复杂网络稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从复杂网络的拓扑统计特性和动力学机制出发,将非平衡统计理论、非线性系统理论、随机微分方程方法以及Fokker-Plank方程的定态解应用到复杂网络的研究中。主要研究了在非平衡涨落驱动下复杂网络的动力学稳定性,以及在蓄意攻击情况下病毒在复杂网络上的传播机理,这两个方面的研究无论在理论上还是在实践中都有着十分重要的意义。通过对复杂复杂网络的稳定性的研究,一方面可以使我们更清晰的认识和理解实际网络所表现出的各种动力学现象;另一方面,我们可以将复杂网络稳定性研究的成果应用到实际中去,可设计出更好性质的网络或使网络处于更有利的状态。对在蓄意攻击情况下病毒在复杂网络上的传播机理的研究,一方面可为研究和开发新的免疫机制与策略提供理论基础,另一方面也有利于提高网络信息传输能力。另外,复杂网络在许多领域都得到了较为广泛而深入的应用,作为本课题的一个主要内容,我们综述了复杂网络理论在电子电路与微电子学方面的应用。
     本文的主要内容和创新之处可作如下概述:
     1.非平衡涨落与小世界网络稳定性的研究
     针对小世界特性是复杂网络的普遍特性,我们首先研究了故障对小世界网络稳定性的影响。在把实际网络元素的差错、失效等等“故障”抽象为非平衡随机涨落的前提下,利用非平衡统计理论、随机微分方程方法以及Fokker-Plank方程的定态解,来研究小世界网络稳定性。研究从小世界网络模型的非线性相互作用系数λ和NW长度标度ζ两个具体参数展开。
     (1)通过理论研究,我们首次发现了,小世界网络的特性参量NW长度标度ζ是网络突变发生的敏感因子。当非平衡涨落发生在特性参量NW长度标度ζ上时,NW长度标度的平均值(?)在涨落σ~2的驱动下迅速增长。在随机化连接概率p不变时,网络的度值k将迅速减小。当k减小到某一值时(比如k<1),复杂网络系统的稳定性将发生突变。由NW长度标度ζ的定义可知,复杂网络的节点这时应仍然存在,但是节点之间的连接边基本被删除。这种情况,对应于整个网络系统出现了崩溃。这一研究结论充分说明,作为小世界网络特性参量的NW长度标度ζ传播稳定性的主要决定因素。电力网络由于个别节点跳闸而发生大停电事故,是这一发现的最好例证。
     (2)相比之下,当非线性相互作用系数λ发生非平衡涨落时,NW长度标度ζ随涨落σ~2呈迅速下降趋势。在随机化连接概率p不变的情况下,小世界网络系统的度值k会缓慢增加。这表示网络系统连通性会增强,网络会向更稳定的方向发展。也就是说,系统的非线性相互作用系数发生的涨落,不是引起复杂网络系统稳定性发生宏观突变的主要因素。
     2.蓄意攻击与复杂网络稳定性的研究
     或许蓄意攻击会有较多的方式,但病毒的攻击方式在网络上是如此的泛滥,必然引起我们的高度重视。因此,本课题中我们主要研究了病毒的传播机理及其稳定性。
     (1)我们提出了一种描述病毒传播的新模型SIS-BD模型。利用这一模型以及非平衡统计理论,随机过程的理论和方法,从病毒传播的前期、后期及传播的全过程三个方面进行了研究。得到了病毒传播的三个时期病毒感染密度函数的分布规律。比较实际数据可知,这个分布过程与实际数据符合得较好。
     (2)研究过程中我们发现,病毒的有效传播速率并不是一个常数,而是一个可以用类Logistic微分方程描述的函数。这与传统传染病研究中,病毒的传播速率通常是一个常数明显不同。通过求解类Logistic微分方程和用实际数据拟合出相关的常数,并结合前两部分的研究结果,得到了病毒传播全过程的感染密度分布函数。这个分布函数曲线与实际病毒传播数据曲线十分吻合。
     (3)进一步分析有效传播速率我们知道,它与网络的结构参量密切相关。由此,我们用理论分析的方法讨论了有效传播速率与复杂网络结构参量的关系。经过分析,推论了网络节点的平均度值与有效传播速率变化率成正比;网络的聚类系数与有效传播速率成正比。从而得到病毒传播的有效速率与网络结构参量之间的更为普适的函数关系式。
     3.非平衡统计理论与方法
     利用非平衡统计理论与方法研究复杂网络,从研究方法上来说本身与是一种创新。
     在本文的最后,我们介绍了复杂网络理论在电子电路与微电子学方面结合实际的可能应用。重点对目前引起了广泛研究兴趣,并成为最新研究热点的量子相干网络、纳米线网络等作了简要介绍,这是复杂网络理论应用在量子信息技术上的一些探索。
This thesis is concerned with the study of the dynamics stability of complex network driven by non-equilibrium fluctuation and virus's spreading mechanism on complex network under the intentional attack, which use the non-equilibrium statistical theory, the stochastic differential equation method as well as the Fokker-Plank equation steady-state solution. These studies are very important both in theory and in practical applications. By studying stability of complex network, on the one hand, we can understand and explain the dynamic properties presented in real-world networks; and on the other hand, we can apply these theoretical results of complex network stability to some practical applications, for instance, we may design of real network to achieve a better performance by using this results. By studying virus's spreading mechanism on complex network under the intentional attack, on the one hand, we can provide the rationale to study and develop the new immunity mechanism and the strategy; on the other hand, there are advantageous in raising the network transmission effection. In addition, complex network theory more and more widespread applies in many domains. As this topic main contents, we summarized the application of complex network theory in the electronic circuit and microelectronics.
