胡萝卜催化式红外干法杀青-红外热风顺序联合干燥技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是农业大国,果蔬产量巨大,居世界首位。新鲜果蔬货架期短,极易腐烂,多数在本地以低价销售。胡萝卜富含维生素和纤维素,是人类消费最多的蔬菜之一。然而,胡萝卜营养成分及外观品质的保存是目前面临的一个挑战。脱水技术是能够延长果蔬货架期,很好保留其营养成分的有效处理方法。我国利用热水烫漂、热风干燥技术生产了大量的脱水胡萝卜片用于出口和本国消费。但是此技术方法存在许多的缺点,包括能源利用效率低、处理时间长、产品品质恶化和引起一系列环境问题等。因此,该行业迫切需要一种低能耗,并保证产品质量的杀青和干燥技术的出现。
     本研究以新鲜胡萝卜为原料,对催化式红外干法杀青、催化式红外干燥、热风干燥、以及催化式红外干法杀青-红外热风顺序联合干燥进行了研究。建立了一种生产高品质脱水胡萝卜片的新技术。对催化式红外干法杀青同步脱水过程中,过氧化物酶钝化动力学模型、水分干燥动力学模型和颜色变化动力学模型进行了研究。
     首先对新鲜胡萝卜直接催化红外和热风干燥处理进行研究。主要考察催化式红外和热风干燥处理参数和物料特性对干燥过程及产品质量的影响。考察催化式红外处理高度(26、32和38cm)和胡萝卜片厚度(3、5和7mm)对干燥速率、干燥时间、产品表面颜色和复水性的影响。对胡萝卜催化式红外干燥和热风干燥进行了比较研究。分别对两种干燥方法的不同胡萝卜片厚度(3、5和7mm)和处理温度(60、70和80℃)进行了比较研究。对催化式红外干燥研究结果显示:红外处理高度越低、胡萝卜片越薄,干燥速率越大、所需干燥时间越短。在红外处理高度为32cm,胡萝卜片厚度为3和5mm,有较高的干燥速率,且得到较高质量的产品。对催化式红外和热风干燥比较研究结果显示:在水分含量达到16%-30%之前,催化式红外干燥具有较高的干燥速率,较短的干燥时间和较高的水分有效扩散系数。催化式红外干燥和热风干燥的有效扩散系数分别为2.38-10.30×10-9m2s-1和1.43-5.50×10-9m2s-1。催化式红外干燥所需总干燥时间比热风干燥缩短60%左右。胡萝卜片在60和70℃催化式红外干燥得到的产品比热风干燥具有更高的复水性。通过对两种干燥方法比较得出,催化式红外干燥在处理温度为70℃,胡萝卜片厚度为3-5mm时,有较高的干燥速率和较好的产品质量。由此得出,催化式红外干燥应用于生产干燥胡萝卜片的前期阶段,热风干燥用于干燥后期。
     对八种干燥模型进行拟合,得到适合催化式红外和热风干燥胡萝卜片的动力学模型。通过决定系数(R2)和均方根误差(RMSE)得出:Midilli模型(MR=aexp(-ktn)+bt)能够很好的拟合催化式红外和热风干燥两种模式的干燥曲线。将两种干燥方法的处理参数对模型系数进行拟合,分别建立催化式红外和热风干燥胡萝卜片的干燥模型方程,两模型能够很好的预测两种干燥过程中水分变化情况。计算水分有效扩散系数和活化能,通过水分扩散过程从机理上证明催化式红外干燥比热风干燥具有更高的干燥效率。
     对催化式红外干法杀青胡萝卜片进行研究。考察不同工艺参数对胡萝卜片品质的影响。工艺参数包括:胡萝卜片表面温度(85、90和95℃)、胡萝卜片厚度(3、5和7mm)和处理时间(0-30min)。通过对产品过氧化物酶(POD)残留量、水分减少量、干燥速率、产品表面颜色变化和维生素C保留率等指标,确定最优处理条件。结果表明,胡萝卜片表面温度越高、厚度越薄,POD酶的失活速率和水分减少越快。当POD残留量达到10%时,不同处理条件下胡萝卜片的水分减少量为40.2%-88.8%之间,颜色变化值为3.17-5.13,维生素C保留率为56.92%~77.34%。因此,红外干法杀青技术在达到杀青目的的同时,能够去除部分水分,起到干燥的作用,并且可以得到高品质的胡萝卜片。通过产品质量指标得出最优工艺条件为:胡萝卜片表面温度为90℃,胡萝卜片厚度为3-5mm。
     基于催化式红外干法杀青试验数据,对干法杀青过程中,POD酶钝化动力学、水分干燥动力学和颜色变化动力学模型进行研究。结果表明,两阶段模型能够很好的描述POD酶的灭活过程,并且与模型假设POD酶有两种同工酶,热稳定型同工酶(ER)和热不稳定型同工酶(EL),每一种同工酶符合一级动力学方程相吻合。通过对模型参数的分析与试验测量值的比较,对POD酶灭活机理进行了探讨。Midilli模型(MR=aexp(-ktn)+bt)能够很好的描述杀青过程中水分变化过程。将Middili模型的系数(a、k、n和b)对处理温度(T)和胡萝卜片厚度(H)进行线性回归,得到Midilli模型方程表达式如下:MR=(1.01+5.95×10-5T-7.70×10-4H)exp(-(-1.07×10-3+4.16×10-4T-3.16×10-3H)t(1.47-1.22×10-3T+1.17×10-3H))+(-2.42×10-3-9.16×10-5T+1.77×10-3H)t。