振动压力下铝(镁)合金消失模铸造组织性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
消失模铸造(Lost Foam Casting,简称LFC)具有其独特的优点,被认为是“21世纪的铸造新技术”及“铸造中的绿色工程”。近年来,铝(镁)合金消失模铸造技术得到了快速发展,显示出了强大的生命力,具有广泛的应用前景。然而,制约铝(镁)合金消失模铸造技术发展的主要瓶颈有充型能力较差,组织晶粒粗大,针孔、缩孔或疏松等缺陷较严重,导致铸件的力学性能偏低。本文从研究振动场、压力场对铝(镁)合金消失模铸造组织和性能的影响入手,以改善铝(镁)合金消失模铸件组织和性能为目的,系统地研究了机械振动场和压力场作用下铝(镁)合金消失模成形理论及工艺,开发了振动场和压力场复合作用下铝(镁)合金消失模铸造新技术,并通过合金化、热处理等方法强化铸件力学性能,形成了特种消失模铸造生产高强度铝(镁)合金铸件的新方法,针对典型零件,确定了最佳工艺参数。
     研究了A356和AZ91D合金消失模铸造机械振动凝固工艺。研究结果表明:对中小复杂铸件,浇注温度在730-760℃时,采用频率30-60Hz、振幅0.11-0.45mm、峰值加速度1-4g (g=9.8m/s2)的垂直振动,对其组织细化、性能改善、流动性提高等效果明显。A356和AZ91D合金消失模铸造振动凝固铸态最大抗拉强度达到182MPa和165MPa,比普通消失模铸造的分别提高了25%和22%。但峰值加速度大于4g的强振动,容易导致铸件变形、粘砂、气孔、夹杂等缺陷,降低了铸件力学性能。
     通过对铝(镁)合金消失模铸造振动凝固的理论分析,建立了振动峰值加速度与真空负压之关系式,表明真空度是保证振动稳定性的关键因素。建立了振动破碎枝晶的力学模型,模型表明振动峰值加速度越大,枝晶所受应力越大,则枝晶更容易被折断。建立了机械振动影响消失模铸造铝(镁)合金充型能力的数学模型,模型表明峰值加速度和振幅增加,合金充型能力增强。
     研究了A356和AZ91D合金消失模铸造压力凝固工艺。结果表明:对中小复杂铸件,如果浇注温度取730-760℃,压力值大于0.5MPa,加压速率为0.003-0.03MPa/s,加压开始于凝固初期(即固相率小于20%),保压时间大于10min,则铸件综合性能较好。A356和AZ91D合金消失模铸造压力凝固铸态最大抗拉强度达到185MPa和174MPa,比普通消失模铸造的分别提高了27%和29%。
     通过对铝(镁)合金消失模铸造压力凝固的理论分析,建立了枝晶间缩松补缩最小外加压力的数学模型,模型表明在凝固时间较短的凝固初期,所需压力值较小。建立了消失模铸造压力凝固铸件表面凹陷的数学模型,表明凹陷量与铸件的厚度成正比。铝合金消失模铸件针孔主要由析出性氢孔和缩孔合成,在压力凝固下针孔基本消失。
     研究了振动-压力复合凝固的铝(镁)合金消失模铸造新工艺,成形了小型复杂薄壁铸件。研究结果表明:消失模振动-压力复合凝固铸件的浇不足、针孔、缩孔及疏松等缺陷得到改善,组织晶粒得到细化。通过充型与凝固模拟软件对缺陷进行初步预测,并改进浇注系统和增设冒口加以有效防范,达到了改善铸件综合性能的目的,验证了消失模铸造振动压力复合凝固工艺的可行性。
     研究了振动-压力复合凝固的铝(镁)合金消失模铸件的热处理工艺。结果表明:A356铝合金消失模振动压力凝固铸件T4抗拉强度达到272MPa,断后伸长率6.5%。0.6%Mg改性的A356合金消失模振动压力凝固铸件T6抗拉强度301MPa,断后伸长率2.6%。0.5%Y改性的AZ91D镁合金消失模振动压力凝固试样T4和T6抗拉强度分别为236MPa和252MPa,断后伸长率分别为5.1%和2.1%。
     研究了铝(镁)合金消失模振动凝固组织半固态等温热处理。结果表明:A356铝合金在580℃保温60min,AZ91D+0.5% Y改性镁合金在570℃保温60min,α晶粒显著球化,其尺寸和圆度达到半固态组织要求。当消失模铸造A356铝合金采用550℃保温时间2-6h,以及消失模铸造AZ91D+0.5% Y改性镁合金采用430℃保温10-16h的近半固态热处理后,其抗拉强度分别达到261MPa和232MPa。
     研究了0.3%富Ce稀土对消失模铸造A356铝合金的影响。研究结果表明:稀土RE能够有效的变质细化共晶硅,减少铸件针孔,提高铸件力学性能。通过对0.6%Mg和0.3%Y改性A356铝合金消失模振动压力凝固组织性能的研究。结果表明:改性合金中的颗粒相Al3Y对基体起钉扎作用,阻碍了变形时位错的通过,起强化作用,使改性A356铝合金铸态和T6性能显著提高,抗拉强度分别达到171MPa和308MPa。研究了0.5%Y和0.9%Gd改性消失模铸造AZ91D镁合金。结果表明:稀土Gd、Y元素对α-Mg晶粒有细化作用,促使β-Mg17Al12相由连续网状结构转变为断续状和颗粒状结构。生成的Al2Y相和Al2Gd相对晶界具有钉扎作用,防止晶界滑移,增强了合金强度,其铸态抗拉强度比未改性时提高了29%。
Lost foam casting (LFC) process has been considered as the New Foundry Technology in 21st Century and the Green Project in Foundry because of its unique advantages. In recent years, the LFC process of aluminum (magnesium) alloy has been developing rapidly, and shows its great vitality and wide application prospect. However, the main obstacles for LFC process development of aluminum (magnesium) alloy are filling ability poorer, microstructures coarser, and the pinhole, shrinkage or loose defects more serious, so the mechanical properties are lower. In order to solve above problems, the vibration and the pressure are applied on the LFC to improve the mechanical properties of aluminum (magnesium) alloy in this dissertation. The technologic theory of LFC process with mechanical vibration and gas pressure were systematical studied, and the new LFC technology of aluminum (magnesium) alloy under vibration-pressure solidification was developed, also the intensified ways of aluminum (magnesium) alloy were investigated by the means of alloying and heat treatment. Using the new LFC technology, the high strength aluminum (magnesium) alloy castings could be produced, and the best technologic parameters were obtained for the typical casting parts.
