wavepropagation in a plasma [J]. Radio Science, 1994, 29 (6): 1513-1522
    [55] Young J.L. Propagation in linear dispersive media:finite difference time-domain methodologies [J]. IEEE Transactions on Antennas and Propagation, 1995, 43 (4): 422-426
    [56] Young J.L. A higher order FDTD method for EM propagation in a collisionless cold plasma [J]. IEEE Transactions on Antennas and Propagation, 1996, 44 (9): 1283-1289
    [57]刘少斌,莫锦军,袁乃昌.等离子体的交替方向隐式时域有限差分方法[J].红外与毫米波学报, 2004, 23 (5): 363-366
    [58] Liu G.S., Zhang G.J., Hu B.J. Numerical analysis for an improved ADI-FDTD method [J]. IEEE Microwave and Wireless Components Letters, 2008, 18 (9): 569 - 571
    [59] Liu G.S., Zhang G.J., Hu B.J. An improved ADI-FDTD method with lower splitting error [A]. In: 12th International Conference on Mathematical Methods in Electromagnetic Theory [C]. Odesa, Ukraine: IEEE, 2008: 401-403
    [60] Fan G.X., Liu Q.H. A pml-FDTD algorithm for simulating plasma-covered cavity-backed slot antennas [J]. Microwave and Optical Technology Letters, 1998, 19 (4): 258-262
    [61] Sato H. FDTD analysis of electromagnetic field in particular medium [J]. Record of Electrical and Communication Engineering Conversazione Tohoku University, 1998, 67 (1): 23-26
    [62] Qiang C., Sato H., Sawaya K. FDTD analysis of dipole antenna in anisotropic plasma [A]. In: 2000 International Symposium on Antennas and Propagation [C]. Fukuoka, Japan: IEICE of Japan, 2000: 121-124
    [63] Usui H., Matsumoto H., Yamashita F. Antenna analysis in magnetized plasma via particle-in-cell simulations [A]. In: the 2000 International Symposium on Antennas and Propagation [C]. Fukuoka, Japan: IEICE of Japan, 2000: 1327-1330
    [64] Usui H., Matsumoto H., Yamashita F., et al. Antenna analysis in magnetized plasma via particle-in-cell simulation [J]. Advances in Space Research, 2004, 34 (11): 2433-2436
    [65] Ward J., Swenson C., Furse C. The impedance of a short dipole antenna in a magnetized plasma via a finite difference time domain model [J]. IEEE Transactions on Antennasand Propagation, 2005, 53 (82): 2711-2718
    [66] Ward J.D. The current distribution along a short dipole antenna in magnetized plasma via a finite difference time domain model [A]. In: 2007 IEEE Antennas and Propagation Society International Symposium [C]. Honolulu, HI, USA: IEEE, 2007: 4445-4448
    [67] Zhu X.Q., Ge D.B., Wu Y.L. FDTD analysis of radiation from monopole antenna with plasma coating [A]. In: 6th International Symposium on Antennas, Propagation and EM Theory Proceedings [C]. Beijing: House of Electronics Industry, 2003: 42-45
    [68] Ganachev I.P., Sugai H. Surface-wave propagation along a corrugated plasma-dielectric interface [J]. Surface and Coatings Technology, 2005, 200 (3): 792-795
    [69] Lee Y., Ganguly S. Analysis of a plasma-column antenna using FDTD method [J]. Microwave and Optical Technology Letters, 2005, 46 (3): 252-259