此模型方程能够很好的预测胡萝卜红外干法杀青同步脱水过程中水分变化值(R2大于0.9996,RMSE值在0.0017~0.0065之间)。通过对水分有效扩散系数和活化能的计算与分析,从机理上对水分干燥过程进行了阐述。五阶多项式模型(△E=at5+bt4+ct3+dt2+et+f)能够很好的描述胡萝卜干法杀青过程中颜色变化情况。将五阶动力学模型系数(a. b、c、d、e和f)对处理温度(T)和胡萝卜厚度(H)进行线性回归,得到产品颜色变化数学模型方程表达式如下:△E=(-3.66×10-4+4.37×10-6T-1.55×10-6H)t5+(1.46×10-2-1.81×10-4T+1.45×10-4H)t4+(-0.16+2.30×10-3T-4.54×10-3H)t3+(0.14-7.27×10-3T1+5.30×10-2H)t2+(3.77-1.51×10-2T-0.18H)t+(-4.05+4.23×10-2r+4.64×10-2H)。通过此动力学模型的建立,可以为处理终点值的判定做出依据,保证产品的质量,对实际生产操作和控制有非常重要的意义。
     基于前文对胡萝卜片催化式红外杀青、干燥以及热风干燥结论,考察了两种杀青方法、四种干燥方法对胡萝卜片品质的影响,建立了一种催化式红外干法杀青-红外热风顺序联合干燥的新技术。杀青方法为:90℃红外干法杀青,90℃热水烫漂。干燥方法为:红外杀青后,70℃红外单一干燥、70℃热风单一干燥、红外热风顺序联合干燥;热水烫漂后,70℃热风干燥。杀青效果考察指标包括POD酶活残留量、产品表面颜色变化、维生素C保留率和水分减少量。脱水胡萝卜片质量指标包括维生素C保留率、复水性、颜色变化、收缩性和硬度等。杀青结果显示,90℃红外干法杀青15min,能够得到较合理的POD酶活残留量和水分去除量,并且产品质量较高。干燥结果显示,红外杀青-红外干燥和红外杀青-红外热风顺序联合干燥拥有更高的干燥速率和更少的干燥时间。而红外杀青-红外热风顺序干燥可得到更高品质的产品。通过对红外杀青-红外热风顺序联合干燥转换点的优化得出,胡萝卜最佳处理方式为:90℃红外干法杀青15min,然后70℃进行红外干燥至水分含量为30%-40%,最后阶段转换为70℃热风干燥至终点。以上研究结果表明:催化式红外干法杀青-红外热风顺序联合干燥是一种能够生产高品质胡萝卜片,具有高效、节能和环保等优势的新技术。
China is the largest country in production fruits and vegetables. Due to the short shelf life and highly perishable, the majority of fresh fruits and vegetables were saled at low prices at local market. Carrot is one of the most demanded vegetables for human nutrition due to its high vitamin and fiber content. However, there is a challenge to retain the nutritional quality and appearance of fresh carrot. Drying is an effective method to improve the shelf life and retain the nutritional quality of carrot. China produces a large amount of dried carrot slices using hot water blanching and hot air drying for export and domestic consumption. But this method has many disadvantages, including low energy efficiency, long processing time, quality deterioration and environmental problems. The industry is very interested in new blanching and drying technologies for the application to lower production cost and improve the product quality.
