基于可拓学的智能故障诊断与状态监测的理论及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,因关键设备故障而引起的灾难性事故时有发生,这些严重、灾难性事故的不断发生,迫使各国政府、社会以及科研人员高度重视对复杂系统故障预测和诊断方面的研究。由于缺乏对系统运行进行准确状态判断和健康分析,出于安全的考虑,对系统设备进行了大量不必要的维修,大大提高了运行成本。可随着现代工业及科学技术的迅速发展,工业设备日趋大型化、连续化、高速化和自动化,功能越来越多,结构也越来越复杂,传统的故障诊断技术已经不能适应复杂设备系统实际运行的需要。正是基于这个原因,近年来复杂系统的故障诊断和状态监测理论及应用研究引起了科研人员的极大关注,并取得了一些较好的成果。
     本论文基于可拓学关联函数的定量和定性反映系统状态的特点,融合神经网络、免疫系统的相关原理,以国家自然科学基金项目“基于相似性原理和免疫应答理论重构故障诊断系统”、湖北省教育厅科学研究项目“基于人工免疫网络的理论及应用研究”、湖北民族学院“基于可拓学的智能故障诊断研究”、国防预研项目“智能分布式指挥业务子系统决策支持平台”以及企业横向项目“励磁装置在线故障预测和故障诊断系统”和“航天产品电路漏电故障诊断系统”为背景,在克服传统算法的缺点上,通过对故障进行分类,设计了可拓免疫算法、可拓神经网络、可拓K近邻算法用于故障诊断、并利用可拓小波算法设计了故障诊断系统解决励磁系统断相故障、利用免疫可拓控制解决了起重机的状态监测。本文的主要研究成果包括:
     ①以导师所承担的“励磁装置系统智能故障诊断和预测系统的开发”项目为研究背景,针对励磁系统的整流桥断相故障,结合信号分析方法傅立叶变换,小波包分析和可拓学的综合评价方法,开发设计了基于励磁系统的可拓综合故障诊断系统。
     ②结合可拓学与人工神经网络,设计了可拓神经元和可拓神经网络,然后利用BP算法和遗传算法对可拓神经网络的结构和权值进行学习和优化,最后用故障案例实际验证。
     ③利用可拓学与人工免疫算法相融合,开发可拓免疫算法用于智能故障诊断。利用人工免疫系统的免疫响应,自学习机制和免疫系统“自我-非我”识别理论,结合可拓学的关联函数,建立可拓距离函数,设计B细胞探测器物元和检测物元,然后利用免疫学习机制对B细胞探测器进行学习和训练,最后将训练好的B细胞探测器识别检测物元。
     ④利用可拓学与K近邻算法相结合,用于数据分类和故障识别。首先对于分类的数据进行属性约简,然后利用可拓距离函数,度量训练样本之间的距离,这种距离优于其它距离的特点在于对于同一类的训练样本,进行统计分析,包括找出每个特征的最大值、最小值和均值,其次利用可拓距离度量每个测试样本与这一类样本之间的距离,最后利用K近邻的思想进行投票。通过UCI的两个基准数据集对该分类的正确率进行对比,最后通过故障样本实现了故障的分类。
     ⑤状态监测是故障诊断过程中的重要组成部分,是预防和防止故障和事故发生的有效手段。通过对移动式起重机起吊物体过程的监测,找到预防起重机发生倾覆的办法。首先通过对起重机的力矩分析,找到影响该力矩的主要因素和危险因子函数,利用人工免疫网络算法对危险因子函数进行优化,找到影响每个影响因素的临界值,建立可拓关联函数的经典域。最后通过可拓集合和可拓变换,对起吊不同物重系统的健康度和危险因子进行评估,为预防系统发生倾覆提供有效的辅助支持。
     本论文的主要创新点:1)利用免疫系统的“自我-非我”识别原理和免疫克隆选择原理,结合可拓学的物元分析、可拓集合理论设计了可拓免疫算法,并用于汽轮机的故障诊断。2)提出了可拓距离的概念,并结合k近邻的思想,设计了可拓k近邻算法,用于数据分类和故障识别。3)结合免疫网络和可拓控制的思想,解决了起重机起吊物体过程中的状态监测问题。
     最后对全文的研究工作进行了总结,并指出了工作中进一步研究的方向。
In recent years, disaster cases have frequently occurred in view of the breakdown of the key equipments, which compels the government of each country, society and researchers to highlight the study of the fault diagnosis and condition monitor in the complicated system. However, considering the matter of security, a great deal of unnecessary maintenance has been carried out on the premise of incorrect diagnosis and condition monitor for the operation system, which greatly increases operation cost. With the rapid development of modern industry and sci-technology, the industry equipments increasingly become large-scaled, continued, high-speeded and automated, which accordingly leads to more and more functions, and more and more complicated structures. Therefore, the traditional fault diagnosis method and technology far from meet the running demand of the complicated equipments system. For this reason, studies on the fault diagnosis and condition monitor theories and application of the complicated systems have aroused researcher’s great interest in recent years, furthermore, some great achievements have been abstained in this area.
