即时通信系统拓扑建模及消息传播模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着互联网的发展,即时通信(IM)系统的应用正变得越来越普及,人们在享受IM系统的快捷和便利的同时,也不时被其带来的内容安全问题所困扰。目前IM安全方面的研究主要是针对计算机病毒传播的研究,如:IM系统中蠕虫病毒传播研究等。在IM系统中不仅各种计算机病毒的传播会给人们的生活工作带来危害,各种消息尤其是恶意消息的传播也会对广大网民产生不容忽视的影响。一方面,IM系统可以快速宣传那些具有宣传意义的正面消息,对这类消息的传播应该进行引导和支持;另一方面,虚假信息或是恶意谣言也可以在IM系统中快速扩散,而对于这类消息应该给予控制和管理,并且尽可能在早期采用相应的手段进行监控和制止。因此,与信息安全技术方面的研究相比,信息内容安全治理问题越来越引起社会各界的重视。而目前IM消息的内容安全治理这一领域尚无研究结论,这就使得本文的研究工作变得十分重要。本文正是基于这样的时代和学术背景下进行研究的。
     本文以信息安全治理的系统化思路作为开展研究的总体思想。从IM消息传播特点和规律的角度,有针对性地提出IM消息传播干预建议。对IM消息传播建模的研究主要分为IM网络拓扑建模和IM消息传播动力学模型分析这样两个部分。具体来讲,本文的主要研究内容及研究成果如下:
     第一,对IM网络进行拓扑建模分析。在问卷调查得到的数据基础上对IM网络的拓展行为进行分析。基于这些特征制定IM网络的演化机制和模型假设条件。在原有无标度网络演化模型(BA模型)的基础上,结合IM网络的演化机制如:局域优先连接、朋友引荐机制等,对BA模型进行改进。通过与实际网络对比,发现所构建的网络模型能够反映现实IM网络的实际情况。
     通过仿真分析发现IM网络的节点度分布并不符合幂律分布,网络中具有少量连接和大量连接的节点比例都较小,绝大多数节点的连接数都处在一个范围内。同时,通过对IM网络的其他拓扑性质的研究发现,IM网络是一个具有较短的平均最短路径、较大的聚类系数和清晰的社团结构的复杂网络。
     第二,对IM系统消息传播模型进行研究。任何一个复杂系统的消息传播模型都包括两个部分:底层的拓扑网络和消息的传播规则。首先通过调研结果总结了IM消息的传播行为特征,引入了适应度参数、边权等概念,对IM消息传播网络进行了建模,并通过仿真发现,该网络的节点度分布具有与IM网络同样的特点。然后在IM消息传播网络的基础上,建立IM消息传播的动力学模型。该模型是在非均匀网络中谣言传播模型的基础上,引入IM用户之间的紧密程度以及消息类型等因素进行改进后建立的。虽然为了研究方便,对模型的参数设置采用了某些简化过程,但是从机理上该模型基本能与实际情况相吻合,可以用于对复杂的消息传播过程进行描述。同时,本文通过实际IM网络的数据进行了模型的验证和分析,发现该模型基本可以描述实际消息的传播趋势。从而得到了一个重要结论,本文所建立的IM消息传播模型可以用于描述IM消息传播过程。
     第三,基于对IM消息传播趋势的分析提出IM消息的干预机制和建议。以往针对IM系统的安全性研究大多是针对计算机病毒方面的研究,关于消息传播方面的研究基本上都是定性的论述。本文通过建立IM消息传播模型并对仿真结果进行分析,得出了IM消息传播模型的影响因素。这些影响因素包括:接受概率、免疫概率、平均度和网络规模等。并通过不同的参数取值进行仿真实验,得到各个参数对于消息传播趋势的具体影响,为进一步提出针对性的干预建议提供了基础。基于上述工作,本文最后从IM消息传播特点本身以及IM网络拓扑结构两个角度提出了IM系统消息传播的干预建议。并提出IM消息的安全管理是一个持续不断的过程,同时需要全社会的共同努力。
     本文的研究成果对于更好地了解IM系统的网络拓扑结构、研究其上的消息传播规律以及IM消息传播的干预机制研究等方面都有很强的参考价值。同时,本文采用信息安全治理的系统化思想,按照IM网络拓扑、消息传播、模型验证和干预建议这样几个步骤对IM系统的安全治理进行了研究。这种思想也可以为其他类似的研究提供借鉴。
With the development of the Internet, instant messaging (IM) system is becoming more and more popular. While people enjoy the convenient and swift service, they are always plagued by the content security problems of IM system. At present, the safety research for IM system is mainly on computer virus such as IM worm propagation research. Various informations spreading in IM system will produce influences that can not be ignored to people's daily life and work. On the one hand, the positive news with meaningful information can be quickly diffused in IM system and we should encourage and support such information; on the other hand, there are also many malicious rumors or false information that could rapidly spread in the IM system and we should take appropriate monitoring and suppression measures to control this type of information at the early stage. Comparing with the research of information security technology, the governance of information content security is increasingly aroused the attention. At present, there are no conclusions in the area of content security management for IM system, which makes this study very important. This study is conducted based on the above age and academic background.