     This study investigated the blanching and drying characteristics of carrot slices under catalytic infrared (CIR) dry-blanching, catalytic infrared drying, hot air (HA) drying and sequential infrared (IR) radiation heating and hot air (HA) drying. A POD inactivation kinetic model, a drying kinetic model and a surface color change kinetic model were successfully developed for describing the dry-blanching and dehydration process of carrot.
     First, it investigated the drying characteristics and models of carrot slices under catalytic infrared (CIR) heating. Carrot slices with thicknesses of3,5and7mm were dried at radiation distance of26,32and38cm. A two-factor factorial experiment design was conducted to determine the influence of drying parameters on drying rate, time required, surface color change and rehydration ratio. It was observed that the drying rate increased and the times required decreased quite significantly as radiation distance decreased and/or the slice thickness decreased. The best processing parameters for CIR drying with higher drying rates and the best dried carrot quality were radiation distance of32cm, and slice thickness of3-5mm. The obtained correlation coefficient (R2) and root mean square error (RMSE) values indicated that the Midilli model (MR=aexp(-ktn)+bt) was the best for predicting the moisture ratio change kinetics of carrot slices for CIR drying processes. Based on this conclusion, the CIR can be used to drying of carrots.
     It investigated the drying and quality characteristics of carrot slices under catalytic infrared (CIR) and hot air (HA) heating. Carrot slices with thicknesses of3,5and7mm were dried at temperatures of60,70and80℃with both methods. CIR had higher drying rates, shorter drying times and greater effective diffusivities than HA before the moisture contents reached the range of16%-30%on a wet basis. The total drying times required by CIR to reach the final moisture content was60%less than HA. The effective diffusivities were in the range of2.38-10.30×10-9m2s-1for CIR drying and1.43-5.50×10-9m2s-1for HA drying. Results revealed that carrot slices dried with CIR, particularly at60and70℃, had better rehydration characteristics the samples dried with HA. Thickness had a significant impact on overall color change of carrot slices. The obtained correlation coefficient (R2) and root mean square error (RMSE) values indicated that the Midilli model was the best for predicting the moisture ratio change kinetics of carrot slices for both drying processes. Based on this conclusion, it is highly recommended that the CIR is used in the early stage drying of carrots.
     It investigated the effects of various processing parameters on carrot slices exposed to infrared (IR) radiation heating for achieving simultaneous infrared dry-blanching and dehydration (SIRDBD). The investigated parameters were product surface temperature, slice thickness and processing time. A three-factor factorial design was conducted to determine the influence of processing parameters on moisture reduction, drying rate, residual peroxidase (POD) activities, surface color change and vitamin C retention. High surface temperature and/or thin slices had faster inactivation of enzymes and quicker moisture removal compared to the low surface temperature and/or thick slices. The process which produced1log reduction in POD activity has resulted in moisture reduction from40.2%to88.8%, overall color change (△E) from3.17to5.13and retention of vitamin C from56.92%to77.34%compared to control. It was concluded that SIRDBD could be used as an alternative to produce high quality blanched and partially dehydrated fruits and vegetables.