     Based on the reflection system state features of qualitative and quantitative of extension relation function, with the combination of relative theories of neural network and immune system, With the background of the national natural science fund item--" Reconfiguration of Fault Diagnosis System Based on Immune Response Theory and Comparability Principle", the scientific research item--“artificial immune network theory and its application”carried by Hubei provincial Education Department,“Fault diagnosis based on fault diagnosis”and Enterprise horizontal item“On-line fault diagnosis and prediction system of excitation system”and“leakage electricity fault diagnosis of circuit system”, on the basis of overcoming the flaw of traditional algorithm, it is carried on the detailed analysis to extension immune algorithm, extension neural network, extension K nearest neighbor and extension comprehensive evaluation for fault diagnosis and extension control for condition monitor. The main research result include:
     ①With the background of the item that my supervisor assumes,“the fault diagnosis and prevention system of excitation system development”, and the excitation system fault character-element as the study subject, the fault character of excitation signal is extracted by FFT and wavelet packets. With the utilization of the extension comprehensive evaluation method , the extension comprehensive fault diagnosis based on excitation system has be developed, and the results shows that the method can recognize fault signal.
     ②The extension neural network and extension neural element have been designed on the premise of extension and artificial neural network. And then, through BP algorithm and genetic training algorithm, the structure of extension neural network and power are trained and optimized, finally, being tested through the rotary fault.
     ③The Extension Immune Fault Diagnosis Algorithm(EIFDA), which is proposed through extension and artificial immune system, can be used for artificial fault diagnosis. The immune response mechanics and“self and non-self”recognition principle are utilized to identify fault, and extension distance function is designed. Based on above principle, have been established B-cell detector matter-element and test matter-element. The B-cell detector is trained through the immune learning and the fault sample data. The different mature B-cell detector is used to recognize the test ample. The result shows the EIFDA is an effective algorithm for fault diagnosis.
     ④In this part, a new Extension K Nearest Neighbor (EKNN) is proposed for data classification problem and fault diagnosis. Firstly, different attribute numbers impacts the classification correct rate, the data attribute reduction is applied by genetic algorithm. Secondly, the EKNN is described by K Nearest Neighbor(KNN) and extension distance. For each reduction attribute of training samples, the maximum、minimum and mean is computed. The extension distance is measured the test sample and the training samples .The K nearest extension distance allocates the different classes. Finally, two data of UCI and a fault diagnosis sample is used by EKNN, the results shows the EKNN classification correct rate is better than other traditional algorithm.
     ⑤Condition monitor, one of significant parts of the fault diagnosis, is an effective measure to prevent the fault occurrence. In this part, the aim is to find out the method to prevent the traveling crane from tilting through careful monitoring the process of which the traveling crane works. Firstly, the aim is to work out the main factor and danger function index through the analysis of the moment of the crane. Secondly, the impact factor bound value is optimized by immune network algorithm, which helps to work out the classical zone of extension conjunction function that influences each influential factor. Finally, the evaluation for the health evaluation system under the condition of the systems with different heavy goods lifting and danger function, based on extension set and extension transformation, provides an effective assistant support for preventing system from tilting.