     The main contents and originalities in this thesis can be summarized as follows:
     1. Non-equilibrium fluctuation and small-world network stability
     Using the non-equilibrium statistical theory, the stochastic differential equation method as well as the Fokker-Plank equation steady-state solution, we have studied the small-world network stability by abstracting the real network factors of element mistake, node breakdown and so on as the non-equilibrium stochastic fluctuation. We discuss separately two kinds of situations to unify structure parameters of small-world network model, one is the fluctuation to occur in the non-linearity affects the coefficient and another is in the NW length scale.
     (1)Through fundamental research, our initial find out: if the non-equilibrium fluctuation occurs in the NW length scaleζ, the NW length scale's mean value rapid growth driven by fluctuationσ~2. It implies that randomization connection probability p is invariable; the complex network degree's value k will be rapidly reduced. When k reduces to some value (for instance: k< 1), the stability of complex network system structure will have a fierce change. May know by the NW length scaleζdefinition, the complex network node should still exist, but the connection between the nodes is deleted completely. This kind of situation might correspond in the entire complex network system collapse. This conclusion full explains that the NW length scaleζis a primary factor to decide the dissemination stable as the small-world network characteristic parameter. When it appears fluctuation and approach a certain threshold, the complex network stability and the macroscopic dynamics behavior will have the fierce change, until will appear the entire net collapse. It is revealed that the NW length scaleζis one of extremely sensitive factors in the complex network dynamics process.
     (2)Comparatively, if the non-linearity mutually coefficient A, has the non-equibirum fluctuation, the NW length scaleζalong with the fluctuationσ~2 has the tendency to drop rapidly. if randomisation connection probability p is invariable, complex network degree k can increase slowly. These phenomenons show the network system connectivity strongly and complex network can develop to a stabler direction. It is to say, if the fluctuation occurs in the system non-linear mutually coefficient, it can not lead to the complex network system stability to sudden change.
     2. Intentional attacks and complex network stability
     Perhaps intentional attacks have many ways, but virus attacks on network are like this being in flood, we have to take it seriously.
     (1) We proposed one kind of new model SIS-BD model which represent virus dissemination. Using this model and non-equibirum statistical theory as well as stochastic process theory and method, we study the virus spreading from three aspects: earlier period, the later period and the dissemination entire process. We get the virus infection density function distributed rule of virus spreading in three periods. To compare with the actual data, we know that this distribution function accord with the actual data well.
     (2) In the research process we discovered virus's effective dissemination speed is not a constant, it is a kind of function which can describe a similar Logistic differential equation. It is obvious different in the traditional infectious disease studies in which virus's dissemination speed is usually a constant. By solution the similar Logistic differential equation and useing the actual data fiting the correlation constant, and union two part of findings, we obtain the infection density distribution function of virus spreading on entire process.
     (3) By further analyzes the effective dissemination speed we know that it close correlate with network structure parameter. Therefor, we used the theoretical analysis the method to discuss the effective dissemination speed and the complex network architecture parameter relation. Finally, we get the virus dissemination effective speed to relate with the network architecture parameter more general function.
     3. Non-equilibrium statistical theory and method
     It is one kind of innovation technique that uses the non-equilibrium statistical theory and method to research complex network.
     Finally, we discussed the application of complex network theory in the electronic circuit and microelectronics. First, we introduce the main application and achievement of complex network on electronic circuit. Second, we make to a brief report about the complex network application in the quantum coherent network and nanometer wire nets, which become the newest research hot spot and attract to how widespread research interest at present.
引文
[1].D.J.Watts,S.H.Strogetz.Collective dynamics of "small-world" networks,Nature,1998,Vol.393(6684):440-442
    [2].A.L.Barabasi,R.Albert,Emergence of scaling in random network,Science,1999,Vol.286(5439):509-512
    [3].Watts D J,The 'new' science of networks,Annual Review of Sociology,2004,Vol.410:268-276
    [4].Barabasi A L,Linked:The new science of networks.Massachusetts:Persus Publishing,2002
    [5].R.Albert,A.L.Barabasi,Statistical mechanics of complex networks,Reviews of Modern Physics,2002,Vol.74:47-91
    [6].M E J.Newman,The structure and function of complex networks,SIAM Review,2003,Vol.45:167-256
    [7].Erdos P,Renyi A.On the evolution of random graphs.Publ.Math.Inst.Hung.Acad.Sci.1960,5:17-60
    [8].Goh K I,Oh E,Kahn B,et al,Optimal size of a complex network,Phys.Rev.E,2003,Vol.67:017101
    [9].Albert R,Jeong H,Barabasi A L.Attack and error tolerance in complex network,Nature,2000,406:387-482
    [10].Bollobas B,Random Graphs,New York;Academic Press,2~(nd) ed.,2001
    [11].Bender E A,Canfield E R,The asymptotic number of labeled graphs with given degree sequences,comb J.ThoryA,1978,Vol.24:296-307
    [12].Molloy M,Reed B,A critical point for random graphs with a given degree sequence,Random Struct.Algorithm,1995,Vol.6:161-179.