     Based on the data of infrared dry-blanching and dehydration, a POD inactivation kinetic model, a drying kinetic model and a surface color change kinetic model were developed for describing the dry-blanching and dehydration process of carrot. A biphasic model performed well for describing the POD inactivation behavior during the treatment. To apply this mathematical model, it is assumed that only two types of isozymes are present, where, one is heat resistant (ER) and the other is heat labile (EL). In addition, each fraction of the enzyme is assumed to follow first-order kinetics mathematically. Based on the model parameters, the mechanism of POD inactivation was discussed. A Midilli model (MR=aexp(-ktn)+bt) performed well for describing drying behavior during the treatment. The constants and coefficients (a, k, n and b) of the Midilli model were regressed with processing variables including slice thickness (H) and target surface temperature (T) by linear type of equation. MR=(1.01+5.95×10-5,T-7.70×10-4H)exp(-(-1.07×10-3+4.16×10-4T-3.16R10-3H)t(1.47-1.22×10-3T+117×10-3H))+(-2.42×10-3-9.16×10-5T+1.77×10-3H)t. The obtained empirical drying equation demonstrated good predictability with a strong correlation between predicted and experimental values (R2>0.9996,0.0017     The blanching and drying characteristics of carrot slices processed with a sequential infrared (IR) radiation heating and hot air (HA) drying were investigated. Carrot slices with5mm thickness were blanched using IR heating and water at90℃. The characteristics of blanched carrot slices, including peroxidase (POD) activities, vitamin C, color and moisture reduction, were evaluated. The IR blanched carrots were dried by separated infrared drying (IRB-IRD), separated hot air drying (IRB-HAD) and sequential infrared and hot air drying (IRB-SIRHAD). Water blanched carrots were dried by hot air (WB-HAD) as control. The drying temperatures were at70℃for both IR. and HA drying. The quality characteristics of dried carrot slices, including vitamin C, rehydration, color, shrinkage and hardness, were evaluated. The blanching results showed that the IR. dry-blanching for15min resulted in a reasonably residual POD activities and moisture reduction, the lower surface color change and higher retention of vitamin C. The drying results showed that IRB-IRD and IRB-SIRHAD have higher drying rate and less drying time. The quality of dried carrots results showed that IRB-SIRHAD can get high-quality carrots. It has been concluded that the best processing method was carrot slices blanched using IR at90℃for15min, then dried using IR drying at70℃until the moisture content (MC) reached30%-40%, and then followed by HA drying at70℃in the latter stage.
引文
[1]赵晨霞.果蔬贮运与加工[M].北京:中国农业出版社,2002.
    [2]Fellows P J. Food Processing Technology [M]. Principles and Practice (2nd edition), Ellis Horwood Limited, West Sussex,1990.
    [3]Hiranvarachat B, Devahastin S, Chiewchan N. Effects of acid pretreatments on some physicochemical properties of carrot undergoing hot air drying [J]. Food and Bioproducts Processing,2011,89(2):116-127.
    [4]Vishwanathan K H, Giwari G K, Hebbar H U. Infrared assisted dry-blanching and hybrid drying of carrot [J]. Food and Bioproducts Processing,2013,91(2):89-94.
    [5]程远霞,王国华,张玉先,等.冻干蔬菜预处理的研究[J].淮海工学院学报,2000,9(1):55-57.
    [6]Rahman M S, Perera C O. Drying and food preservation [M]. In Handbook of food preservation, edited by Rahman M S:Marcel Dekker, Inc,1999.
    [7]Bevilacqua M, D'-Amore A, Polonara F. A multi-criteria decision approach to choosing the optimal blanching-freezing system [J]. Journal of food engineering,2004,63(3):253-263.
    [8]Jayaraman K S, Das Gupta D K. Drying of fruits and vegetables [M]. In Handbook of industrial drying, edited by Mujumdar A S:Marcel Dekker,1995.
    [9]Ramaswamy H. Thermal processing of fruits [M]. In Processing fruits:science and technology, edited by Barret D M, Somogyi L, Ramaswamy H:CRC press,2005.
    [10]Lavelli V, Zanoni B, Zaniboni A. Effect of water activity on carotenoid degradation in dehydrated carrots [J]. Food Chemistry,2007,104(4):1705-1711.
    [11]Adams J B, Fox P F, Editor. Significance of enzymes in individual vegetables [J]. Food enzymology, New York:Elsevier Science Publishing Company Inc.,1991,1:499-543.
    [12]张京芳,陈锦屏.烫漂和干制方法对蔬菜某些化学成分的影响[J].西北植物学报,2002,22(2):416-420.