     A356 and AZ91D alloys LFC process with vibration solidification were researched. The results show that appropriate pouring temperatures are 730-760℃for middle-small size complex castings. The vertical vibration with frequencies 30-60Hz, amplitudes 0.11-0.45mm and peak accelerations 1-4g (g=9.8m/s2) has the obviouis effect on grains refinement and the improvement of mechanical properties and filling ability. The tensile strengths of A356 and AZ91D as-cast alloys in LFC with vibration solidification are attained to 182MPa and 165MPa, and up by 25% and 22% over that of conventional LFC, respectively. But it could easily lead to the defects such as casting distortion, sticky sand, porosity and inclusions when the peak acceleration is greater than 4g, and these defects should seriously decrease the mechanical properties.
     During the LFC vibration solidification process, the relationship between the vacuum level and the peak acceleration is established by theoretical analysis. It shows that the vacuum level is a key factor to ensure the stability vibration. The mechanical vibration model of dendrite fragmentation is established, and the model shows that the bigger the peak acceleration is, the bigger the stress of dendrite is also, and dendrites could be broken more easily and grains refinement is better. The mathematical model of the filling ability suiting for aluminum (magnesium) alloy under LFC process with vibration solidification shows that the filling ability enhance as the peak acceleration and the amplitude increasing.
     The LFC process of A356 and AZ91D alloys with the pressure solidification was researched. The results show that overall performances of the castings are better than conventional LFC process. The good technical parameters include the pouring temperature 730-760℃, the pressure exceeding 0.5MPa, adding pressure rate 0.003-0.03MPa/s, the forcing pressure time in the early solidification, and holding pressure time more than 10min for middle-small size complex castings. The tensile strengths of A356 and AZ91D as-cast alloys in LFC with pressure solidification are attained to 185MPa and 174MPa, and increase 27% and 29% than that of conventional LFC, respectively.
     The minium pressure of feeding inter-dendritic shrinkages is established by the theoretical analysis of aluminum (magnesium) alloy pressure solidification in LFC. This formula show that the minium feeding pressure is required a small value in the early solidification when the time is less. The model of casting surface depression in aluminum (magnesium) alloy LFC with pressure solidification is expressed, and this model shows that the casting surface sunken quantity is proportional to the casting thickness. The pinholes in aluminum alloy LFC parttings located in hot spot area are a combination of H pinhole and shrinkage, which would be disappeared under pressure solidification.