     In this paper, we take the systematic idea of information security management as the basic method to launch the research. Through analysis of information propagation characteristics and laws in IM system, we put forward pertinent suggestions for IM information security governance. The research on information dissemination of IM system can be divided into two parts, which are the analyses of IM topology modeling and information dynamics modeling. The main contents are concluded as follows:
     Firstly, the topology modeling and characteristics analysis of the IM users' network are discussed. Based on the specific features of IM users'network from the results of survey, we improve the original scale-free network model (BA model) to match the mechanisms such as local priority connections and friend referral model. Compared with the actual network, we find that the constructed network model can reflect the actual situation of IM users'network.
     Through the simulation analysis, we find that the IM users'network model doesn't obey power-law distribution and it has short average path length and high clustering coefficient. Meanwhile, the community structure of the network is also obvious. In this network, there are a small proportion of nodes with little or large connections, and most of the connections are in a specific range.
     Secondly, the information propagation modeling of the IM system is analysed. Any information dissemination model on complex system includes two parts, which are the underlying topology network and the message transmission rules on it. The transmission rules and characteristics of IM messages are discussed at the beginning of this section based on the results of survey. With the introduction of concepts, such as fitness parameters and side power, we put forward the evolving model for information dissemination network on the IM system. Through the simulation results, we can conclude that the node degree distribution of this network is the same as that of the IM users' network. Then the dynamic model of IM messages is built on the base of the information dissemination network. With the introduction of the factors meaning tightness of IM users and type of the message, we establish the model based on the rumor propagation model in non-uniform network. Although we set the parameters of the model using a simplified process, the mechanism on the model can match with the actual situation and we can describe the complex process of information dissemination clearly. Meanwhile, through empirical study with the actual IM network in this paper, we find the model can describe the propagation trend of the IM messages probably. Thus we can make an important conclusion that this model which is constructed in this paper can be used to analyze the propagation situation of the IM messages.
     Thirdly, through the analysis of the IM messages dissemination trend, we propose the intervention suggestions of content security for IM system. In the past, the studies on IM system security have focused on computer viruses, and researches on information dissemination are basically qualitative discussion. Aiming at finding the factors of IM message transmission, we establish the IM message propagation model and analyze the simulation results. These factors include acceptance probability, rejection probability, the average degree and the network scale. Through different experimental parameters, we obtain the specific impact to the trend of information dissemination, which provide a basis for the study of further specific intervention recommendations. Based on the above work, this article puts forth the intervention suggestions for IM message from two aspects, which are the structure of IM network and the characteristics of message transmission. This intervention management is a continuous process, which needs to adopt a systematic approach for monitoring and management. And it also needs the joint efforts of the whole society.
     The achievements in the paper have significant roles to understand the network topology of IM system, the propagation characteristics of the message and the intervention mechanisms. Meanwhile, this paper obeys to the standard steps as network topology, information propagation, concrete evidence research and policy recommendations. This thinking is good to other similar research.
引文
[1]中国互联网络信息中心.第25次中国互连网络发展状况统计报告.2010.