    [13].Molloy M,Reed B,The size of the largest component of a random graph on a fixed degree sequence,Conbin.Probab.Comput.1998,Vol.7:295-306
    [14].Newman M E J,Watts D J,Renormalization group analysis of the small-world network model,Phys.Lett.A,1999,Vol.263:341-346
    [15].Barrat A,weigt M,On the properties of small world networks,Eur.Phys.J.B,2000,Vol.13:546-560
    [16].Ott E,Grebogi C,Yorke J A.Controlling chaos.Physical Review Letters,1990,Vol.64:1196-1199
    [17].Hu G,Qu Z L.Controlling spationtemporal chaos in coupled map lattice system.Physical Review Letters,1994,Vol.72(1):68-71
    [18].Roy R,Murphy T W,Maier Jr T D,Gills Z,Dynamical control of a chaotic laser:Experimental stabilization of a globally coupled system.Physical Review Letters,1992,Vol.68:1259-1262
    [19].Wang X F,Chen G.Pinning control of scale-free dynamical networks,Physica A.2002,Vol.310:521-531
    [20].Li X,Wang X F.Pinning control of scale-free Chen's network.,The Second Asia-Pacific Workshop on Chaos Control and Synchronization at Shanghai,2003
    [21].Li X,Wang X F.Feedback control of scale-free coupled Henon maps.Proceeding of the Eighth International Conference on Control,Automation,Robotics and Vision(ICARCV)at Kunming,China,2004,574-578
    [22].Newman M J E,The Structure and Function of Complex Network,Adv.Phys,2002,Vol.51:1079-1187
    [23].Albert R,Albert I,Nakarado G L,Structural Vlnerability of the North American power grid,Phys.Rev.E,2004,Vol.69:025103
    [24].Motter A E,Lai Y C,Cascade-based attacks on complex network,Phys.Rev.E,2002,Vol.66:065102
    [25].Goh K I,Lee D S,Kahng B,Kim D,Sandpile on Scale-Free network,Chin.Phys.Lett,2005,Vol.22:1072-1075
    [26].Tadie B,Thumer S,Rodgers G J,Traffic on complex network:towards understanding global statistical properties from microscopic density fluctuations,Phys.Rev.E,2004,Vol.69:036102,
    [27].Xhao L,Lai Y C,Park K,Ye N,Onset of traffic congestion in complex networks,Phys.Rev.E,2005,Vol.71:026125
    [28].Wang W X,Wang B H,Yin C Y,et al Traffic dynamics based on local routing protocol on a scale-free network,Phys.Rev.E,2006,Vol.73:026111
    [29].Nowak M A,Emergence of cooperation and evolutionary stability in finite populations,Nature,2004,428:646-650,
    [30].]Pastor-Satorras R,Vespignani A.Epidemic Spreading in Scale-Free Networks.Phys Rev Lett,2001,Vol.86(4):3200-3203
    [31].Barthelemy M,Barrat A,Pastor-Satorras R,et al,Velocity and hierarchical spread of epidemic outbreaks in complex networks.Phys.Rev.Lett.2004,Vol.92:178701,
    [32].Newman M E J,Watts D J.Scaling and percolation in the small-world network model.Phys.Rev.E,1999,Vol.60:7332-7342
    [33].Moukarzel C F,Spreading and shortest paths in systems with sparse long-range connections.Phys.Rev.E,1999,Vol.60(6):R6263
    [34].X.S.Yang,Chaos in small-world network,Phys Rev E,2001,Vol.63:046206
    [35].X.S.Yang,Fraetals in small-world networks,Chaos,Solitons and fractals,2002,Vol.13:215-219
    [36].Li C G,Chen G.Local stability and Hopf bifurcationin small-world delayed networks.Chaos,Solitions and Fractals,2004,Vol.20:353-361,
    [37].Li X,Chen G,Li C G.Stability and bifurcation of disease spreading in complex network.Int.J.of Systems Science,2004,Vol.35:527-536,
    [38].P.Erdos,A.Renyi,On the evolution of random graphs.Publ.Math.Inst.Hung.Acad.Sci.1960,175
    [39].Newman M.E.J.Assortative mixing in networks.Phys.Rev.Lett.,2002,Vol.89:208701.
    [40].Goh K.I.,Kahng B.,Kim D.Universal behavior of load distribution in scale-free networks, Phys.Rev.Lett.,2001,Vol.87:278701.
    [41].G.Nicolis,I.Prigogine,Self-Organization in Non-equilibrium Systems,J.Wiley,New York 1977
    [42].黄润荣,任光耀.耗散结构与协同学.贵阳,贵州人民出版社,1988
    [43].蔡绍洪,彭任任等,耗散结构与非平衡相变原理及应用,贵阳,贵州科技出版社,1998
    [44].蔡绍洪等,平衡相变与非平衡相变临界标度理论,成都,四川科学技术出版社,1999
    [45].彭任任,蔡绍洪等,非线性系统的随机过程,贵阳,贵州人民出版社,2001
    [46].Jaiswal S,Rosenberg A L,Towsley D.Comparing the structure of power-law graphs and the Internet as graph.Network Protocols(ICNP 2004),Proceedings of the 12th IEEE International Conference on,2004,pp:294-303
    [47].Strogatz S.H.Exploring complex networks.Nature,2001,410:268-276.