    [13]Gornicki K, Kaleta A. Drying curve modelling of blanched carrot cubes under natural convection condition [J]. Journal of Food Engineering,2007,82(2):160-170.
    [14]Bomben J L. Effluent generation, energy use and cost of blanching [J]. Journal of Food Process Engineering,1977,1(4):329-341.
    [15]陈启和,何国庆.微波技术在食品中的应用和食品杀菌研究进展[J].粮油加工与食品 机械,2002,4:30-32.
    [16]Ponne C T, Baysal T, Yuksel D. Blanching leafy vegetables with electromagnetic energy [J]. Journal of food science,1994,59(5):1037-1041.
    [17]Skjoldebrand C. Infrared heating [M]. In Thermal technologies in food processing, edited by Richardson P:CRC Press, Woodhead publishing limited,2001.
    [18]EPRI. Technology guidebook for electric infrared process heating [M]. CMF Report, No. 93-2,1993.
    [19]Sakai N, Hanazawa T. Applications and advances in far-infrared heating in Japan [J]. Trends in food science and technology,1994,5(11):357-362.
    [20]Ratti C, Mujumdar A S. Drying of fruits[M]. In Processing fruits:science and technology, edited by Barret D M, Somogyi L, Ramaswamy H:CRC press,2005..
    [21]Van Zuilichem D J, Riet V K, Stolp W. An overview of new infrared radiation process for agricultural products [M]. In Food engineering and process applications:Transport phenomena, edited by Maguer L M, Jelen P:Elsevier applied science, New York,1985.
    [22]Kouzeh-Kanani M, Van Zuilichem D J, Roozen J P, et al. A modified procedure for low temperature infrared radiation of soybeans [J]. Part I:Improvement of nutritive quality of full-fat flour. Lebensmittel Wissenschaft Technologie Food science technology,1981,14(5): 242-244.
    [23]Kouzen-Kanani M, Zuilichem D J, Van Roozen J P, et al. Infrared processing of maize germ [J]. Lebensmittel Wissenschaft Technologie,1984,17(4):237-239.
    [24]Pan Z, McHugh T H. In U.S. Patent Application.20060034981. Filed 8/13/2004, published 2/16/2006.
    [25]Zhu Y, Pan Z. Processing and quality characteristics of apple slices under simultaneous infrared dry-blanching and dehydration with continuous heating [J]. Journal of Food Engineering,2009,90(4):441-452.
    [26]Bingol G., Wang B, Zhang A, et al. Comparison of water and infrared blanching methods for processing performance and final product quality of French fries [J]. Journal of Food Engineering,2014,121:135-142.
    [27]杨振鹭,吴华,潘永康.胡萝卜的缓苏作用及其在振动流化床中的间断干燥[J].化工装备技术,1995,16:14-18.
    [28]Gunasekaran S, Yang H W. Optimization of pulsed microwave heating [J]. Jounml of Food Engineering,2007,78(4):1457-1462.
    [29]Romano G, Kocsis L, Farkas I. Analysis of energy and environmental parameters during solar cabinet drying of apple and carrot [J]. Drying Technology,2009,27(4):574-579.
    [30]Srikiatden J, Roberts J S. Predicting moisture profiles in potato and carrot during convective hot air drying using isothermally measured effective diffusivity [J]. Journal of Food Engineering,2008,84(4):516-525.
    [31]Li Z, Raghavan G S V, Wang, N. Carrot volatiles monitoring and control in microwave drying [J]. LWT-Food Science and Technology,2010,43(2):291-297.
    [32]Voda A, Homan N, Witek M, et al. The impact of freeze-drying on microstructure and rehydration properties of carrot [J]. Food Research International,2012,49(2):687-693.
    [33]Deng Y, Liu Y, Qian B, et al. Impact of far-infrared radiation-assisted heat pump drying on chemical compositions and physical properties of squid (Illex illecebrosus) fillets [J]. European Food Research and Technology,2011,232(5):761-768.
    [34]Togrul H. Suitable drying model for infrared drying of carrot [J]. Journal of Food Engineering,2006,77(3):610-619.
    [35]Imre L. Solar drying [M]. In Handbook of industrial drying, edited by Mujumdar A S:Marcel Dekker, New York,1995.