     A special LFC process technology with vibration-pressure solidification was studied and some complex thin-walled aluminum (magnesium) alloy castings were produced. The results show that the defects such as the misruns, the pinholes, the shrinkages and looses can be decreased by vibration-pressure solidification in LFC, and the microstructure grains can be significantly refined. By simulating the filling and solidifying process, the casting defects could be preliminarily predicted and be effectively prevented by improving the gating system design. Some complex cylinder castings of A356 and AZ91D alloys have been produced by LFC with vibration-pressure solidification. As a result, the feasibility of the process was verified and the purpose of improving the mechanical properties was achieved.
     The heat treatment process of aluminum (magnesium) alloy parts by LFC with vibration-pressure solidification was studied. The results show that the tensile strength and elongation of A356 alloy under LFC with vibration-pressure solidification after T4 heat treatment would be got to 272MPa and 6.5% respectively. The tensile strength and elongation of A356 modified 0.6%Mg under LFC with vibration-pressure solidification after T6 heat treatment would be get to 301MPa and 2.1% respectively. The tensile strength of the AZ91D castings modified 0.5%Y in LFC with vibration-pressure solidification after the T4 and T6 would be attained to 236MPa and 252MPa respectively, and their elongations would be attained to 5.1% and 2.1% respectively.
     The semi-solid isothermal heat treatment (SSIT) process for aluminum (magnesium) alloy in LFC with vibration was studied. The results show that the size and the roundness of spheroidized a grains could achieve the requirements of semi-solid forming process when A356 alloy insulated 60min at 580℃and AZ91D+0.5%Y alloy hot at 570℃holding 60min. The mechanical properties of A356 and AZ91D+0.5%Y alloys in LFC could be improved significantly when the nearly semi-solid heat treatment of the alloys is operated such as A356 alloy holding 2-6h at 550℃and AZ91D+0.5%Y alloy holding 10-16h at 430℃. In this way, the tensile strengths of A356 and AZ91D+0.5%Y alloys after the nearly semi-solid heat treatment are attained to 261MPa and 232MPa respectively.
     The A356 alloy in LFC process was modified by 0.3%RE which is the Ce-rich rare-earth, and the results show that the eutectic silicon of A356 alloy is effectively refined, and the pinholes are reduced and the mechanical properties are improved. The A356 alloy in LFC with vibration-pressure solidification is modified by 0.6%Mg and 0.3%Y, and the results show that the pinning and strengthening effects of Al3Y particles would lead to improving the mechanical properties significantly, and the tensile strengths of the castings as-cast and T6 are get to 171MPa and 308MPa respectively. The AZ91D alloy in LFC process is modified by 0.5%Y and 0.9% Gd, and the results show that rare earth Gd and Y can refine a-Mg grains, and theβ-Mg17Al12 phases are transited from continuous network structure to intermittent and granular structure. The strength of AZ91D modified by 0.5%Y and 0.9%Gd are enhanced because of Al2Gd and Al2Y pinning grains boundary and preventing grains boundary sliding, the tensile strength has increased 29% than unmodified one.
引文
[1]Brown J R. The Lost Foam Casting Process. Metals Mater,1992(8):550-555
    [2]黄乃瑜,叶升平,樊自田.消失模铸造原理及质量控制.武汉:华中科技大学出版社,2004
    [3]Sand M, Shivkumar S. EPS Molecular Weight and Foam Density Effects in the Lost Foam Process. Journal of Materials Science,2003,38:2233-2239
    [4]Liu J, Ramsay C W, Askeland D R. Effects of Foam Density and Density Gradients on Metal Fill in the LFC Process. AFS Transactions,1997(105):435-442
    [5]梁光泽,李增民.中国实型(消失模)铸造的现状与展望.实型铸造及消失模铸造,2008,8:1072-1075
    [6]Bralower P M. Automotive Die-casting Magnesium Reviving for the 21th Century. Diecasting Engineer,1997(5-6):68-70
    [7]Mondolfo L F. Aluminum Alloys Structures and Properties. Butterworths, London, 1979
    [8]耿浩然,滕新营,王艳等.铸造铝镁合金.北京:化学工业出版社,2007
    [9]Fisher T P. Effects of Vibrational Energy on the Solidification of Aluminium Alloys. Brit Foundryman,1973,66:71-84.