     To sum up ,the creativity of this thesis lies in the following aspects:, first, the extension immune algorithm, has been successfully designed and can be used for steam turbine fault diagnosis, on the basis of utilization of“self and non-self recognition theory in immune system and immune clone selection theory, with the combination of extension matter-element analysis and extension set; second, the concept of extension distance has been put forward and on the basis of it the extension K nearest neighbor has been designed which can be used for data classification and fault diagnosis; third, the problem of condition monitor for the crane in the process of goods lifting has been settled on the basis of immune network and extension control.
     In the final part, the summary to the research work of the full text is given, furthermore, the direction of further study is pointed out that theories and application in fault diagnosis and condition monitor of the complicated system.
引文
[1]吴今培.智能故障诊断与专家系统[M].北京:科学出版社,1999: 5-11.
    [2]杨叔子.基于知识的故障诊断技术[M].北京:清华大学出版社,1993:23-27.
    [3]屈梁生,何正嘉.机械故障诊断学[M].上海:上海技术出版社,1996.
    [4]周东华,孙优贤.控制系统的故障检测与诊断技术[M].北京:清华大学出版社,1994.
    [5] P.Vas, Parameter Estimation.Condition Monitoring and Diagnosis of Electrical Machines[M].Oxford:Clarendon Press,1993.
    [6] Kinnaert M. Design of Redundancy Relations for Failure Detection and Isolation by ConstrainedOptimization[J]. Int.J.Control, 1996,63(3):609-622.
    [7] Hwang D S, Chang S K and Hsu P L. A Practical Design for a Robust Fault Detection and Isolation System[J].Int. J. of System Science,1997,28(3):265-275.
    [8] Gertler J and Monajemy R. Generating Directional Residuals with Dynamic Parrity Relations[J]. Automatica,1995,61(2):395-421.
    [9] Gertler J and Kunwer M M. Optimal Residual Decoupling for Robust Fault Diagnosis[J]. Int.J.Control,1995,61(2):395-421.
    [10] Isermann R. Fault Diagnosis of Machines via Parameter Estimation and Knowledge Processing—Tutorial Paper [J]. Automatica,1993,29(4):815-835.
    [11]周东华,孙优贤,席裕庚等.一类非线形系统参数偏差型故障的实时检测与诊断[J].自动化学报,1993,19(2):184-189.
    [12] Yu D. Fault Diagnosis for a Hydraulic Drive System Using a Parameter-estimation Method[J]. Control Engineering Practice,1997,5(9):1283-1291.
    [13] Hofling T and Isermann R. Adaptive Parity Equations and Advanced Parameter Estimation for Fault Detection and Diagnosis[C]. Proc.of IFAC World Congress,San Francisco,USA,1996,55-60.
    [14] M. M. Polycarpou, M. A. Helmicki. Automated Fault Detection and Accommodation: A learning systems approach[J]. IEEE Trans. Syst., Man, Cybern. 1995, 25(11): 1447~1458.
    [15] W. E. Dietz, E. L. Kiech, et al. Pattern-Based Fault Diagnosis Using Neural Networks[C]. Proceedings of the First International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, University of Tennessee Space Institute, Tullahoma, Tennessee, 1988: 13~23.
    [16] A. Duyar, T. Guo, W. Merrill. Identification of Space Shuttle Main Engine Dynamics[J]. IEEE Control Systems Magazine. 1990, 10(4): 59~65.
    [17] S. Khanmohammadi, I. Hassanzadeh, et al. Fault Diagnosis Competitive Neural Network with Prioritized Modification Rule of Connection Weights[J]. Artificial Intelligence in Engineering. 2000, 14(2): 127~132.
    [18] E. Potter, M. C. Sunman. Threshold Redundancy Management with Arrays of Skewed [J]Instrument. Automatic. 1989, 25(1): 59~77.