    [36]Togrul H. Simple modeling of infrared drying of fresh apple slices [J]. Journal of food engineering,2005,71(3):311-323.
    [37]Gabel M, Pan Z, Amaratunga K S P, et al. Catalytic infrared dehydration of onions [J]. Journal of Food Science,2006,71(9):351-358.
    [38]Mihoubi D, Timoumi S, Zagrouba F. Modelling of convective drying of carrot slices with IR heat source [J]. Chemical Engineering and Processing,2009,48(3):808-815.
    [39]Somogyi L, Luh B S. Dehydration of fruits [M]. In Commercial fruit processing, edited by Woodroof J G, Luh B S:AVI Publishing, Westport, CT,1986.
    [40]黄劲松,周裔彬,杜先锋,等.脱水蔬菜的研究进展[J].食品工业科技,2006,27(4):203-206.
    [41]Sablani S S, Rahman M S, Al-Sadeiri D S. Equilibrium dist ribution data for osmotic drying of apple cubes in sugar-water solution [J]. Journal of Food Engineering,2002,52(2): 193-199.
    [42]郑春明.热泵在农副产品干燥中的应用[J].中国农机化,1997,(增刊):309-313.
    [43]Sandu C. Infrared radiative drying in food engineering:a process analysis [J]. Biotechnology Progress,1986,2(3):109-119.
    [44]Dostie M. Optimization of a drying process using infrared, radio frequency and convection heating [M]. In:Mujumdar AS, editor. Drying'92. Elsevier Science Publishers.1992, p 679-684.
    [45]Afzal T M, Abe T. Modeling far infrared drying of rough rice [J]. Journal of microwave power and electromagnetic energy,1997,32(2):80-86.
    [46]Skjoldebrand C. Infrared processing [M]. In:Henry CJK, Chapman C, editors. The nutrition handbook for food processors. Cambridge, UK:Woodhead Publishing,2002, p 423-432.
    [47]Afzal T M, Abe T, Hikida Y. Energy and quality aspects during combined FIR-convection drying of barley [J]. Journal of food engineering.1999,42(4):177-182.
    [48]Nowak D, Lewicki P P. Infrared drying of apple slices [J]. Innovative food science and emerging technologies:IFSET:the official scientific journal of the European Federation of Food Science and Technology,2004,5(3):353-360.
    [49]Paakkonen K, Havento J, Galambosi B, et al. Infrared drying of herb [J]. Agricultural and food science in Finland,1999,8(1):19-27.
    [50]Therien N, Cote B, Broadbent A D. Statistical analysis of a continuous infrared dryer [J]. Textile research journal,1991,61(4):193-202.
    [51]Ginzberg A S. Application of infra-red radiation in food processing [M]. Leonard Hill Book, London,1969.
    [52]Hashimoto A, Takahashi M, Honda T, et al. Penetration of infrared radiation energy into sweet potato [J]. Nippon shokuhin kogyo gakkaishi,1990,37(11):887-893.
    [53]Tan M, Chua K J, Mujumdar A S, et al. Effect of osmotic pre-treatment and infrared radiation on drying rate and color changes during drying of potato and pineapple [J]. Drying technology,2001,19(9):2193-2207.
    [54]Chua K J, Chou S K. Low-cost drying methods for developing countries [J]. Trends in food science and technology,2003,14(12):519-528.
    [55]潘永康.现代干燥技术[M].北京:化学工业出版社,1998.
    [56]张慜,张鹏.食品干燥新技术的研究进展[J].食品与生物技术学报,2006,52(2):115-119.
    [57]张慜,徐艳阳,孙金才.国内外果蔬分阶段联合干燥技术研究进展[J].干燥技术与设 备,2003,1:9-11.
    [58]Maskan M. Microwavelair and microwave finish drying of banana [J]. Journal of Food Engineering,2000,44(2):71-78.
    [59]Sharma G P. Drying of garlic (allium sarivum) cloves by microwave-hot air combination [J]. Journal of Food Engineering,2001,50(2):99-105.
    [60]None Y J. Development of a combined process of dehydration impregnation soaking and drying of bananas [J]. Journal of Food Engineering,2002,55(3):231-236.