    [10]Bower T F, Flemings M C. Formation of the Chill Zone in Ingot Solidification. Trans. Met. Soc., AIME.1967 (239):216
    [11]田学锋.消失模铸造镁合金组织及性能研究:[博士学位论文].武汉:华中科技大学,2005
    [12]Li J Q, Fan Z T, Wang YQ, Dong X P. Effects of Vibration and Alloying on Microstructure and Properties of AZ91D Magnesium Alloy via LFC. Chinese J. Non. Metals.2007,17(7):1047-1052
    [13]巴迪舍夫阿依,张锦升译.金属和合金在压力下结晶.哈尔滨:哈尔滨工业大学出版,1987
    [14]Yongsun KIM, Bokhyun KANG, Kiyoung KIM. Density and Mechanical Properties of Aluminum Lost Foam Castings by Pressurization during Solidifcatioh. Journal of Science & Technology,2007,23(6):828-832
    [15]Mordike B L, Ebert T. Magnesium Properties Application Potential. Mater. Sci. Eng. A.,2001,302:37-42
    [16]Schumann S, Friedrich H. Current and Future Use of Magnesium in the Automotive Industry. Materials Science Forum,2003(419-422):51-56
    [17]Niemann E H. Expandable Polystyrene Pattern Material for the Lost Foam Process. AFS Trans,1998(96):793-798
    [18]樊自田,赵忠,蒋文明.铝镁合金消失模铸造技术研究及应用新进展.铸造设备与工艺,2009(5):1-6
    [19]Shivkumar S. Characteristics of Metal Flow in the Full Mold. Ph.D.Dissertation, Stevens Institute of Technology, Hoboken,NJ,1991
    [20]Lee H S. Gating of Full Mold Castings with Unbonded Sand Molds. AFS Cast Metals Research Journal,1973(9):112-116
    [21]Barone M R, Caulk DA. A Foam Ablation Model for Lost Foam Casting of Aluminum. International Journal of Heat and Mass Transfer,2005(48):4132-4149
    [22]Caulk D A. A Foam Engulfment Model for Lost Foam Casting of Aluminum. International Journal of Heat and Mass Transfer,2006 (49):3831-3845
    [23]Brenner J, Frederick P, Moll N. PMMA Molded Foams for Use in the Ferrous EPC Process. AFS Inc. (USA),1990,667-670
    [24]Liu Z L, Hu J Y, Ding W J. Effect of Processing Parameters on Mold Filling in Magnesium Alloy EPC Process. AFS Trans.,2001 (101):1-14
    [25]Sun Y. Investigation of Wetting and Wicking Properties of Refractory Coating in the EPC Process. AFS Trans.,1992(100):297-308
    [26]Tseng C H. Thermal and Chemical Analysis of the Foam, Refractory Coating and Sand in the EPC Process. AFS Trans.,1992(100):509-518
    [27]Goria C A. Coating Permeability:A Critical Parameter of the Evaporative Pattern Process. AFS Trans.,1986(94):589-600
    [28]David, Kanickl P. New Technologies Shaping Foundries of the Future. Mod. Cast., 1985(10):29-30
    [29]Shin S R, Lee Z H, Cho G S. Hydrogen Gas Pick-up Mechanism of Al-alloy Melt during Lost Foam Casting. Journal of Materials Science,2004,39(5):1563-1569
    [30]Shin S R, Lee Z H. Hydrogen Gas Pick-up of Al-alloy Melt during Lost Foam Casting. TMS Light Metals,2003:1033-1037
    [31]魏尊杰.消失模铸造充型过程的研究:[哈尔滨工业大学博士论文].哈尔滨:哈尔滨工业大学,1996
    [32]杨军生.干砂消失模铸造铝合金充型特性研究:[清华大学博士论文].北京:清华大学,1995
    [33]吴国华,罗吉荣,黄乃瑜.铝合金干砂消失模铸造针孔研究.铸造,1999(6):7-10
    [34]AFS Magnesium Lost Foam Casting Committee. Genesis of a New Process: Magnesium Lost Foam Casting. Modern Casting,2003,93(4):26-28.
    [35]Cho G. S., Lee K. W., Kim S. K., et al. Expendable Pattern Casting of AZ91D Magnesium Alloy. Materials Science Forum,2003(426-432):623-628
    [36]Sun W, Littleton H E. Process Control of Metal Penetration Defect in Lost Foam Casting. AFS Transactions,2004(112):1087-1096
    [37]Fasoyinu Y, Chiorean H, Newcombe P. Vacuum Assisted Lost Foam Casting of Magnesium Alloy AZ91E. AFS Transactions,2005 (113):887-900.