    [19]范显峰.齿轮箱的故障诊断与小波分析的应用.哈尔滨工业大学博士论文[D].2003, 6: 1-15.
    [20]张晓梅.基于分形的故障诊断方法研究[J].振动工程学报. 2000.13(S): 23-26.
    [21] D.C. Baillie, J. Mathew, A comparison of autoregressive modeling techniques for fault diagnosis of rolling element bearings[C],Mechanical Systems and Signal Processing 10 (1996) 1–17.
    [22] N. H. Narayanan, N. A Viswanadham. Methodology for Knowledge Acquisition and Reasoning in Failure Analysis of Systems[J]. IEEE Transactions on System, Man, and Cybernetics. 1987, 17(2): 274~288.
    [23] Z. Rochdi, B. Driss, T. Mohamed. Industrial Systems Maintenance Modelingusing Petri Nets[J]. Reliability Eng. and System Safety. 1999, 65(2): 119~124.
    [24] M. S. Ouali, et al. Fault Diagnosis Model Based On Petri Net Fuzzy Colors[J].Computer & Industrial Engineering. 1999, 37(1): 173~176.
    [25] N.C. Propes, A fuzzy Petri net based mode identification algorithm for fault diagnosis of complex systems[C], in System Diagnosis and Prognosis: Security and Condition Monitoring Issues III, vol. 5107, Bellingham, 2003, pp. 44–53.
    [26] R. David, H. Alla, Petri nets for modeling of dynamic systems—A survey, Automatica 30 (1994) 175–202.
    [27] C.H. Hansen, R.K. Autar, J.M. Pickles, Expert systems for machine fault diagnosis[J], Acoustics Australia 22 (1994) 85–90.
    [28] H.R. DePold, F.D. Gass, The application of expert systems and neural networks to gas turbine prognostics and diagnostics[J], Journal of Engineering for Gas Turbines and Power 121 (1999) 607–612.
    [29] B.-S. Yang, T. Han, Y.-S. Kim, Integration of ART-Kohonen neural network and case-based reasoning for intelligent fault diagnosis[J], Expert Systems with Applications 26 (2004) 387–395.
    [30] M. Bengtsson, E. Olsson, P. Funk, M. Jackson, Technical design of condition based maintenance system—A case study using sound analysis and case-based reasoning[C], in Maintenance and Reliability Conference—Proceedings of the Eighth Congress, Knoxville,USA, 2004.
    [31] B.-S. Yang, S.K. Jeong, Y.-M. Oh, A.C.C. Tan, Case-based reasoning system with Petri nets for induction motor fault diagnosis[J],Expert Systems with Applications 27 (2004) 301–311.
    [32] X. Lou, K.A. Loparo, Bearing fault diagnosis based on wavelet transform and fuzzy inference [J], Mechanical Systems and Signal Processing 18 (2004) 1077–1095.
    [33] C.K. Mechefske, Objective machinery fault diagnosis using fuzzy logic[J], Mechanical Systems and Signal Processing 12 (1998)855–862.
    [34] R. Du, K. Yeung, Fuzzy transition probability: A new method for monitoring progressive faults [J]. Part 1: The theory, Engineering Applications of Artificial Intelligence 17 (2004) 457–467.
    [35]张彦铎,姜兴渭.多传感器信息融合及在智能故障诊断中的应用[J].传感器技术. 1999, 18(2): 18~22.
    [36] E. Waltz, J. Llinas. Multisensor Data Fusion. Artech House[M], 1991:35~42.
    [37]杨叔子,史铁林,李东晓.分布式监测诊断系统的开发与设计[J].振动、测试与诊断. 1997, 17(1): 1~6.
    [38] M. Rao,et al.Integrated Distributed Intelligent System Architecture for Incidents Monitoring and Diagnosis[J]. Computers in Industry. 1998, 37(2): 143~151.
    [39]宋政吉.航天器分布式融合诊断理论与技术研究[D].哈尔滨工业大学博士论文. 2001: 6
    [40] M. Wooldridge, N. R. Jennings. Intelligent Agents: Theory and Practice[J]. Knowledge Engineering Review. 1995, 10(2): 115~152.