    [48].B.Bollobas,Random graphs,New York:Academic Prec.2 nd ed.2001
    [49].M E J.Newman,The structure and function of complex networks.SIAM Review,2003,Vol.45,167-171
    [50].A.Barrat,M.Weigt,On the properties of small-world models,Eur.Phys.J.B,2000,Vol.13:547
    [51].M E J.Newman,D.J.Watts,Renormalization group analysis of the small-world network model,Phys.Lett.A,1999,Vol.263:341-346
    [52].M E J.Newman,C.Moore,D.J.Watts,Meanfield solution of the small-world network model,Phys.Rev.Lett,2000,Vol.84(14):3201-3204
    [53].M.J.E.Newman,The structure and function of networks,Computer Physics Communications,2002,Vol.147(1-2):40-45
    [54].A.L.Barabasi,R.Albert,Emergence of Sealing in Random Networks,Science,1999,Vol.286,No.5439:509-512
    [55].R.Albert,A.L.Barabasi,Statistical mechanics of complex networks,Reviews of Modern Physics,2002,Vol.74(1):47-97
    [56].B.Bollobas,O.Riordan,Mathematical results on scale-free random graphs.In:Bomholdt,S,Schuster H G(ed.) Handbook of Graphs and Networks:From the Genome to the Interact,Berlin,Wiley-VCH,2003,1-34
    [57].R.Cohen,S.Havlin,Scale-free networks are ultrasmall,Phys.Rev.Lett.,2003,Vol.86:3682-3685
    [58].A.Fronczak,P.Fronczak,A.J.Holyst.,Mean-field theory for clustering coefficients in Barabasi-Albert network,Phys.Rev.E,2003,Vol.68:046126
    [59].A.L.Barabasi,R.Albert,and H.Jeong,Scale-free characteristics of random networks:the topology of the world-wide web,Physica A,2000,Vol:281:69-77
    [60].S.N.Dorogovtsev,J.F.F.Mendes,A.N.Samukhin,Structure of Growing Networks with Preferential Linking,Phys.Rev.Lett.2000,Vol.85 4633-4636
    [61].P.L.Krapivsky,S.Redner,ELeyvraz,Connectivity of Growing Random Networks,Phys.Rev.Lett.2000,Vol.85:4629-4632
    [62].郭雷,许晓鸣等,复杂网络,上海,上海科技教育出版社,2006,pp.1-24
    [63].R.Albert,H.Jeong,A.L.Barabasi,Attack and error tolerance in complex networks,Nature,2000,406:387-482
    [64].J.Carlson,J.Doyle,Highly optimized tolerance:Robustness and power laws in complex systems,Phys.Rev.Lett.,2000,Vol.84(11),2529-2532
    [65].A X C N Valente,A.Sarkar,H A.Stone,Two-Peak and Three-Peak Optimal Complex Networks,Phys.Rev.Lett.,2004,Vol.92,118702
    [66].A.L.Barabasi,E.Bonabeau,Scale-Free Networks,Scientific American,2003,Vol.288(5):50-59
    [67].X Li,Y Y Jin,G Chen,On the topology of the world exchange arrangements web,Physica A.2004,Vol.343:573-582
    [68].X Li,G Chen,A local world evolving network model,Physica A.2003,Vol.328:274-286
    [69].Wang B,Tang H W,Zhang Z Z,et al,International Journal of.Moden Physics B,2005,Vol.19(26):3951-3959
    [70].Barabasi A L,Ravasz E,Vicsek T,Deterministic Scale-Free Networks,Physiea A,2001,Vol.299:559-564
    [71].Comellas F,Ozon J,Peters J G.Fractality and the small-world effect in Sierpinski graphs,Inf.Process.Lett.2000,Vol.76:83-90
    [72].Comellas F,Sampels M.Deterministic Small-World Networks,Physica A,2002,Vol.309:231-235
    [73].Achter J.Comment on "Families and clustering in a natural numbers network",Phys.Rev.E,2004,Vol.70:058103
    [74].Corso G,Families and clustering in a natural numbers network,Phys.Rev.E,2004,Vol.69:036106
    [75].Chandra A K,Dasgupta S.Physica A,2005,357:436-446
    [76].Zhang Z Z,Rong L L,Guo C H.A deterministic small-world network created by edge iterations,Physica A,2006,Vol.363(2):567-572
    [77].方锦清等,一门崭新的交叉科学:网络科学(上),物理学进展,2007,Vol.27,No.3:239-342
    [78].方锦清等,一门崭新的交叉科学:网络科学(下),物理学进展,2007,Vol.27,No.4:361-448
    [79].Bianconi G,Barabasi A L.Bose-Einstein condensation in complex networks.Phys.Rev.Lett.,2001,Vol.86:5632-5635
    [80].Dorogovtsev,S.N.,Goltsev,A.V.,and Mendes,J.F.F.,Ising model on networks with an arbitrary distribution of connections,Phys.Rev.E,2002,Vol.66,016104
    [81].Leone,M.,Vazquez,A.,Vespignani,A.,and Zecchina,R.,Ferromagnetic ordering in graphs with arbitrary degree distribution,Eur.Phys.J.B,2002,Vol.28:191-197
    [82].Hong,H.,Kim,B.J.,and Choi,M.Y.,Comment on "Ising model on a small world network," Phys.Rev.E,2002,Vol.66,018101
    [83].A Pekalski,Ising model on a small world network,Phys.Rev.E,2001,Vol.64,057104
    [84].M.Gitterman,Small-world phenomena in physics:the Ising model,J.Phys.A:Math.Gen.2000,Vol.33,8373-8381
    [85].Barrat,A.and Weigt,M.,On the properties of smallworld networks,Eur.Phys.J.B,2000,Vol.13:547-560
    [86].B.J.Kim,H.Hong,P.Holme,GS.Jeon,P.Minnhagen,M.Y.Choi,Phys.Rev.E,2001,Vol.64,056135
    [87].Herrero,C.P.Ising model in small-world networks,Phys.Rev.E,2002,Vol.65,066110
    [88].J.Viana Lopes,Yu.G.Pogorelov,and J.M.B.Lopes dos Santos,Exact solution of Ising model on a small-world network.Phys.Rev.E,2004,Vol.70,026112
    [89].Aleksiejuk,A.,Ho lyst,J.A.,and Stauffer,D.,Ferromagnetic phase transition in Barabasi-Albert networks,Physica A,2002,Vol.310:260-266
    [90].Bianconi,G.,Mean field solution of the Ising model on a Barabasi-Albert network,Phys.Lett.A.2002,Vol.303(2):166-168
    [91].Carlos P.Herrero,Ising model in scale-free networks:A Monte Carlo simulation,Phys.Rev.E,2004,Vol.69,067109
    [92].Grassberger P.On the critical behavior of the general epidemic process and dynamical percolation.Math Biosci,1983,Vol.63:157-172.