    [38]Bichler L, Ravindran C, Machin A. Challenges in Lost Foam Casting of AZ91 Alloy. Materials Science Forum,2003(426-432):533-538
    [39]刘子利.镁合金消失模铸造工艺的应用基础研究:[博士学位论文].上海:上海交通大学,2002
    [40]Liu Z L, Hu J Y, Wang Q D. Evaluation of the Effect of Vacuum on Mold Filling in the Magnesium EPC Process. Journal of Materials Processing Technology, 2002,120(1-3):94-100
    [41]董选普.镁合金消失模铸造模样热解特性及其与金属的界面作用:[博士后研究工作报告].武汉:华中科技大学,2004
    [42]樊自田,董选普,黄乃瑜等.镁(铝)合金反重力真空消失模铸造方法及设备.中国发明专利,ZL02115638.7
    [43]樊自田,吴和保,张大付等.镁合金真空低压消失模铸造新技术.中国机械工
    程,2004,15(16):1493-1496
    [44]Wu H B; Fan Z T, Huang N Y. Mold Filling Characteristics of AZ91 Mg-alloy in the Low-Pressure EPC Process.Journal of Material Engineering and Performance, 2005,14(1):132-135
    [45]Currey D A, Pickles C A, Dofasco. Electromagnetic Stirring of Al-Si alloys. J. Mater. Sci.1988,23 (10):3756-3763
    [46]Ohno A. The Solidification of Metals. Chijin Shokan Co.,1990:77-85
    [47]Numan A D, Marwan K, Kozo S. Silicon Morphology Modification in the Eutectic Al-Si Alloy Using Mechanical Mold Vibration. Materials Science and Engineering A,2005,393:109-117
    [48]Fisher T P. Effects of Vibrational Energy on the Solidification of Aluminium Alloys. Brit Foundryman,1973,66:71-84
    [49]Shukla D P, Goel D B, Pandey P C. Influence of Vibration during Solidification on ingot Soundness and Mechanical Properties of Aluminium Alloy Test Casting. In: Proceedings of the All-india Seminar on Aluminium. New Delhi; 1978:1-6
    [50]Abd E, Azim A N. Effect of Low Frequency Mechanical Vibration on the Structure of Aluminium-Silicon Eutectic Alloys. In:Proceedings of the Seventh International Light Metals Congress. Leoben, Vienna:Aluminium-Verlag; 1981:118-20
    [51]Barbure R R, Hareesha I, Murthy K S S. Influence of Low Frequency Vibrations on Aluminium Eutectics. Brit Foundryman,1979,T2:34-9
    [52]Pillai N R. Effect of Low Frequency Mechanical Vibration on Structure of Modified Aluminium-Silicon Alloys. Metall Trans,1972,31:3-6
    [53]Campbell J. Effects of Vibration during Solidification. Int Met rev 1981,2:71-108
    [54]Richards R S, Rostoker W. The Influence of Vibration on the Solidification of an Aluminum Alloy. Trans ASM,1956,48:885-901
    [55]Batyshev A I, Kuskov P K. Vibration Treatment of Cast Aluminum Blanks. Sov Cast Technol,1989,12:24-6
    [56]Hiedemann E A. Metallurgical Effects of Ultrasonic Waves. J. Acoust. Soc. Am., 1954,6:831-45
    [57]Southin R T. The Influence of Low-Frequency Vibration on the Nucleation of Solidifying Metals. J. Inst. Met.,1966,94:401-7
    [58]Campbell J. Grain Refinement of Solidifying Metals by Vibration:a Review. In: Solidification Technology in the Foundry and Cast House. London:The Metals Society; 1983:61-5
    [59]Kocatepe K, Thesis Ph D. The Effect of Low Frequency Vibration on Macro and Micro Structures of LM25 and LM6 Alloys. PhD. Thesis, University of Strathclyde, UK; 1997
    [60]Kocatepe K. Effect of Low Frequency Vibration on Porosity of LM25 and LM6 Alloys. Materials and Design,2007,28:1767-1775
    [61]Balandin G F. Effect of Vibration on the Crystallization Process in Aluminium Casting. Russ Cast Prod,1963,22:1-3