    [41]刘健勤,盛津芳等.面向智能体的视觉信息处理[M].科学出版社, 2000: 2~3.
    [42] J. M. Bradshaw. Software Agents[M]. AAAI Press/The MIT Press, 1997: 2~5.
    [43] M. Schroeder, G. Wagner. Distributed Diagnosis by Vivid Agents[C]. Proceedings of the First International Conference on Autonomous Agents (Agents’97), New York, 1997: 268~275
    [44] C. P. Azevedo, B. Feiju, M. Costa. Control Centers Evolve with Agent Technology[J]. IEEE Computer Applications in Power. 2000, 13(3): 48~53.
    [45] D. N. Godbole. Control & Coordination in Uninhabited Combat Air Vehicles[C]. Proc. of the American Control Conference, San Diego, CA, 1999: 1487~1490.
    [46] R. Weiss, C. Steger. Design and Implementation of a Real-Time Multi-Agent System[C]. 9th Mediterranean Electrotechnical Conference, Tel-Aviv, Israel, 1998: 1269~1273.
    [47] H. Vedam, V. Venkatasubramanian. PCA-SDG based Process Monitoring and Fault Diagnosis. Control Engineering Practice . 1999, 7(7): 903~917.
    [48]杨建国,孙扬,郑严.基于小波和神经网络的涡喷发动机故障诊断[J].推进技术. 2001, 22(2): 114~117.
    [49] J. Lunze, F. Schiller. Example of Fault Diagnosis by Means of ProbabilisticLogic Reasoning. Control Engineering Practice . 1999, 7(2): 271~278.
    [50] B. Han, S. J. Lee. A Genetic Algorithm Approach to Measurement Prescription in Fault Diagnosis[J]. Information Sciences. 1999, 120(1): 223~237.
    [51] M. Zak, H. Park. Gray-box Approach to Fault Diagnosis of Dynamical Systems[C]. 2001 IEEE Aerospace Conference, Piscataway, NJ, USA. 2001: 669~676.
    [52] T. A. Mast, A. T. Read, et al. Bayesian Belief Networks for Fault Identification in Aircraft Gas Turbine Engines[C]. Proceeding of the 1999 IEEE International Conference On Control Application, Hawaii, USA. 1999: 22~27.
    [53] L. X. Shen, F. Tay, L. S. Qu, et al. Fault Diagnosis using Rough Sets Theory[J].Computers in Industry. 2000, 43(1): 61~72.
    [54] C.K. Mechefske, J. Mathew, Fault detection and diagnosis in low speed rolling element bearing. Part II: The use of nearest neighbour classification[J], Mechanical Systems and Signal Processing 6 (1992) 309–316.
    [55]马笑潇,黄席樾等.基于支持向量机的故障过程趋势预测研究[J].系统仿真学报.Vol.14,No.11,2002.
    [56] J.D.Farmer, N.H.Packard, A.S.Perelson. The Immune System, Adaptation, and Machine Learning[J]. Physica 22D, pp. 187-204,1986.
    [57] S.Forrest, A.S.Perelson. Genetic algorithms and the immune system[C]. In Hans-Paul Schwefel and R. M¨anner, editors, Parallel Problem Solving from Nature, Lecture Notes in Computer Science, pages 320–325, Springer-Verlag, Berlin, Germany, 1991.
    [58]黄席樾,张著红等.现代智能算法理论与应用研究.科学出版社[M].2006-,北京.
    [59]张著红,人工免疫系统中智能优化及免疫网络算法理论与应用研究[D].大学博士论文,2004.
    [60]莫宏伟.人工免疫系统原理与应用[M].哈尔滨工业大学出版社, 2002.
    [61] D.Dasgupta. Artificial Immune Systems and Their Applications[M]. Springer-Verlag, 1999
    [62] L.N.de Castro, F.J.Von Zuben. Artificial Immune Systems: Part I–Basic Theory and Applications[R]. Technical Report, TR-DCA 01/99, 1999, 12.