    [70] Lee Y., Ganguly S. FDTD analysis of a plasma column antenna [A]. In: 2005 IEEE Antennas and Propagation Society International Symposium [C]. Washington, DC, USA: IEEE, 2005: 430 - 433
    [71] Qian Z.H., Chen R.S., Yang H.W., et al. FDTD analysis of a plasma whip antenna [J]. Microwave and Optical Technology Letters, 2005, 47 (2): 147-150
    [72] Qian Z.H., Leung K.W., Chen R.S., et al. FDTD analysis of a plasma whip antenna [A]. In: 2005 IEEE Antennas and Propagation Society International Symposium [C]. Washington, DC, USA: IEEE, 2005: 166-169
    [73] Qian Z.H., Chen R.S., Leung K.W., et al. FDTD analysis of microstrip patch antenna covered by plasma [A]. In: 2004 4th International Conference on Microwave and Millimeter Wave Technology [C]. Beijing, China: Institute of Electrical and Electronics Engineers Computer Society, 2004: 983-986
    [74] Qian Z.H., Chen R.S., Leung K.W., et al. FDTD analysis of microstrip patch antenna covered by plasma sheath [J]. Progress In Electromagnetics Research, 2005, 52 (1): 173-183
    [75] Cerri G., Primiani V.M., Russo P., et al. FDTD approach for the characterization of electromagnetic wave propagation in plasma for application to plasma antennas [A]. In:·2nd European Conference on Antennas and Propagation [C]. Edinburgh, United Kingdom: Institution of Engineering and Technology, 2007: 1-6
    [76] Cerri G., Russo P., Vecchioni E. Electromagnetic characterization of plasma antennas [A]. In: 2009 3rd European Conference on Antennas and Propagation [C]. New York, USA: IEEE, 2009: 3034-3037
    [77] Cerri G., Moglie F., Montesi R., et al. FDTD solution of the maxwell-boltzmann system for electromagnetic wave propagation in a plasma [J]. IEEE Transactions on Antennas and Propagation, 2008, 56 (8): 2584-2588
    [78] Ma L., Guo Q. FDTD analysis of a plasma helix antenna [A]. In: 2008 International Conference on Microwave and Millimeter Wave Technology [C]. Nanjing, China: Inst. of Elec. and Elec. Eng. Computer Society, 2008: 1854-1857
    [79] Liang C., Xu Y.M., Wang Z.J. Numerical simulation of plasma antenna with FDTD method [J]. Chinese Physics Letters, 2008, 25 (10): 3712-3715
    [80]梁超,丁亮,程芝峰,等.基于fdtd方法的等离子体天线参数的数值计算[J].中国科学院研究生院学报, 2009, 26 (2): 268-273
    [81] Li X.S., Luo F., Hu B.J. FDTD analysis of radiation performance of a cylinder plasma antenna [J]. IEEE Antennas and Wireless Propagation Letters, 2009, 8 (1): 756-758
    [82] Li X.S., Hu B.J. FDTD analysis of a magneto-plasma antenna with uniform or nonuniform distribution [J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9 (1): 175-178
    [83]梁志伟,赵国伟,徐杰,等.柱形等离子体天线辐射特性的矩量法分析[J].电波科学学报, 2008, 23 (4): 749-753
    [84]周长仁.海军实验室试验等离子体天线[J].电子对抗参考资料, 1996, (4): 53-54
    [85]刘良涛,祝大军,刘盛刚.等离子体天线的原理与设计[J].雷达与对抗, 2004, (4): 26-30
    [86]胡斌杰,阮成礼.等离子体圆柱波导的传播特性[J].中国科学E辑, 1998, 28 (1): 76-82
    [87]胡斌杰,阮成礼,林为干.有限磁场中等离子体圆柱波导的传播特性[J].物理学报,1998, 47 (2): 245-251
    [88]胡斌杰,张国基,赖声礼.有限外磁场中的空心圆柱等离子体波导[J].空间科学学报, 2000, 20 (2): 159-164