    [93].C.Moore and M.E.J.Newman,Epidemics and percolation in small-world networks,Phys.Rev.E,2000,Vol.61,5678-5682
    [94].Y.Moreno,J.B.Gomez and A.F.Pacheco,Epidemic incidence in correlated complex networks,Phys.Rev.E,2003,Vol.68,035103
    [95].Comellas F,Fertin G,Raspaud A.Recursive graphs with small-wodd scale-free properties,Phys.Rev.E,2004,Vol.69:037104
    [96].Zhang Z Z,Rong L L,Zhou S G.,A general geometric growth model for pseudofractal scale-free web.,Physica A,2007,Vol.377:329-339
    [97].Jung S,Kim S,Kahng B,Geometric fractal growth model for scale-free networks,Phys.Rev.E,2002,Vol.65:056101
    [98].Noh J D.Exact scaling properties of a hierarchical network model,Phys.Rev.E,2003,Vol.67:045103
    [99].Nacher J C,Ueda N,Kanehisa M,et al.Flexible construction of hierarchical scale-free networks with general exponent,Phys.Rev.E,2005,Vol.71:036132
    [100].R.Pastor-Satorras,A.Vespingnani,Epidemic dynamics and endemic states in complex networks,Phys.Rev.E.,2001,Vol.63,066117
    [101].M.Barthelemy,A.Barrat,R.Pastor-Satorras,Velocity and Hierarchical Spread of Epidemic Outbreaks in Scale-Free Networks,Phys.Rev.Lett.,2004,Vol.92,178701
    [102].C.E Moukarzel,Spreading and shortest paths in systems with sparse long-range connections,Phys.Rev.E.,1999,Vol.60(6),R6263-R6266
    [103].M.E.J.Newman and D.J.Watts,Sealing and percolation in the small-world network model,Phys.Rev.E,1999,Vol.60,7332-7342
    [104].X Li,X Wang,Circuits and Systems,2005.ISCAS 2005.IEEE International Symposium on,2005,Vol.1:280-283
    [105].C.G.Li,G.Chen,Local stability and Hopf bifurcation in delayed small-world networks,Chaos,Solitons and Fraetals,2006,Vol.20:353-361
    [106].X.Li,G.Chen,C.G.Li,Stability and bifurcation of disease spreading in complex networks,Int.J.of System Science,2004a,Vol.35:527-536
    [107].郭本华,蔡绍洪,随机涨落驱动下小世界网络的稳定性研究,武汉,2006,cccn'2006论文集:202-204,
    [108].郭本华,蔡绍洪 随机涨落与小世界网络的传播稳定性,电子测量技术,2007,Vol.33,No.4:12-15
    [109].吴金闪,狄增加,从统计物理学看复杂网络研究,物理学进展,2004,Vol.24,No.1:18-46
    [110].蔡绍洪等,Critical Scaling Theory of Generalized Phase Transition and Its Universality,Chinese Physics(中国物理),2000,Vol.9(6):450-453
    [111].唐芙蓉,蔡绍洪,李朝辉 无标度网络的嵌入-删除-补偿模型的建立及分析,中国矿业大学学报,2005,Vol.34.No.3:390-393
    [112].唐芙蓉,蔡绍洪,李朝辉,生灭方程在复杂网络研究中的应用,煤炭工程,2005,Vol.3:84-86
    [113].唐芙蓉,蔡绍洪,李朝辉无尺度网络中的统计力学特征,贵州大学学报2003,Vol.22.No.1:13-17
    [114].美国电力公司.北美电力公司事故报导[DB/OL].Http://www.nerc.com/,2003.
    [115].Amaral L A N,Scala A,Barthelemy M,et al.Classes of small-world networks.Proceedings of the National Academy of Sciences of the United States of America,2000,Vol.97(21):11149-11152.
    [116].Crucitti R,Latora V,Marchiori M.A topological analysis of the Italian electric power grid.Physica A,2004,Vol.338(1):92-97.
    [117].陈洁,许田,何大韧.中国电力网的复杂网络共性[J].科技导报,2004,Vol.4:11-14.
    [118].Xu T,Chert J,He Y,et al.Complex network properties of Chinese power grid.International Journal of Modern Physics B,2004,Vol.18(17-19):2599-2603.
    [119].S.N.Dorogovtsev and J.F.F.Mendes,Evolution of networks,Adv.Phys.,2002,Vol.51,1079-1187.
    [120].S.H.Strogatz,Exploring comlex networks,Nature,2001,410,268-276.
    [121].A.-L.Barabasi,Z.Dezso,E.Ravasz,S.H.Yook and Z.Oltai,Scale-free and Hierarchical structures in complex networks,unpublished,http://www.nd.edu/networks/papers.htm.
    [122].M.E.J.Newman,S.H.Strogatz and D.J.Watts,Random graph with arbitrary degree distribution and their applications,Phys.Rev.E,2001,Vol.64,02618.
    [123].A.Ramezanpour and V.Karimipour,Simple models of small-world networks with directed links,Phys.Rev.E,2002,Vol.66,036128.
    [124].S.H.Yook,H.Jeong and A.-L.Barabasi,Weighted evolving networks,Phys.Rev.Lett.,2001,Vol.86,5835-5838.
    [125].V.Latora and M.Marchiori,Economic small-world behavior in weighted networks,Eur.Phys.J.B,2003,Vol.32,249-263.
    [126].C.Moore and M.E.J.Newman,Epidemics and percolation in small-world networks,Phys.Roy.E,2000,Vol.61,5678-5682.
    [127].N.Schwartz,R.Cohen,D.ben-Avraham,A.-L.Barabasi ans S.Havlin,Percolation in directed scale-free networks,Phys.Rev.E,2002,Vol.66,015104(R).
    [128].L.F.Lago-Femandez,R.Huerta,F.Corbacho and J.A.Siguenza,Fast response and temporal coherent oscillations in Small-World Networks,Phys.Rev.Lett.,2000,Vol.84,2758-2761.
    [129].M.E.J.Newman,Assortative Mixing in Networks,Phys.Rev.Lett.,2002,Vo1.89,208701;M.E.J Newman,Mixing pattern in Networks,Phys.Rev.E,2003,Vol.67,026126.
    [130].K.-I.Goh,E.Oh,B.Kahng and D.Kim,Betweeness centrality correlation in social networks,Phys.Rev.E,2003,Vol.67,017101.