    [63] L.N.de Castro, F.J.Von Zuben. Artificial Immune Systems: Part II--A Survey of Applications. Tech[R]., Rep-R T DCA, 2000, 2.
    [64]龚非力.医学免疫学[M].科学出版社, 2003.
    [65] K.Mori, M.Tsukiyama, T.Fukuda. Immune Algorithm with Searching Diversity and its Application to Resource Allocation Problem[J]. T. IEE Japan, 113-C(10), 1993.
    [66] L.N.de Castro, F. J.Von Zuben. The Clonal Selection Algorithm with EngineeringApplications[C]. In Workshop Proceedings of GECC’00, pp.36-37, Workshop on Artificial Immune Systems and Their Applications, Las Vegas, USA, July 2000.
    [67] L.N.de Castro, F. J.Von Zuben. aiNet: Artificial Immune Network for Data Analysis[M]. Idea Group Publishing, USA, 2001.
    [68] J.E.Hunt, D.E.Cooke. Learning using an artificial immune system[J]. J. of Network and Computer Appl., 1996, 19(4): 189-212.
    [69] A.Gaspar, P.Collard. Two Models of Immunation for Time Dependent Optimization[C]. SMC 2000 IEEE International Conference on Systems, Man, and Cybernetics, Nashville, Tennessee, USA, 2000. Special Track on Artificial Immune Systems.
    [70] J.W.Kim, Bentley. Negative Selection and Niching by an Artificial Immune System for Network Instrusion Detection[C]. Late Breaking Papers at the 1999 Genetic and Evolutionary Computation Conference, Scott Brave and Annie S. Wu Orlando(Eds.), Florida, USA, pp.149—158,1999.
    [71] Y.Ishida, N.Adachi, Active noise control by an immune algorithm: adaptation in immune system as an evolution[C], Evolutionary Computation,1996, Proceedings of IEEE International Conference on, 20-22 May 1996 , pp. 150–153.
    [72] S. Forrest, S.Hofmeyr, A. Somayaji. Computer Immunology[J]. Communications of the ACM, 40(10), pp.88-96, 1997.
    [73] D.Dasgupta, S.Forrest. Artificial Immune Systems in Industrial Applications[M]. In Dasgupta D (Ed.) 1999 Artificial Immune Systems and Their Applications, Springer-Verlag.
    [74] J.Kaers, R.Wheeler, H.Verrelst. The effect of Antibody Morphology on Non-self Detection[C]. ICARIS 2003, LNCS 2787, pp.285-295, 2003.
    [75] R.Canhanm, A.H.Jackson, A.Tyrrell. Robot Error Detection Using an Artificial Immune System[C]. Evolvable Hardware, Proceedings, NASA/DOD Conference on, 9-11, July 2003, pp.91-100.
    [76] F. Esponda, S.Forrest, P.Helman. A Formal Framework for Positive and Negative Detection Schemes[J]. IEEE Transactions on systems, Man, And Cybernetics-Part B: Cybernetics, 2003.
    [77] S.J.Huang. Application of Immune-Based Optimization Method for Fault-Section Estimation in a Distribution System[J]. IEEE Transactions on , Volume: 17 Issue: 3 , July 2002, pp. 779–784.
    [78] S.J.Huang. An Immune-Based Optimization Method to Capacitor Placement in a Radial Distribution System[J]. IEEE Transactions on Powe Delivery, 15(2), 2000.
    [79]李伟.基于免疫可重构的智能故障诊断研究,重庆大学博士论文[D],2005.
    [80]蔡文.可拓集合和不相容问题[J] .科学探索学报,1983,(1) :83-97.
    [81]蔡文,杨春燕,林伟初.可拓工程方法[M] .北京:科学出版社,1997.
    [82]蔡文.物元模型及其应用[M].北京:科学技术文献出版社,1994.
    [83]杜春彦.基于物元可拓性的推理模型[J].系统工程理论与实践,1998,18(2): 124-127.