    [2]http://www.chinapr.com.cn/News/ShowArticle.asp? ArticleID=30300
    [3]余其炯.即时通信的现状与发展趋势.数字通信世界,2007,6:41.
    [4]朱和平.即时通信研究综述.现代计算机,2006(12):55.
    [5]D Avrahami, SE Hudson. Communication Characteristics of Instant Messaging:Effects and Predictions of Interpersonal Relationships. Proceedings of the 2006 20th anniversary conference,2006:505.
    [6]Raymond B. Jennings III, Erich M. Nahum, David P. Olshefski, etal. A Study of Internet Instant Messaging and Chat Protocols. IEEE,2006(7):16.
    [7]代印唐,张世永.即时通信安全研究.电信科学,2006(4):10.
    [8]联峰,刘乃安,钱秀槟等.综述:对等网(P2P)技术.计算机工程与应用,2003,12(144).
    [9]张杰.迅速发展的国外移动即时通信.通信世界,2007(16):32.
    [10]罗从坤.做啥网,中国微博的引领者.现代苏州,2010(2).
    [11]张立坤.即时通信安全机制研究.山东:山东大学,2009.
    [12]Albert-Laszlo Barabasi, Reka Albert. Emergence of Scaling in Random Networks. Science, 1999,8:509-512.
    [13]Dorogovtsev S.N., Mendes J.F.F. Accelerated growth of networks. arXiv:cond-mat/ 0204102,2002.
    [14]Krapivsky P.L., Render S., Leyvraz F. Connectivity of growing random networks. Phys. Rev. Lett.85(21),2000:4629-4632.
    [15]Albert, R., Barabasi, A.L. Topology of evolving networks:local events and university. Physical Review Letters,2000,85(24):5234-5237.
    [16]Qian C, Chang H, Govindan R, etal. The origin of power laws in Internet topologies revisited, in INFOCOM 2002, Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies, Proceedings IEEE, IEEE Computer Society Press,2002,2: 608-617.
    [17]Goh K I, Kahng B, Kim D. Fluctuation-driven dynamics of the Internet topology. Phys. Rev. Lett 88,108701,2002.
    [18]姚园园,张志鸿.从复杂网络角度对即时消息网络进行拓扑建模.微计算机信息,2006(12).
    [19]姚园园.Internet拓扑结构研究及在IM网络建模中的应用[D].郑州:郑州大学,2006.
    [20]Emily M. Jin, Michelle Girvan, M.E.J. Newman. Structure of growing social networks. Phys. Rev. E.2001,64(4):046132.
    [21]Hirokazu Tomiyasu, Takuya Maekawa, Takahiro Hara, etal. Social Network Applications using Cellular Phones with E-mail Function. In Proc. of the 21st International Conference on Data Engineering,2005.
    [22]CHEN Hua, YANG Mao, HAN Jinqiang, etal. Maze:a Social Peer-to-peer Network. In Proceedings of the IEEE International Conference on E-Commerce Technology for Dynamic E-Business,2004.
    [23]Barat A, Barthelemy M, Vespignani A. Weighted evolving networks:coupling topology and weight dynamics. Phys Rev Lett,2004,92:228701.
    [24]汪秉宏,周涛,何大韧.统计物理学与复杂系统研究最新发展趋势分析.中国基础科学,2005,(3):37-43.
    [25]Wang W X, Wang B H, Hu B, etal. General dynamics oftopology and traffic on weighted technological networks. Phys Rev Lett,2005,94:188702.
    [26]Pastor-Satorras R, Vazquez A, Vespignani A. Dynamical and correlation properties of the Internet. Physical Review Letters,2001,87(25):258701.
    [27]Lada A. Adamic, Bernardo A. Huberman, etal. Power-Law Distribution of the World Wide Web. Science,2000,287:2115.
    [28]M. Faloutsos, P. Faloutsos, C. Faloutsos. On power-law relationships of the Internet topology. Computer. Communication Review,1999,29(4):251-262.
    [29]R. Albert, H. Jeong, A.-L. Barabasi. Error and attack tolerance in complex networks. Nature, 2000(406):387-482.