    [62]Wang F Q, Han X L. Influence of Vibration & Shock on the Crystal Growth During Solidification. Journal of Materials Science,2000,35(8):1907-1910
    [63]Cole G S, Sherman A M. Light Weight Materials for Automotive Applications. Materials Characterization,1995,35(1):3-9
    [64]马霆,宋延沛.凝固时施加振动对ZA27合金组织及性能的影响.热加工工艺,1989(4):18-21
    [65]韩富银,杨巧莲,赵浩峰.振动对Zn-27A1-Si合金组织性能的影响.太原理工大学学报,2004,35(3):324-327
    [66]王红霞,张国平,许春香.机械振动对纯Al晶粒细化及凝固收缩的影响.铸造设备研究,2007(1):28-31
    [67]侯文生.振动对Al-Si合金凝固结晶的影响.铸造设备研究,2001(1):16-18
    [68]董有昌.机械振动对含稀土、锶铸造镁合金组织性能的影响:[博士学位论文].吉林:吉林大学,2008
    [69]Yasuo Yamamoto. Decompression Vibration Casting. Japan:Patent:JP1-186240A
    [70]阿.依.巴迪舍夫.张锦升译.金属和合金在压力下结晶.哈尔滨:哈尔滨工业大学出版,1987
    [71]Frueh C, Sung P K. Microporosity in A356.2 Aluminum Alloy Cast Under Pressure. Advances in Aluminum Casting Technology Ⅱ,2002(2):99-105
    [72]Batyshev K A, Batyshev A I. Solidification of a Luminium Alloys Under Pressure. Liteinoe Proizvodstvo,1993,10:26-27
    [73]Costanza, Girolamo, Quadrini, Fabrizio. Pressure Effect on Al Alloy Cast Behaviour:Microstructures and Mechanical Properties. International Journal of Materials and Product Technology,2004,20:345-357
    [74]韩宝刚.铝合金加压凝固的补缩行为.铸造,1991(12):17-21
    [75]苏志权,孟照亮等.真空增压铸造技术及其应用前景.特种铸造及有色合金.2004(4):17-20
    [76]叶荣茂,张东成等.铝合金薄壁铸件压力结晶及性能的研究.航空学报,1989,10(2):109-111
    [77]赵丕峰,白聿钦.真空浇注条件下镁合金石膏型压力凝固的研究.铸造技术,2005,26(6):519-522
    [78]田剑英.压力作用下铸造铝合金的改性研究:[硕士毕业论文].吉林:吉林大学,2007
    [79]钱瑞书.铸造硅黄铜的压力结晶及其实践.电子工艺技术,1982(7):33-38
    [80]董选普,黄乃瑜,吴树森,江锐.薄壁铝合金铸件真空差压铸造工艺的研究.特种铸造及有色合金,2002(04):21-25
    [81]刘伯操,郎业方,杨长贺.铸造手册,第三卷,铸造非铁合金.北京:机械工业出版社,2001
    [82]Liu X, Ramsay C W, Askeland D R. Study on Mold Filling Control Mechanisms in the EPC Process. AFS Trans,1994 (102):903-914
    [83]Gerard D A, Osborne R O. Unpublished Research (1996)
    [84]Wang Q G, Jones P. The Effects of Applied Pressure during Solidification on the Microstructure and Mechanical Properties of Lost Foam A356 Castings. Advances in Aluminum Casting Technology Ⅱ,2002:75-84
    [85]Yongsun KIM, Bokhyun KANG, Kiyoung KIM. Density and Mechanical Properties of Aluminum Lost Foam Castings by Pressurization during Solidifcation. Journal of Science & Technology 2007,23(6):828-832
    [86]夏振佳,李峰.加压对铝合金消失模铸造的影响.特种铸造及有色合金,2000 (4):43-46
    [87]Closset B, Khan S. Mechanical Properties and Heat Treatment of A357 Foundry Alloys. Source:Light Metals:Proceedings of Sessions, TMS Annual Meeting (Warrendale, Pennsylvania),2000:751-757
    [88]Doglione R, Douziech J L. Microstructure and Damage Mechanisms in A356-T6 Alloy. Materials Science Forum,1996:1435-1440
    [89]Caceres C H, Svensson IL, Taylor J A. Microstructural Factors and the Mechanical Performance of Al-Si-Mg and Al-Si-Cu-Mg Casting Alloys. Advances in Aluminum Casting Technology Ⅱ,2002:49-57
    [90]Dowling M, Corbett J M, Wkerr H. Growth Mechanisms of Modified Eutectic Silicon [J]. Journal of Materials Science,1987,22:4504-4513
    [91]孙伟成,张淑荣,侯爱芹.稀土在铝合金中的行为.北京: 兵器工业出版社,1992
    [92]Chang, Joonyeon, Moon, Inge, Choi, Chongsool. Refinement of Cast Microstructure of Hypereutectic Al-Si Alloys through the Addition of Rare Earth Metals. Journal of Materials Science,1998(10):5015-5023
    [93]钟声,苗忠,曹占义.稀土在铝硅合金中细化和变质作用微观机制.长春大学学报,2001(08):9-10