    [84]彭强,何斌,康志荣.转换桥方法[J].系统工程理论与实践,1998,18(2):99-105.
    [85]杨春燕,何斌.系统故障的可拓诊断方法[J].广东工业大学学报,1998,15(1):98-103.
    [86]林伟初.搜索中的可拓方法[J].系统工程理论与实践,1998.18(2) :131-134.
    [87] Wang, M. H., & Chen, H. C. (2001). Application of extension theory on the fault diagnosis of power transformers[C]. Proceeding of the 22nd Symposium on Electrical Power Engneering, Taiwan, 797–800.
    [88] M. H. Wang and C. P. Hung. Extension Neural Network and Its applications[J]. Neural Networks, vol. 16, no. 5-6, pp. 779–784, 2003.
    [89] McCulloch W and Pitts W. A logical calculus of the ideas immanent in nervous activity[J]. Bulletin of Mathematical Biophysics, V01.5, p115~133, 1943.
    [90] Hebb O. The Organization Behavior[M]. New York:Wiley, 1949.
    [91] Hopfield J J. Neural networks and physical systems with emergent collective computational abilities[C], Prceedings of the National Academy of Sciences, V01. 79, p2554~2558, 1982.
    [92]阎平凡、张长水,人工神经网络与模拟进化计算[M],清华大学出版社.2005.
    [93] M. H. Wang,Partial Discharge Pattern Recognition of Current Transformers Using an ENN[J],IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 20, NO. 3, JULY 2005,1984-1990.
    [94]向长城,黄席樾,殷礼胜,杨祖元.基于遗传算法的可拓神经网络在故障诊断的应用[J].计算机仿真.(已录用,待刊,2008 ,4).
    [95]屈梁生,机械故障的全息诊断原理[M],科学出版社,2007.
    [96] B.D.Forrester. Advanced vibration analysis techniques for fault detection and diagnosis in geared transmission systems[D]. PhD thesis, Swinburance University of Technology, 1996.
    [97] V.B.Rao.Kurtosis as a metric in the assessment of gear damage[J].The Shock and Vibration Digest, 31(6):443-448,1999.
    [98] J.P.Dron,F.Bolaners, and I.Rasolofondraibe. Improvement of the sensitivity of the scalar indicators(crest factor, kurtosis) using a de-noising method by spectral substraction: application to detection of defects in ball bearings[J]. Journal of sound and vibration,270(1-2):61-73,2004.
    [99] Michie, D., Spiegelhalter, D.J. and Taylor, C.C. Machine learning, neural and statistical classification[M], Ellis Horwood, New York. ,1994.
    [100] C.M. Bishop, Neural Networks for Pattern Recognition[M], Oxford University Press, Oxford, 1995.
    [101] C.T. Lin, and C.S. Lee, Neural Fuzzy systems: a neuro-fuzzy synergism to intelligentsystems [M], Prentice-Hall, 1995.
    [102] Cover, T.M., Hart, P.E., 1967. Nearest neighbor pattern classification [J].IEEE Trans. Inf. Theory IT-13 (1), 21–27.
    [103] Pawlak Z. Rough Sets, Rough Relations and Rough Functions[J] .Fundamenta Informaticae, 1996, 27(2,3) :103~108 .
    [104]梁吉业,曲开社,徐宗本.信息系统的属性约简.系统工程理论与实践[J],2001,21(12):76-80.
    [105]张文修,梁怡,吴伟志.信息系统与知识发现[M].北京:科学技术出版社,2003.
    [106]张文修,吴伟志,梁吉业等.粗糙集理论与方法[M].北京:科学出版社,2001.
    [107]陶志,许定栋,汪定伟等.基于遗传算法的粗糙集知识约简方法[J].系统工程,2003,4.116-121.
    [108] Jian huadai,Yuan xiangli.Heuristic Genetic Algorithm for Minimal Reduct in Decision System Based on Rough Set Theory[C] .Pro the FICMLC,Beijing 2002 ,833-836.