    [30]Andrei Broder, Ravi Kumar, Farzin Maghoul, etal. Graph structure in the web:Experiments and models. In Proc of the 9th Int'l World-Wide Web Conf. Amsterdam,2000:309-320.
    [31]闫宏飞,李晓明.关于中国Web的大小、形状和结构.计算机研究与发展,2002,39(8): 958-967.
    [32]M. E. J. Newman, Stephanie Forrest, Justin Balthrop. Email networks and the spread of computer viruses. Phys. Rev. E,66(035101),2002.
    [33]Smith R D. Instant messaging as a scale-free network, e-print cond-mat/0206378,2002.
    [34]Williamson M M, A Parry, A Byde. Virus throttling for instant messaging. Technical Repo, HPL-2004-81, Chicago,2004.
    [35]Cheryl D. Morse, Haining Wang. The Structure of an Instant Messenger Network and its Vulnerability to Malicious Codes. Proc. Of ACM SIGCOMM,2005.
    [36]Yan Qiang, Shu Huaying, Huang Xiaoyan, etal. Complex Network Demonstration: Topology of Instant Communication Systems. In Proc. of International Conference On Systems, Man And Cybernetics,2007.
    [37]许丹,李翔,汪小帆.复杂网络理论在互联网病毒传播研究中的应用.复杂系统与复杂性科学,2004(7),1(3):10-26.
    [38]Wang C, Knight J C, Elder M C. On computer viral infection and the effect of immunization. Proceedings of the 16th Annual Computer Security Applications Conference. Washington DC, USA:IEEE Computer Society,2000.
    [39]Vazquez A, Pastor-Satorras R, Vespignani A. Large-scale topological and dynamical properties of the Internet. Phys. Rev. E,2002,65(6):066130.
    [40]Garetto M, Gong Weibo, Towsley D. Modeling malware spreading dynamics. IEEE INFOCOM,2003.
    [41]Pastor-Satorras R, Vespignani A. Epidemic spreading in scale-free networks. The American Physical Society,2001,86(14):3200-3203.
    [42]Pastor-Satorras R, A Vespignani. Epidemic dynamics and endemic states in complex networks. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics),2001,63(6).
    [43]Goh K, Oh E, Jeong H, etal. Classification of scale-free networks. PNAS,2002,99(20): 12583-12588.
    [44]Mannan M, van Oorschot PC. On instant messaging worms, analysis and counter measures. In:Proc. of the ACM CCS Workshop on Rapid Maleode(WORM 2005). Fairfax, http://www. SCS. Carleton. Ca/-paulv/papers/imworms.pdf.,2005.
    [45]Zou CC, Towsley D, Gong W. Email worm modeling and defense. http://www-unix. Ecs. Umass.Edu/-gong/papers/Email Model-ICCCN04.Pdf.,2004
    [46]史明江,李翔,汪小帆.基于复杂网络理论的即时通讯病毒研究.计算机工程与应用.2006(11):110-115.
    [47]Yang Gang, Zhou Tao, Wang Jie, etal. Epidemic spread in weighted scale-free networks. Chinese Physics Letters,2005,22(2):501.
    [48]Kephart J O, White S R. Directed-graph epidemiological models of computer viruses. Proceedings of the 1991 IEEE Symposium on Security and Privacy. Oakland, California, USA:IEEE Computer Society Press,1991:343-359.
    [49]Kephart J O, White S R. Measuring and modeling computer virus prevalence. Proceedings of the 1993 IEEE Symposium on Security and Privacy. IEEE,1993:2-15.
    [50]Morenol Y, Pastor-Satorras R, Vespignanil A. Epidemic outbreaks in complex heterogeneous networks. Eur. Phys. J. B,2002,26(4):521-529.
    [51]Pastor-Satorras R, Vespignani A. Epidemics and immunization in scale-free networks. Bornholdt S. Handbook of Graphs and Networks:From the Genome to the Internet, Wiley-VCH,2003.
    [52]Bogu laM, Pastor-Satorras R. Epidemic spreading in correlated complex networks. Phys. Rev. E,2002,66(4):047104.