    [131].S.N.Dorogovtsev,J.F.F.Mendes and A.N.Samukhin,Structure of growing networks with preferential linking,Phys.Rev.Lett.,2000,Vol.85,4633-4636.
    [132].P.L.Krapivsky,S.Redner and F.Leyvraz,Connectivity of growing random networks,Phys.Rev.Lett.,2001,Vol.85,4629-4632.
    [133].S.H.Yook,H.Jeong and A.-L.Barabasi,Modeling the Internet's Large-Scale Topology,PNAS 2002,Vol.99,13382-13386.
    [134].P.L.Krapivsky,S.Redner and F.Leyvraz,Connectivity of Growing Random Networks,Phys.Rev.Lett.,2000,Vol.85,4629-4632.
    [135].D.Garlaschelli,G.Caldarelli and L.Pietronero,Universal scaling relation in food webs,Nature,2003,423:165-168.
    [136].J.R.Banavar,A.Maritan and A.Rinaldo,Size and form in efficient transportation networks,Nature 1999,399:130-132.
    [137].S.N.Dorogovtsev,A.V.Goltsev and J.F.F.Mendes,Ising model on networks with an arbitrary distribution od connections,Phys.Rev.E,2002,Vol.66,016104.
    [138].C.P.Herrero,Ising model in small-world networks,Phys.Rev.E,2002,Vol.65,066110.
    [139].F.Medevedyeva,P.Holme,P.Minnhagen and B.J.Kim,Dynamic critical behavior of the XY model in small-world networks,Phys.Rev.E,2003,Vol.67,036118
    [140].A.V.Golsev,S.N.Forogovtsev,and J.F.F.Mendes,Critical phenomena in networks,Phys.Rev.E,2003,Vol.67,026123
    [141].Z.Dezso and A.-L.Barabasi,Halting viruses in scale-free networks,Phys.Rev.E,2002,Vol.65,055103(R)
    [142].A.Medus,G.Acuna,C.O.Dorso,Detection of community structures in networks via global optimization,Physica A,2005,Vol.358:593-604
    [143].T.Antal,P.L.Krapivsky and S.Redner2,Dynamics of social balance on networks,PHYSICAL REVIEW E,2005,Vol.72,036121
    [144].Victor M.Eguiluz,and Maxi San Miguel,Voter model dynamics in complex networks:Role of dimensionality,disorder,and degree distribution,Krzysztof Suchecki,PHYSICAL REVIEW E,2005,Vol.72,036132
    [145].M.Angeles Serrano and Marian Boguna,Tuning clustering in random networks with arbitrary degree distributions,PHYSICAL REVIEW E,2005,Vol.72,036133
    [146].O.Giraud,B.Georgeot,and D.L.Shepelyansky,Quantum computing of delocalization in small-world networks,PHYSICAL REVIEW E,2005,Vol.72,036203
    [147].Baihua Gong,Lei Yang,and Kongqing Yang,Synchronization on Erdos-Renyi networks,PHYSICAL REVIEW E,2005,Vol.72,037101
    [148].A.M.Reynolds,Scale-free movement patterns arising from olfactory-driven foraging,PHYSICAL REVIEW E,2005,Vol.72,041928
    [149].Chunguang Li and Philip K.Maini,Complex networks generated by the Penna bit-string model:Emergence of small-world and assortative mixing,PHYSICAL REVIEW E,2005,Vol.72,045102(R)
    [150].Soon-Hyung Yook,Filippo Radicchi and Hildegard Meyer-Ortmanns(?),Self-similar scale-free networks and disassortativity,PHYSICAL REVIEW E 72,045105(R),2005
    [151].M.S.Baptista and J.Kurths,Chaotic channel,PHYSICAL REVIEW E,2005,Vol.72,045202(R)
    [152].Romulus Breban,Raffaele Vardavas,and Sally Blower,Linking population-level models with growing networks:A class of epidemic models,PHYSICAL REVIEW E,2005,Vol.72,046110
    [153].Bjorn Samuelssonand Carl Troein,Random maps and attractors in random Boolean networks,PHYSICAL REVIEW E,2005,Vol.72,046112
    [154].M.Bartolozzi,D.B.Leinweber and A.W.Thomasl,Stochastic opinion formation in scale-free networks,PHYSICAL REVIEW E,2005,Vol.72,046113
    [155].M.Rosvall,A.Gr6nlund,P.Minnhagen and K.Sneppen,Searchability of networks,PHYSICAL REVIEW E,2005,Vol.72,046117
    [156].R.E.Amritkar,Sarika Jalan,and Chin-Kun Hu,Synchronized clusters in coupled map networks.Ⅱ.Stability analysis,PHYSICAL REVIEW E,2005,Vol.72,016212
    [157].Fangcui Zhao,Scaling invariance in spectra of complex networks:A diffusion factorial moment approach,PHYSICAL REVIEW E,2005,Vol.72,046119
    [158].Dietrich Stauffer and Muhammad Sahimi,Diffusion in scale-free networks with annealed disorder,PHYSICAL REVIEW E,2005,Vol.72,046128
    [159].A.G.Angel,M.R.Evans,E.Levine and D.Mukamel,Critical phase in nonconserving zero-range processes and rewiring networks,PHYSICAL REVIEW E,2005,Vol.72,046132
    [160].Dong-Hee Kim and Hawoong Jeong,Systematic analysis of group identification in stock markets,PHYSICAL REVIEW E,2005,Vol.72,046133
    [161].Matti Peltomaki,Ville Vuorinen,and Mikko Alava,Host-parasite models on graphs,PHYSICAL REVIEW E,2005,Vol.72,046134
    [162].Jun Ohkubo and Muneki Yasuda,Statistical-mechanical iterative algorithms on complex networks,PHYSICAL REVIEW E,2005,Vol.72,046135
    [163].Wen-Xu Wang,Bo Hu,Tao Zhou,Bing-Hong,et al,Mutual selection model for weighted networks,PHYSICAL REVIEW E,2005,Vol.72,046140