    [109]王文辉,周东华.基于遗传算法的一种粗糙集知识约简算法[J].系统仿真学报.2001,8.91-96.
    [110] Richrad Jensen , Qiang Shen.Fuzzy-rough Date Reduction with Ant Colony Optimization[J].Fuzzy Sets and System., 2005,(149)5-20.
    [111] Changcheng Xiang , Xiyue Huang , Daijun WEiA New Knowledge Reduction Algorithm Based on Particle Swarm Optimization Algorithm[C] ,DCDIS(B),vol4,(S2) COMPLEX SYSTEMS,MODELING, CONTROL AND SIMULATIONS 2007:655-659.
    [112] Changcheng XIANG,Daijun WEI Xiyue HUANG, Knowledge Reduction Based on Rough Sets and Immune Network Algorithm[C], Dynamics of Continuous, Discrete and Impulsive Systems(A), Proceedings of the 4th International Conference on Impulsive and Hybrid Dynamical Systems,2007,2009-2012.
    [113] Leandro Nunes , Timmis, J.An artificial Immune Network for Multimodal Function Optimization[J],Pro IEEE Con on Evotionary Computation.2002,1,699-674.
    [114] Cover T M, Hart P E. Nearest Neighbor pattem classification[J]. IEEE Trans. on Information Theory, 1967, 13(1): 21-27.
    [115] Murthy S. and Aha D. (1996), UCI Repository of Machine Learning Data Tables. http://www.ics.uci.edu/~mlearn/.
    [116]时念云,蒋红芬,基于免疫单亲遗传和模糊C均值的聚类算法[J],控制工程.2006(13)2:158-160.
    [117] A Watkins and Timmis J. Artificial immune recognition system (airs): Revisions and renements[C]. In J. Timmis and P. J .Bentley, editors, 1st International Conference on Articial Immune Systems, pages 173-181, University of Kent at Canterbury, UK, September 2002. University of Kent.
    [118] Elton, B. and Tibshirani, R., Cross-Validation and the Bootstrap: Estimating the Error Rateof a Prediction Rule[R], Technical Report, Department of Statistics Stanford University ,1995.
    [119]刘建欣.现代免疫学[M].清华大学出版社, 2002.
    [120]焦李成等:免疫优化计算、学习与识别[M],科学出版社,2007,7 .
    [121] Forrest S ,Perelson A S ,Allen L. Self2nonself discrimination in a computer [C] . Proc IEEE symposium on research in security and privacy. Okaland ,CA :IEEE Press ,1994:202-212.
    [122] F. Gonzalez, D. Dasgup ta and R. Korma. Combining Negative Selection and Classification Techniques for Anomaly Detection[C], Proceedings of the Congress on Evolutionary Computation, pp. 705-710, Hawaii, May 12-17, 2002.
    [123]卢嫦娟,董红斌.免疫识别器动态覆盖性的选择策略[J].计算机工程与应用,2003,(36):65-67.
    [124] Sibylle D. Müller S D et al., Evolution Strategies for the Optimization of Microdevices[C], Proceedings of the Congress on Evolutionary Computation (CEC 2001), 2001:302-309.
    [125]谷吉海,姜兴渭,刘树林等.免疫系统的反面选择算法在故障诊断中的应用[J].中国空间科学技术, 2002, (2):25-27.
    [126]李化,孙才新,胡雪松等,汽轮发电机组振动故障诊断的模糊输入方法[J],重庆大学学报(自然科学版),1999,vol 22(6):36-40.
    [127]张彼德,欧健,孙才新等.汽轮发电机多故障诊断的SOM神经网络方法[J],重庆大学学报(自然科学版),2005,28(2):36-38.
    [128]潘东,金以慧.可拓控制的探索与研究[J],控制理论与应用,1996(13)3:305—311.
    [129]李士勇编著.模糊控制、神经控制和智能控制论[M],哈尔滨工业大学出版社,1996.
    [130]宋绍志.移动式起重机过负荷预防系统之基因-可拓控制器[D].淡江大学硕士论文(中国台湾),2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700