    [53]Cliff Changchun Zou, Gong Weibo, Towsley D. Code red worm propagation modeling and analysis. Proceedings of the ACM CCS 2002 conference, Washington DC, USA:ACM, 2002.
    [54]Matthew M, Leveille W J. An epidemiological model of virus spread and clean up. HP Labs, 2003.
    [55]Serazzi G, Zanero S. Computer virus propagation models. http://www. elet. polimi. It/ upload/zanero/papers/zanero serazzi-virus. pdf.,2003.
    [56]Cliff C Zou, Towsley D, Gong Weibo. Email virus propagation modeling and analysis. Technical Report TR-CSE-03-04, University of Massachussets, Amherst,2003.
    [57]Ebel H, Mielsch L I, Bornholdt S. Scale-free topology of e-mail networks. Physical Review E,2002,66:035103(R).
    [58]A. J. Sudbury. The proportion of the population never hearing a rumour. J. Appl. Prob. 1985(22):443.
    [59]D. H. Zanette. Criticality behavior of propagation on small-world networks, Phys. Rev. E, 2001(64):050901.
    [60]D. H. Zanette. Dynamics of rumor propagation on small-world networks, Phys. Rev. E, 2002(65):041908.
    [61]Y. Moreno, M. Nekovee, A. F. Pacheco. Dynamics of rumor spreading in complex networks. Phys. Rev. E,2004(69):066130.
    [62]Z. Liu, Y.-C. Lai, N. Ye. Propagation and immunization of infection on general networks with both homogeneous and heterogeneous components. Phys. Rev. E 2003(67):031911.
    [63]J. Zhou, Z. Liu, B. Li. Influence of network structure on rumor propagation. Phys. Lett. A 2007(368):458.
    [64]H. Kesten, V. Sidoravicius. The spreading of a rumor or infection in a moving population. Annals Prob.2005(33):2402.
    [65]潘灶烽,汪小帆,李翔.可变聚类系数无标度网络上的谣言传播仿真研究.系统仿真学报.2006,18(8):2346-2348.
    [66]刘常昱,胡晓峰,司光亚等.基于小世界网络的舆论传播模型.系统仿真学报.2006(18):3608.
    [67]刘常昱,胡晓峰,司光亚等.舆论涌现模型研究.复杂系统与复杂性科学.2007(1):24-27.
    [68]刘常昱,胡晓峰,罗批等.基于不对称影响函数的舆论涌现模型.系统仿真学报.2008(20):990.
    [69]Zhen Xiao, Lei Guo, John Tracey. Understanding Instant Messaging Traffic Characteristics. Computer society,2007.
    [70]章戈.虚拟社区的客户沟通[D].上海:上海交通大学,2002.
    [71]D Avrahami, SE Hudson. Communication Characteristics of Instant Messaging:Effects and Predictions of Interpersonal Relationships. Proceedings of the 2006 20th anniversary conference,2006:505-514.
    [72]Feldstein, S. Impression Formation in Dyads:The Temporal Dimension. In M. Davis (Ed.), Interaction Rhythms. Human Sciences Press Inc.,1982:207-224.
    [73]Duck, S., Turr, D., Hurst, M., etal. Some evident truths about conversations in everyday relationships:All communications are not created equal. Human Communication Research, 1991,18(2):228-267.
    [74]Daniel Avrahami and Scott E. Hudson. Communication Characteristics of Instant Messaging:Effects and Predictions of Interpersonal Relationships. CSCW,2006:505-514.
    [75]Masaki Aida, Keisuke Ishibashi, Chisa Takano, etal. Using Data on Communications Traffic in a New Approach to Analyzing Large-scale Social Networks and User-Dynamics. IEEE, 2004.
    [76]何德全.Internet时代信息安全要有新思维.光明日报电子版,2002.
    [77]许国志主编.系统科学与工程研究(第二版).上海科技教育出版社,2001.
    [78]R. Pastor-Satorras, A. Vespignani. Epidemics spreading in scale-free networks. Phys. Rev. Lett.,2001(86):3200-3203.