    [164].Francese Comellas,Synchronous and asynchronous recursive random scale-free nets,PHYSICAL REVIEW E,2005,Vol.72,046142
    [165].Uri Keshet and Shahar Hod,Survival probabilities of history-dependent random walks,PHYSICAL REVIEW E,2005,Vol.72,046144
    [166].Carlos Felipe Saraiva Pinheiro and Americo T.Bemardes,Scale-free fuse network and its robustness,PHYSICAL REVIEW E,2005,Vol.72,046709
    [167].Luca Donetti,Pablo I.Hurtado,and Miguel A.Munoz,Entangled Networks, Synchronization,and Optimal Network Topology,Phy.Rev.L,2005,Vol.95,188701
    [168].Tao Zhou,Bing-Hong Wang,et al,Self-organized Boolean game on networks,PHYSICAL REVIEW E,2005,Vol.72,046139
    [169].Luca Donetti,Pablo I.Hurtado,and Miguel A.Munoz,Entangled Networks,Synchronization,and Optimal Network Topology,Phy.Rev.L,2005,Vol.95,188701
    [170].S.N.Dorogovtsev,J.F.F.Mendes,A.M.Povolotsky,and A.N.Samukhinl,Organization of Complex Networks without Multiple Connections,Physics Review Letts,2005,Vol.95,195701
    [171].Daniel O.Cajueiro,Agent preferences and the topology of networks,PHYSICAL REVIEW E,2005,Vol.72,047104
    [172].Xiaoqun Wua,Jun-an Lua,Chi K.et al,Impulsive control and synchronization of the Lorenz systems family,2007,Vol.31(3):631-638
    [173].TOHRU IKEGUCHI,MASUO SUZUKI,Application of Chaos Game Representation to Nonliner Time Seris anlysis,Fractals,2006,Vol.14(1):27-35
    [174].Aimin Chen,Junan Lu,Jinhu Lu,Simin Yu,Generating hyperchaotic Lu attractor via state feedback control,Physica A,2006,Vol.364:103-110
    [175].Petter Holme and M.E.J.Newman,Nonequilibrium phase transition in the coevolution of networks and opinions,Physics Review E,2006,Vol.74,056108
    [176].I.Gomes Da Silva,S.De Monte,F.d'Ovidio,C.R.Mirasso and R.Toral,Coherent regimes of mutually coupled Chua's circuits,PHYSICAL REVIEW E,2006,Vol.73,036203
    [177].Mohammad Haeri and Behzad Khademian,Comparison between different synchronization methods of identical chaotic systems,Chaos,Solitons and Fractals,2006,Vol.29:1002-1022
    [178].Jialin Hong,The computation of Lyapunov exponents for periodic thrajectiores,International Journal of Bifurcation and Chaos,2005,Vol.15,No.12:4075-4080
    [179].B.Biswal,B.R.Niranjan,G.Ullal,C.Dasgupta,Computational modeling of the dependence of kindling rate on network properties,Physica A,2006,Vol.364:565-580
    [180].Xiang Li and Xiaofan Wang,Controlling the Spreading in Small-World Evolving Networks:Stability,Oscillation,and Topology,IEEE TRANSACTIONS ON AUTOMATIC CONTROL,2006,Vol.51(3):534-540
    [181].Wei Wang andJean-Jacques E.Slotine,Contraction Analysis of Time-Delayed Communications and Group Cooperation,IEEE TRANSACTIONS ON AUTOMATIC CONTROL,2006,Vol.51(4):712-717
    [182].Zhongzhi Zhanga,Lili Ronga,Chonghui Guo,A deterministic small-world network created by edge iterations,Physica A,2006,Vol.363:567-572
    [183].V.Pyragas and K.Pyragas,Delayed feedback control of the Lorenz system:An analytical treatment at a subcritical Hopf bifurcation,PHYSICAL REVIEW E,2006,Vol.73,036215
    [184].Ricardo Lima and Edgardo Ugalde,Dynamical complexity of discrete-time regulatory networks,Nonlinearity,2006,Vol.19:237-259
    [185].Hai-Feng Zhang,Rui-Xin Wu,Xin-Chu Fu,The emergence of chaos in complex dynamical networks,Chaos,Solitons and Fractals,2006,Vol.28:472-479
    [186].Bing Wang,Huanwen Tanga,Chonghui Guo,Zhilong Xiu,Entropy optimization of scale-free networks'robustness to random failures,Physica A,2006,Vol.363:591-596
    [187].Zhi-Gang Shao,Zhi-Jie Tan,Xian-Wu Zou,Zhun-Zhi Jin,Epidemics with pathogen mutation on small-world networks,Physica A,2006,Vol.363:561-566
    [188].Gaetana Gambino,Maria Carmela Lombardo,Marco Sammartino,Global linear feedback control for the generalized Lorenz system,Chaos,Solitons and Fractals,2006,Vol.29:829-837
    [189].Reza Olfati-Saber,Flocking for Multi-Agent Dynamic Systems:Algorithms and Theory,IEEE TRANS.ON AUTOMATIC CONTROL,2006,Vol.51(3):401-420
    [190].Lina A.Shehadeh,Larry S.Liebovitch,Viktor K.Jirsa,Relationships between the global structure of genetic networks and mRNA levels measured by cDNA microarrays,Physica A,2006,Vol.364:297-314
    [191].Ernesto Estradaa,Juan A.Rodriguez-Velazquez,Subgraph centrality and clustering in complex hyper-networks,Physica A,2006,Vol.364:581-594
    [192].K.Rho,H.Jeong,B.Kahng,Identification of lethal cluster of genes in the yeast transcription network,Physica A,2006,Vol.364:557-564