    [94]Yano Eiji, Tamara Yousuke, Motegi Tetsuichi. Effect of Psium Alloy AZ91. Journal of Japan Institute of Light Metals,2001,51 (11):599-603
    [95]Motegi, Tetsuichi. Cast Structures and Grain Refinement of Superheat-treated Mg-Al Alloy. Journal of Japan Institute of Light Metals,1994,44 (8):427-432
    [96]Tamura, Yosuke, Yanagisawa, Takeshi. Effects of Manganese on the Precipitation Process and Mechanical Properties of AZ91 Magnesium Alloy. Journal of Japan Institute of Light Metals,2007,57(10):450-456
    [97]Ma Y Q, Chen R S, Han E H. Development of a High Strength and High Ductility Magnesium Alloy. Materials Science Forum,2005:265-268
    [98]Li J Q, Dong X P, Fan Z T, Wang Y Q. Effects of Ce and Sb on the Microstructure and Properties of AZ91D Magnesium Alloy Prepared by EPC Process. Rare Metals, 2008,27(1):41-45
    [99]Lee S, Lee S H, Kim D H. Effect of Y, Sr, Nd Additions on the Microstructure and Microstructure Mechanism of Squeeze-cast AZ91-X Magnesium Alloys. Metal Trans,1998,29A(4):1221-1235
    [100]吴国华,李冠群,樊昱,丁文江,朱燕萍,李波,王群.Y对AZ91D镁合金组织及力学性能的影响.特种铸造及有色合金,2006,26(5):260-263
    [101]Li J F, Geng H R, Yang Z X. Effects of Y on Microstructure and Mechanical Properties of AZ91 Magnesium Alloy. Foundry,2005,54(1):53-56
    [102]Anyanwu I A, Kamado S, Kojima Y. Creep Properties of Mg-Gd-Y-Zr Alloys. Materials Transactions,2001,42 (1):1212-1218
    [103]Zhang X M, Chen JMi, Deng Y L. Mg-Gd-Y-Zr Magnesium Alloy Compression Deformation Behavior. Chinese Journal of Nonferrous Metals,2005,15(12): 1925-1929
    [104]Xiao Y, Zhang X M, Chen J M. High-Strength Heat-Resistant Mg-9Gd-4Y-0.6Zr Alloys. Central South University,2006,37(5):850-855
    [105]Jin G Y, Du W B, Li J H, Wu Y F. Effects of Gadolinium Addition on High Temperature Mechanical Properties of Mg-2Al-lZn Alloy. Journal of Rare Earths, 2007,25(5):610-613
    [106]刘正,张奎.镁基轻质合金理论基础及其应用.北京:机械工业出版社,2002
    [107]Li Y D, Hao Y, Yan Y F. Structural Evolution of AZ91D Magnesium Alloy During Semisolid Isothermal Heat Treatment. The Chinese Journal of Nonferrous Metals, 2001,11 (4):571-570
    [108]Yang G Y, Hao Q T, Jie W Q. Microstructure and Properties of Mg-5A1 1.5Ca-0.4Zn Based Alloy by Semi-solid Isothermal Heat Treatment Die Pressure Casting Process. The Chinese Journal of Nonferrous Metals,2001,15 (4):615-621
    [109]Li J Q, Fan Z T, Wang Y Q, Dong X P. Effects of Isothermal Heat Treatment on Microstructure and Mechanical Properties of Lost Foam Casting AZ91D Magnesium Alloy. Metal Heat Treatment,2008,3(1):97-100
    [110](美)S G凯利著;贾启芬,刘习军译.机械振动北京:科学出版社美国:麦格劳-希尔教育出版集团,2002
    [111]R.D.Blevins著,吴恕三等译.流体诱发振动.北京:机械工业出版社.1983
    [112]单辉祖.材料力学.北京:高等教育出版社,2004
    [113]潘迪,樊自田,赵忠.机械振动对ZL101消失模铸造组织及性能的影响.种铸造及有色合金,2009(3):290-292
    [114]Jakson K A, Hunt J D, Uhlmann D R. Lamellar and Rod Eutectic Growth. Trans. Met. Soc. A.I.M.E.1966,236 (5):149-152
    [115]Courtney Thomas H. Mechnical Behavior of Materials. Mc Graw-Hill Education, 2004
    [116]Tsai H L, Chen T S. Modeling of Evaporative Pattern Process. Part I:Metal Flow and Heat Transfer During the Filling Stage, AFS Trans,1988 (96):881-890
    [117]魏尊杰,吴维冈,陈琼等.干砂消失模铸造铝合金充型能力的理论分析及涂料性能对其影响的研究.铸造,1992,2(9):102-106