    [79]Victor M. Eguiluz, Konstantin Klemm. Epidemic threshold in structured scale-free networks. Phys. Rev. Lett, cond-mat/0205439,2002(89).
    [80]D. Gruhl, R. Guha, David LibenNowell, etal. Information Diffusion Through Blogspace. WWW2004, New York, New York, USA. ACM 158113844X/04/000,2004.
    [81]Yan Qiang, Shu Huaying. The way to control the harmful information on the Internet. In Proceedings of ICYCS'05,2005.
    [82]闫强,舒华英.因特网上有害信息传播模型研究.管理工程学报,2007,21(2).
    [83]张成阳,穆志纯等.基于复杂性研究的Internet安全模型.北京科技大学学报,200325(5):483-486.
    [84]闫强,舒华英.一种信息安全治理的系统化方法.电子学报.
    [85]闫强,舒华英,吕廷杰等.从复杂系统的角度看网络与信息系统安全问题.见:国家信息化专家咨询委员会《关于网络时代的信息安全治理课题》研究报告,2006.
    [86]闫强,舒华英.互联网治理的分层模型及其生命周期.人民邮电报.2005.11.10.
    [87]Albert, R., Barabasi, A.L. Topology of evolving networks:Local events and universality. Physical Review Letters,2000,85(24):5234-5237.
    [88]Li X, Chen, G-R. A local-world evolving network model. Physica A.2003,328(1-2): 274-286.
    [89]Albert R, Barabasi A L. Statistical mechanics of complex networks. Rev. Mod. Phys.,2002, 74:47-97.
    [90]Boccaletti S, Latora V, Marchiori M, etal. Complex networks:Structure and dynamics. Physics Report,2006(424):175-308.
    [91]汪小帆,李翔,陈关荣.复杂网络理论及其应用.北京:清华大学出版社,2006.
    [92]Huberman B A, Adamic LA.. Nature.1999.401(6749):131.
    [93]Wagner A, Fell DA., Proc. R. Soc. Lond. B.2001,268:1803-1810.
    [94]WATTS D J, STROGATZ S H. Collective dynamics of small-word networks. Nature,1998, 393:440-442.
    [95]杜海峰,李树茁,MARCUSW F等.小世界网络与无标度网络的社区结构研究.物理学报,2007,56(12):6886-6893.
    [961 http://hi.baidu.com/gold2008/blog/item/49568b821fe14599f703a64f.html
    [97]Xiaofan Wang, Xiang Li, etal. Complex Networks and Its Application. Beijing:Tsinghua University Press,2006.
    [98]P Erdos, A Renyi. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci, 1960.
    [99]R. M. Anderson, R. M. May. Infectious Diseases in Humans. Oxford University press. Oxford,1992.
    [100]Streftaris G, Gibson G J. Statistical Inference for Stochastic Epidemic Models. Proceedings of the 17th international workshop on statistical modeling, china,2002:6109-6160.
    [101]Wang Y, Wang C X. Modeling the Effects of Timing Parameters on Virus Propagation. In: Staniford S, ed. Proc. of the ACM CCS Workshop on Rapid Malcode(WORM 2003), Washington DC, October,27,2003.
    [102]Frauenthal J C. Mathematical Modeling in Epidemiology. New York:Springer-Verlag, 1980.
    [103]M. Kuperman, G. Abramson, Phys. Rev. Lett.86,2909(2001).
    [104]D J Daley, D G Kendall. Epidemics and rumours. Nature (S1464-3634),1964,204, 1118.
    [105]Damian H Zanette. Criticality of rumor propagation on small-world networks. cond-mat, 2001,0109049.
    [106]Damian H Zanette. Dynamics of rumor propagation on small-world networks. cond-mat, 2001,0110324.
    [107]许鹏远.复杂网络上的传染病模型研究[D].大连:大连海事大学,2007:33-3.
    [108]E. Almaas, B. Kovacs, T. Vicsek, Barabasi A L. Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature,2004,427:839-843.
    [109]Y. Fan, M. Li, J. Chen, etal. Network of econophysicsts:a weighted network to investigate the development of econophysics. Int. J. of Mod. Phys. B,2004(18):2505-2512.