    [89] Hu B.J., Wei G. Numerical analysis of a plasma waveguide with finite thickness of cladding in external magnetic field [J]. IEE Proceedings: Microwaves, Antennas and Propagation, 2001, 148 (2): 115 - 118
    [90] Hu B.J., Wei G. Numerical simulation of the fundamental mode of a magnetoplasma rod surrounded by a lossless dielectric layer [J]. IEEE Transactions on Plasma Science, 2001, 29 (1): 1-7
    [91]杨兰兰,屠彦,王保平.等离子体天线中波的色散关系的研究[J].真空科学与技术, 2004, 24 (6): 424-426
    [92]林桦,袁斌,蒋磊,等.磁化等离子体填充圆波导激励与耦合方式的研究[J].信息技术, 2007, 31 (1): 4-5
    [93]孙杰,袁斌,蒋垒,等.等离子天线及其在复杂电磁环境中的应用[J].信息技术, 2007, 31 (7): 34-37
    [94]张凌峰,程方,袁斌,等.等离子波导中低频波传播理论及等效电路的研究[J].电讯技术, 2008, 48 (2): 33-36
    [95] Liu B., Shi J.M., Jin L., et al. The rcs simulation of plasma plume of missile [A]. In: 2006 CIE International Conference on Radar [C]. Shanghai, China: IEEE, 2006: 1768-1771
    [96] Wang J.Y., Shi J.M., Wang J.C., et al. Study of the radiation pattern of the unipole plasma antenna [A]. In: 2006 International Symposium on Antennas, Propagation and EM Theory [C]. Guilin, China: IEEE, 2006: 265-268
    [97] Yuan Z.C., Shi J.M. Collisional, nonuniform plasma sphere scattering calculation by FDTD employing a drude model [J]. International Journal of Infrared and Millimeter Waves, 2007, 28 (11): 987-992
    [98]刘波,时家明,金林.等离子体羽流的低频rcs数值分析[J].系统工程与电子技术, 2007, 29 (1): 41-44
    [99]陈宗胜,时家明,王甲寅,等.表面波等离子体天线的柱状等离子体源参数研究[J].真空电子技术, 2008, (2): 18-21
    [100] Wang S.Q., Yan Z.L., Li W.Z., et al. Study on propagation characteristics of plasma surface wave in medium tube [J]. Plasma Science and Technology, 2008, 10 (6): 671-675
    [101]位朝垒,王世庆,鄢泽林,等.表面波等离子体天线的能量衰减系数研究[J].真空科学与技术学报, 2009, 29 (3): 251-254
    [102]王世庆,向茜,柳建,等.表面波等离子体柱导电性及其激发系统方案[J].应用科学学报, 2009, 27 (4): 392-396
    [103]孙乃峰,王世庆,李健,等.真空等离子体天线的基本特性研究[J].真空, 2009, 46 (2): 66-70
    [104]钱志华,陈如山,杨宏伟.等离子体覆盖单极子天线的FDTD分析[J].南京理工大学学报(自然科学版), 2005, 29 (5): 510-513
    [105] Qian Z.H., Chen R.S., Fan Z.H., et al. Analysis of electromagnetic scattering from plasma antenna using cg-fft method [J]. International Journal of Infrared and Millimeter Waves, 2008, 29 (5): 486-492
    [106]赵国伟,徐跃民,陈诚.柱形等离子体辐射场和阻抗的数值计算[J].物理学报, 2006, 55 (7): 3458-3463
    [107]梁志伟,王之江,赵国伟,等.等离子体天线的噪声测量及分析[J].电波科学学报, 2007, 22 (6): 971-975
    [108]赵国伟,王之江,徐跃民,等.射频激励等离子体非线性效应的fdtd数值模拟[J].物理学报, 2007, 56 (9): 5304-5308
    [109]赵国伟,徐跃民,陈诚.等离子体天线色散关系和辐射场数值计算[J].物理学报, 2007, 56 (9): 5298-5303
    [110]赵国伟.柱形等离子体天线的基本原理、天线中谐波与非线性效应研究[D].北京:中国科学院研究生院, 2007
    [111]赵国伟,徐跃民.等离子体隐身中天线参数的数值计算[J].微波学报, 2008, 24 (3): 17-20
    [112]夏新仁,尹成友,王光明.光致大气等离子体通道天线的传播特性分析[J].空军工程大学学报(自然科学版), 2009, 10 (2): 70-74
    [113]夏新仁,尹成友.激光等离子体通道天线的色散特性研究[J].真空科学与技术学报, 2009, 29 (1): 15-20
    [114]夏新仁,尹成友.等离子体通道天线的传播特性分析[J].微波学报, 2009, 25 (2): 22-27
    [115]夏新仁,尹成友.有限磁场中激光等离子体通道天线的电磁散射分析[J].核聚变与等离子体物理, 2009, 29 (2): 3-9
    [116] Zheng L., Cao L., Gang Z.Z. Study on the gain of plasma antenna [A]. In: 8th International Symposium on Antennas, Propagation and EM Theory, ISAPE 2008, November 2, 2008 - November 5, 2008 [C]. Kunming, China: Inst. of Elec. and Elec. Eng. Computer Society, 2008: 222-224