    [193].Csaba Pa'l,Bala'zs Papp,et al,Chance and necessity in the evolution of minimal metabolic networks,Nature,2006,440:30
    [194].Panagiotis Androutsos and A.N.Venetsanopoulos,A Distributed Fault-Tolerant MPEG-7 Retrieval Scheme Based on Small World Theory,IEEE TRANS.ON MULTIMEDIA,2006,Vol.8(2):278-288
    [195].Brian D.Fath,W.E.Grant,Ecosystems as evolutionary complex systems:Network analysis of fitness models,Environmental Modelling & Software xx,2006,Vol.1:8
    [196].Gang Yan,Tao Zhou,Bo Hu,Zhong-Qian Fu and Bing-Hong Wang,Efficient routing on complex networks,PHYSICAL REVIEW E,2006,Voi.73,046108
    [197].Chuan-Yang Yin,Bing-Hong Wang,Wen-Xu Wang,Tao Zhou,Hui-Jie Yang,Efficient routing on scale-free networks based on local information,Physics Letters A,2006,Vol.351:220-224
    [198].http://www.china.com.cn/chinese/zhuanti/feiyan/318290.htm,2003
    [199].Dietrich Stauffer,Muhammad Sahimi,Discrete simulation of the dynamics of spread of extreme opinions in a society,Physica A,2006,Vol.364:537-543
    [200].Zhen Yi Chen,Xiao Fan Wang,A congestion awareness routing strategy for scale-free networks with tunable clustering,Physica A,2006,Vol.364:595-602
    [201].Qing yun Wang,Qi shao Lu,Guan rong Chen,Ding hui Guo,Chaos synchronization of coupled neurons with gap junctions,Physical Letters A,2006,Vol.356:17-25
    [202].Zhongzhi Zhanga,Lili Ronga,Francesc Comellas,High-dimensional random Apollonian networks,Physica A,2006,Vol.364:610-618
    [203].Daniel M.Abrams and Steven H.Strogatz,Chimera states in a ring of nonlocally coupled oscillators,International Journal of Bifurcation and Chaos,2006,Vol.16(1):21-37
    [204].Vamsi Kalapala,Vishal Sanwalani,Aaron Clauset and Cristopher Moorel,Scale invariance in road networks,PHYSICAL REVIEW E,2006,Vol.73:026130
    [205].Zhen Yi Chen,Xiao Fan Wang,A congestion awareness routing strategy for scale-free networks with tunable clustering,Physica A,2006,Vol.364:595-602
    [206].Christian Kuhnert,Dirk Helbing,Geoffrey B.West,Scaling laws in urban supply networks,Physica A,2006,Vol.363:96-103
    [207].Jayanth R.Banavar,Amos Maritan and Andrea Rinaldo,Size and form in effcient transportation networks,Letters to Nature,1999,Vol.399:130-132
    [208].Ben-hua Guo,Shao-hong Cai,The SIS-BD Model of Computer Virus Spreading on Internet,IEEE COMMUNICATIONS SOCIETY Proceeding 2007,Vol.1:2200-2203(EI)
    [209].郭本华,蔡绍洪,病毒传播的SIS-BD模型,仪器仪表学报(EI),2007,Vol.28.No.8:282-285
    [210].王哈力,单薏,王希凤,组合逻辑电路的小世界网络模型,电机与控制学报,2006,Vol.10 No.4:370-374
    [211].Ramon Ferrer I Cancho,Christiaan Janssen and Ricard V.Sole,Topology of technology graph:Small world patterns in electronic circuits,Physical Review E,2001,Vol 64,o46119
    [212].Yang Zhao and Alex Doboli,Finding Broad-Scale Patterns in Large Size Electronic Circuit Netlists,Circuits and System,48~(th) Midwest Symposium on,2005,Vol.1,307
    [213].王哈力,单薏,基于复杂网络的一个小型模拟电路分析,哈尔滨理工大学学报,2006,Vol.11 No.3:11-13
    [214].Ricard V.Sole,Marti Rosas-Casals,Bernat Coromnas-Murtra,and Sergi Valverde,Robustness of the European power grides under intentional attack,Physical Review E,2008Vol.77,026102
    [215].Fang J Q,Liang Y,Topological Properties and Transition Features Generated by a New Hybrid Preferential Model,Chi.Phys.Lett,2005,Vol.22(10):2719-2722
    [216].Breuer H P,The theory of quantum open systems,New York:Oxford University Press,2002
    [217].Hedin E R,Cosby R M,Satanin A M and Joe Y S,J.Appl.Phys.2005,Vol.97:063712
    [218].Schwinger J S.Particles,sources and Fields,MA:Perseus Book,1998
    [219].Lu X B,Wang X F,Fang J Q,Topological transition features and synchronizability of a weighted hybrid preferential network, Physica A, 2006, Vol.371(2):841-850
    [220]. Fang J Q, Bi Q, Li Y, et al, Toward a harmonious unifying hybrid model for any evolving complex networks, Advances in Complex System, 2007, Vol. 10(2):117-141
    [221]. Fang J Q, Bi Q, Li Y, Advances in theoretical models of network science, Front, Phys. China, 2007, Vol.2, No. 1:109-124
    [222]. Bi Q, Fang J Q, Zou Q, Certain Properties of a Quantum Information Network Driven by External Fields, Chi.Phys.Lett. 2006,Vol.23,No.7:1947-1950
    [223]. Bi Q, Ruda H E, Zhou D Z, Dynamical equation of quantum information and interference. Physica A, 2006, Vol.364:170-178
    
    [224]. Hasegawa H,Muranka T, Kasai A,et al, Jpn.J.Appl.Phys.2003,Vol. 42:2375-2381
    [225]. Bi Q, Ruda H E, Zhou D Z, Dynamical equations of quantum information and Gaussian channel. Physica A, 2006, Vol.363:198-210

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700