    [110]M. Li, Y. Fan, J. Chen, etal. Weighted networks of scientific communication:the measurement and topological role of weight. Physica A,2005(350):643-656.
    [111]W.Li, X.Cai. Statistical analysis of airport network of China. Phys.Rev.E,2004,69,046106.
    [112]R.Pastor-Satorras, Vespignani A. Evolution and structure of the Internet:a statistical physics approach. Cambridge, England:Cambridge university press,2004.
    [113]A Barrat, M Barthelemy, A Vespignani. Modeling the evolution of weighted networks. Physical Review E,2004.
    [114]A.Barrat, M.Barthelemy, R.Pastot-Satorras, etal. The architecture of complex weighted networks. Proc.Natl.Acad.sci.U.S.A,2004,101,3747.
    [115]S.H.Yook, H. Jeong, A.L. Barabasi, etal. Weighted evolving networks. Phys. Rev. Lett., 2001,86,5835.
    [116]D.Zheng, S.Trimper, B.Zheng and P.M.Hui. Weighted scale-free networks with stochastic weight assignments. Phys. Rev. E,2003,67,040102.
    [117]T.Antal, P.L.Krapivsky. Weighte-driven growing networks. Phys. Rev. E,2005,71, 026103.
    [118]Bianconi G, Barabasi AL. Competition and multiscaling in evolving networks. Europhys.lett. 2001(54):436-442.
    [119]G Bianconi, AL Barabasi. Bose-Einstein condensation in complex networks. Physical Review Letters,2001.
    [120]Barat A, Barthelemy M, Vespignani A. Weighted evolving networks:coupling topology and weighted dynamics. Phys Rev Lett,2004(92):228701.
    [121]S.N. Dorogovtsev, J.F.F. Mendes. Minimal models of weighted scale-free networks. arXiv: cond-mat/0408343.
    [122]W.X.Wang, B.H.Wang, B.Hu et al. General dynamics of topology and traffic on weighted technological networks. Phys.Rev.Lett.v.,2005,94,188702.
    [123]W.X.Wang, B.H.Wang, B.Hu, etal. Mutual attraction model for both assortative and disassortative weighted networks. Phys. Rev. E,2006,73,016133.
    [124]S.Shen Orr, R.Milo, S.Mangan. Network motifs in the transcriptional regulation network of Escherichia coli. Nature Gen.2002,31(1):64-68.
    [125]R.Milo, S.Shen Orr, Itzkoviz S etal. Network motifs:simple building blocks of complex networks. Science,2002,298 (5594):824-827.
    [126]S.Managan, U.Alon. Structure and function of the feed-forward loop network motif. Proc. Nal. Acad. Sci.,2003,100(21):11980-11985.
    [127]方锦清,汪小帆,刘曾荣.略论复杂性问题和非线性复杂网络系统的研究.科技导报,2004(2):9-12.
    [128]车宏安,顾基发.无标度网络及其系统科学意义.系统工程理论与实践,2004(4):11-16.
    [129]赵金山,狄增如,王大辉.北京市公共汽车交通网络几何性质的实证研究.复杂系统与复杂性科学,2005(2):45-48.
    [130]周涛,傅忠谦,牛永伟等.复杂网络上传播动力学研究综述.自然科学进展,2005(15):513-518.
    [131]赵明,汪秉宏,蒋品群等.复杂网络上动力学系统同步的研究进展.物理学进展,2005(25):273-295.
    [132]吕金虎.复杂动力学网络的数学模型与同步准则.系统工程理论与实践,2004(24):17-22.
    [133]陈振毅,汪小帆.无尺度网络中的拥塞及其控制.系统工程学报,2005(20):132-138.
    [134]徐丹,李翔,汪小帆.复杂网络理论在互联网传播研究中的应用.复杂系统与复杂性科学,2004(1):10-26.
    [135]Yihjia Tsai, Cheng-Chin Lin, Ching-Chang Lin. Characteristics of Weighted Email Communications. ICICS,2005:399-403.