    [117]曹立辉,郑龙根,张志刚,等.等离子体天线辐射特性研究[J].海军工程大学学报, 2009, 21 (1): 36-38
    [118]吴振宇,杨银堂,汪家友.等离子体天线表面电流分布与辐射特性研究[J].物理学报, 2010, 59 (3): 1890-1894
    [119] Chung M., Chen W.S., Huang B.R., et al. Capacitive coupling return loss of a new pre-ionized monopole plasma antenna [A]. In: IEEE Region 10 Conference [C]. Taipei, Taiwan: IEEE, 2007: 1-4
    [120] Chung M., Chen W.S., Yu Y.H., et al. Properties of dc-biased plasma antenna [A]. In: 2008 International Conference on Microwave and Millimeter Wave Technology [C]. Nanjing, China: IEEE, 2008: 1118-1120
    [121] Anderson T.R., Choo V.K. Multiple tube plasma antenna [P]. US: 5963169-A, 1999
    [122] Anderson T.R. Horizontal plasma antenna using plasma drift currents [P]. US: 6118407-A, 2000
    [123] Anderson T.R. Plasma antenna system and method [P]. US: 2003142021-A1, 2003
    [124] Alexeff I., Norris E., Anderson T. Plasma filter antenna system [P]. US: 2003160724-A1, 2005
    [125] Mitra A.K. Pulsed plasma antenna [P]. US: 7068226-B1, 2006
    [126] Marquis E. Device for coupling between a plasma antenna and a power signal generator [P]. US: 2009/0015489-A1, 2009
    [127] Pavliscak T.J., Wedding C.A. Gas plasma antenna [P]. US: 7474273-B1, 2009
    [128]陈如山,钱志华,王道祥,等.同轴线激励的隐身等离子天线[P]. CN: 2786908, 2004
    [129]袁斌,蒋磊,赵磊.自重构等离子体天线[P]. CN: 1794516, 2005
    [130]李学识,胡斌杰,李瀚宇,等.等离子体天线研究与应用进展[J].现代电子技术, 2010, 316 (5): 66-69
    [131]马腾才,胡希伟,陈银华.等离子体物理原理[M].合肥:中国科学技术大学出版社, 1988
    [132] F.F.Chen(林光海译).等离子体物理学导论[M].北京:人民教育出版社, 1980
    [133]菅井秀郎(张海波、张丹译).等离子体电子工程学[M].北京:科学出版社, 2002
    [134]徐杰.柱形表面波等离子体基本参数诊断研究[D].北京:中国科学院研究生院, 2007
    [135]金佑民,樊友三.低温等离子体物理基础[M].北京:清华大学出版社, 1983
    [136]钱志华.等离子体天线的辐射与散射特性分析[D].南京:南京理工大学, 2006
    [137]袁敬闳,莫怀德.等离子体中的波[M].成都:电子科技大学出版社, 1990
    [138] Cerri G., De Leo R., Primiani V.M.N., et al. Measurement of the properties of a plasma column used as a radiating element [J]. IEEE Transactions on Instrumentation and Measurement, 2008, 57 (2): 242-247
    [139] VaiIl J.R., Va. A. Laser beam techniques [P]. US: 3,719,829, 1973
    [140] Schneider D.A., Borg G.G., Kamenski I.V. Measurements and code comparison of wave dispersion and antenna radiation resistance for helicon waves in a high density cylindrical plasma source [J]. Physics of Plasmas, 1999, 6 (3): 703-712
    [141] Moisan M., Beaudry C., Leprince P. A small microwave plasma source for long column production without magnetic field [J]. IEEE Transactions on Plasma Science, 1975, 3 (2): 55-59
    [142] Jenn D., Plasma antennas:survey of techniques and current state of the art [R].Monterey, CA, USA: Naval Postgraduate School, 2003
    [143] Schelkunoff S. Anatomy of "Surface waves" [J]. Antennas and Propagation, IRE Transactions on, 1959, 7 (5): 133-139
    [144] Sugai H., Sato N., Hatta Y. Space-charge waves on plasma columns in a weak magnetic field [J]. Journal of Applied Physics, 1971, 42 (6): 2421-2423