    [118]李庆春.铸件形成理论基础.北京:机械工业出版社,1982
    [119]Pan E N, Liao K Y. Study on Flow-ability of EPC A356 Al Alloy. AFS Transactions, 1998 (90):2867-2870
    [120]陈佐一.流体激振.北京:清华大学出版社,1998
    [121]王仲仁.塑性成形力学.哈尔滨:哈尔滨工业大学出版社,1989
    [122]董秀琦,朱丽娟.消失模铸造实用技术.北京:机械工业出版社,2005,
    [123]周尧和,胡壮麒,介万奇.凝固技术.北京:机械工业出版社,1998
    [124]唐波,樊自田,赵忠,潘迪,成平.压力场对ZL101铝合金消失模铸造性能的影响.特种铸造及有色合金,2009,29(7):638-641
    [125]Flemings M C. Behavior of Metal Alloys in the Semisolid State. Metallurgical Transaction A,1991,22A(5):957-981
    [126]闻星火,何丙军等.压力条件下缩松判据的研究.清华大学学报,1998,38(8):54-56
    [127]Lu S Z, Hellawell A. The Mechanism of Silicon Modification in Al-Si Alloys, Imparity Induced Twinning. Metallurgical Transactio,1987(18A):1721-1728
    [128]Wu G H, Ma J H, Wang Y S. Effect of La-Rich Rare Earths on Structure of B319 Aluminum Alloy in Lost Foam Casting. Journal of Rare Earths,2002(4):303-306
    [129]Bian X F, Wang W M, Yuan S J. Structure Factors of Liquid Al-Si Alloys. Science
    and Technology of Advanced Materials,2001 (2):19-23
    [130]韩奎,毛协民,欧阳志英等.稀土元素在铸铝熔体除气净化过程中的行为.特种铸造及有色合金,2004(2):61-65
    [131]Zhao Y G; Li D Y; Wang S S; He Z M. Fixation of Hydrogen by Rare Earth in Al-Si Alloy. Acta Metallrugica Sinica,1993,29(1):16-19
    [132]Li D Y; He Z M; Zhao Y G; Wang S Si; Liu; Z D. Effect of Rare Earth Elements on the Formation of Gas Blowholes in Cast Aluminum Alloy. Journal of the Chinese Rare Earth Society,1987,5(4):44-45
    [133]Ran Q S, Lukas H L, Effenberg G, Petzow G. J. Less-Common Met.,1989 (146): 213-222
    [134]Li H Z, Zhang X M, Chen M A, Zhou Z P. Effect of Yttrium on As-Cast Microstructure of 2519 Aluminum Alloy. J. Cent. South Univ. (Science and Technology),2005,36(4):544-548
    [135]Jin S Z, Ran X, Chen H. Effect of Yttrium on the Phase Constituents in Zn and Mg Containing Aluminium Alloys. J. Jilin Institute of Technology,1999,20(2):1-4
    [136]Li P C, Wang M P, Sun X H, Xu G F. Study of Ageing of Al-Mg-Si Alloys. J. Cent. South Univ. Technol.1998,29(3):262-265
    [137]Dahle A K, Lee Y C, StJohn D H. Development of the As-Cast Microstructure in Magnesium-Aluminium Alloys. Journal of Light Metal,2001,1:61-72
    [138]Zhang S H, Wei B K, Lin H T, Wang L S. Effect of Yttrium and Mischmetal on As-Cast Structure of AZ91 Alloy. Chinese Journal of Nonferrous Metals,2001, 11(11):99-102
    [139]Mao W M, Zhong X Y. Microstructural Evolution of AlSi7Mg Non-Dendritic Alloys During Semi-Solid Remelting. Foundry,1998 (8):10-12
    [140]Yang H L, Zhang Z L, Ohnak I. Structure Evolution and Compressive Behavior of Semi-Solid Al-Si Hypoeutectic Alloy With Re-Melting Heat Treatment. Journal of Materials Processing Technology,2004,151(1-3):155-164
    [141]Hardy S C, Voorhees P W. Ostwald Ripening in a System With High Volume Fraction of Coarsening Phase. Met Trans A,1988,19A(11):2713-2721
    [142]Flemings M C. Behavior of Metal Alloys in the Semisolid State. Metallurgical Transaction A,1991,22A(5):957-981
    [143]胡汉起.金属凝固原理.北京:冶金工业出版社,2001
    [144]Zoqui E J, Robert M H. Contribution to the Study of Mechanisms Involved in the Formation of Rheocast Structure. Journal of Materials Processing Technology 2001, 109(1):215-219

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700