    [136]Staniford S, Paxson V, Weaver N. How to own the Internet in your spare time. Proceeding of the 11th USENIX Security Symposium, August 2002:149-167.
    [137]苏俊燕,孔令江,刘慕仁.加权网络上的舆论演化模型研究.广西:广西师范大学学报:自然科学版,2006,24(2):1-4.
    [138]Volchenkov D, Volchenkova L, Blanchard Ph. Epidemic spreading in a variety of scale-fiee networks. Phys. Rev. E,2002(66):046137.
    [139]Barrat A, Barthelemy M, Pastor Satorras R, etal. The architecture of complex weighted networks. Proc. Natl. Acad. Sci. USA,2004,101(11):3747-3752.
    [140]Dodds P S, Watts D J. Universal behavior in a generalized model of contagion. Phys. Rev. Lett.,2004,92:218701.
    [141]Feder J. Fractals. New York:Plenum Press,1988.
    [142]Song C, Havlin S, Makse H A. Self-similarity of complex networks. Nature,2005,433: 392-395.
    [143]Albert R, Jeong H, Barabasi A L. Attack and error tolerance in complex networks. Nature, 2000(406):387-482.
    [144]张成阳,穆志纯,孙德辉.Internet鲁棒性与HOT模型初探.计算机应用,2004,24(2):21-22.
    [145]叶柏霜.公共危机中的大众传媒研究[D].浙江:浙江大学,2009.
    [146]黄烜.论突发事件报道中的信息公开和舆论控制[D].重庆:西南政法大学,2009.
    [147]高永亮.试论舆论社会预警机制的建构.新闻传播,2005(6):7-9.
    [148]柴义江.面对公共危机时的大众传媒.江苏经贸职业技术学院学报,2004(3):68-70.
    [149]帕丽达·玉素甫.大众传媒在政府危机管理中的作用.乌鲁木齐职业大学学报,2009(1):21-25.
    [150]翟学智.论网络媒体的预警作用.新闻爱好者,2007(6):6-7.
    [151]张芳,司光亚,罗批.谣言传播模型研究综述.复杂系统与复杂性科学.2009(12),6(4):1-11.
    [152]李玉进.网络信息传播的安全与保密意识.情报科学,2003(7),21(7):764-772.
    [153]陆向艳,钟诚,杨柳.一种基于PKI的企业即时通信安全方案.微计算机信息,2008,24(12):64-76.
    [154]Bailey N T J. The Mathematical Theory of Infectious Diseases and Its Applications. New York:Hafner Press,1975.
    [155]Diekmann O, Heesterbeek J A P. Mathematical Epidemiology of Infectious Disease:Model Building, Analysis and Interpretation. New York:John Willey& Son publisher,2000.
    [156]Liu J Z, Wu J S, Yang Z R. The spread of infectious disease an complex networks with household structure. Physica A,2004,341:273-280.
    [157]Cohen R, Havlin S, Ben-Avraham D. Efficient immunization strategies for computer networks and populations. Phys. Rev. Lett.,2003,91,247901.
    [158]Dezso Z, Barabasi A L. Halting viruses in scale-free networks. Phys. Rev. E,2002,65: 055103.
    [159]Barthelemy M, Barrat A, Pastor-Satorras R, etal. Velocity and hierarchical spread of epidemic outbreaks in complex networks. Phys. Rev. Lett.,2004,92:178701.
    [160]Balthrop J, Forrest S, Newman M E J, etal. Technological networks and the spread of computer viruses. Science,2004,304:527-529.
    [161]A. L. Lloyd, R. M. May. How viruses spread among computers and people. Science,2001 (292):1316-1317.
    [162]H. Ebel, L.-I. Mielsch, S. Bornholdt. Scale-free topology of e-mail networks. Phys. Rev. E 2002(66),035103.
    [163]R. Albert, H. Jeong, A. L. Barabasi. Attack and error tolerance of complex networks. Nature 2000(406):378-382.
    [164]D. Moore, C. Shannon, G. Voelker, etal. Internet quarantine:Requirements for containing self-propagating code. In Proc.22nd Ann. Joint Conf. of IEEE Cmputer and Communication Societies (INFOCOM),2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700