    [145] Moisan M., Pantel R., Hubert J. Propagation of a surface wave sustaining a plasma column at atmospheric pressure [J]. Contributions to Plasma Physics, 2006, 30 (2): 293-314
    [146]梁志伟.柱形等离子体天线性能和噪声机制的研究[D].北京:中国科学院研究生院, 2008
    [147] Rayner J.P., Whichello A.P., Cheetham A.D. Physical characteristics of plasma antennas [J]. IEEE Transcations on Plasma Science, 2004, 32 (1): 269-281
    [148] Margot J., Moisan M. Electromagnetic surface waves for a new approach to the investigation of plasmas produced at electron cyclotron resonance (ecr) [J]. Journal of Physics D: Applied Physics, 1991, 24 (10): 1765-1788
    [149]胡斌杰.等离子体介质波导的传播理论研究[D].成都:电子科技大学, 1997
    [150]王秉中.计算电磁学[M].北京:科学出版社, 2002
    [151] Cummer S.A. An analysis of new and existing FDTD methods for isotropic cold plasma and a method for improving their accuracy [J]. IEEE Transactions on Antennas and Propagation, 1997, 45 (3): 392-400
    [152]余文华,苏涛, Mittra R.等.并行时域有限差分[M].北京:中国传媒大学出版社, 2005
    [153]葛德彪,闫玉波.电磁波时域有限差分方法[M].西安:西安电子科技大学出版社, 2002
    [154] Luebbers R.J., Kunz K.S., Schneider M., et al. A finite-difference time-domain near zone to far zone transformation [J]. IEEE Transactions on Antennas and Propagation, 1991, 39 (4): 429-433
    [155] Yee K.S., Ingham D., Shlager K. Time-domain extrapolation to the far field based onFDTD calculations [J]. IEEE Transactions on Antennas and Propagation, 1991, 39 (3): 410-413
    [156] Taflove A., Hagness S.C. Computational electrodynamics: The finite-difference time-domain method (third edition) [M]. Norwood, MA: Artech House, 2005
    [157] Berenger J.P. Three-dimensional perfectly matched layer for the absorption of electromagnetic waves [J]. Journal of Computational Physics, 1996, 127 (2): 363-379
    [158] Weiner M. Monopole antennas [M]. New York: CRC, 2003
    [159] Luo F., Hu B.J. FDTD analysis for radiated performance of a cylinder plasma antenna [A]. In: 8th International Symposium on Antennas, Propagation and EM Theory [C]. Kunming, China: IEEE, 2008: 803-806
    [160] Young J.L., Nelson R.O. A summary and systematic analysis of FDTD algorithms for linearly dispersive media [J]. IEEE Antennas and Propagation Magazine, 2001, 43 (1): 61-77
    [161] S. Liu S.Y.Z., and S.B. Liu. A revised piecewise linear recursive convolution FDTD method for magnetized plasmas [J]. Plasma Science and Technology, 2005, 7 (6): 3121-3126
    [162] Qian Z., Chen R. FDTD analysis of magnetized plasma with arbitrary magnetic declination [J]. International Journal of Infrared and Millimeter Waves, 2007, 28 (2): 157-167
    [163] Li X.S., Hu B.J. PLRC-FDTD analysis of a magnetized plasma antenna [A]. In: 2008 Asia Pacific Microwave Conference [C]. Hong Kong, China: IEEE, 2008: 2543-2546
    [164] Ferreira C.M. Theory of a plasma column sustained by a surface wave [J]. Journal of Physics D: Applied Physics, 1981, 14 (10): 1811-1830

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700