    [61]Pan Z, Shih C, McHugh T H, et al. Study of banana dehydration using sequential infrared radiation heating and freeze-drying [J]. LWT-Food Science and Technology,2008,41(10), 1944-1951.
    [62]Motevali A, Minaei S, Khoshtaghaza M H, et al. Comparison of energy consumption and specific energy requirements of different methods for drying mushroom slices [J]. Energy, 2011,36(11):6433-6441.
    [63]Datta A K, Ni H. Infrared and hot-air-assisted microwave heating of foods for control of surface moisture [J]. Journal of Food Engineering,2002,51(4),355-364.
    [64]Varith J, Dijkanarukkul P, Achariyaviriya A, et al. Combined microwave-hot air drying of peeled longan [J]. Journal of Food Engineering,2007,81(2):459-468.
    [65]王俊,许乃章.远红外与热风联合干燥香菇的研究[J].食品与机械,1997,6:18-19.
    [66]张晓辛,肖宏儒,曹曙明,等.利用微波—气流组合干燥技术干燥菊花的试验研究[J].农业工程学报,2000,4:129-131.
    [67]徐建国,徐刚,张森旺,等.热泵—热风分段式联合干燥胡萝卜片研究[J].食品工业科技,2013-11-27.
    [68]郑霞,肖红伟,王丽红,等.红外联合气体射流冲击方法缩短哈密瓜片的干燥时间[J].农业工程学报,2014,30(1):262-269.
    [69]Salagnac P, Glouannec P, Lecharpentier D. Numerical modeling of heat and mass transfer in porous medium during combined hot air, infrared and microwaves drying [J]. International Journal of Heat and Mlass Transfer,2004,47(19-20):4479-4489.
    [70]Martens M, Scheerlinck N, De Belie N, et al. Numerical model for the combined simulation of heat transfer and enzyme inactivation kinetics in cylindrical vegetables [J]. Journal of Food Engineering,2001,47(3),185-193.
    [71]Fachin D, Loey A V, Nguyen B L, et al. Inactivation kinetics of polygalacturonase in tomato juice [J]. Innovative Food Science and Emerging Technologies,2003,4(2),135-142.
    [72]Ling A C, Lund D B. Determining kinetic parameters for thermal inactivation of heat resistant and heat-labile isozymes from thermal destruction curves [J]. Journal of Food Science,1978,43(4),1307-1310.
    [73]Zhu Y, Pan Z, McHugh T H, et al. Processing and quality characteristics of apple slices processed under simultaneous infrared dry-blanching and dehydration with intermittent heating [J]. Journal of Food Engineering,2010,97(1):8-16.
    [74]Page G E. Factors influencing the maximum rates of air drying shelled corn in thin layers [S]. Department of Mechanical Engineering, Purdue University, USA,1949.
    [75]Zhang Q, Litchfield J B. An optimisation of intermittent corn drying in a laboratory scale thin layer dryer [J]. Drying Technology,1991,9(2):383-395.
    [76]Henderson S M, Pabis S. Grain drying theory. II. Temperature effects on drying coefficients [J]. Journal of Agricultural,1961,44:1111-1122.
    [77]Wang C Y, Singh R P. Use of variable equilibrium moisture content in modelling rice drying. Transactions of American Society of Agricultural Engineers,1978,11:668-672.
    [78]Togrul I T, Pehlivan D. Mathematical modelling of solar drying of apricots in thin layers [J]. Journal of food engineering,2002,55(3):209-216.
    [79]Henderson S M. Progress in developing the thin layer drying equation [J]. Transactions of the ASABE,1974,17(6):1167-1168.
    [80]Midilli A, Kucuk H, Yapar Z. A new model for single layer drying [J]. Drying Technology, 2002,20(7):1503-1513.
    [81]Simal S, Femenia A, Garau M C, et al. Use of exponential, Page's and diffusional models to simulate the drying kinetics of kiwi fruit [J]. Journal of Food Engineering,2005,66(3): 323-328.
    [82]Babalis S J, Papanicolaou E, Kyriakis N, et al. Evaluation of thin-layer drying models for describing drying kinetics of figs [J]. Journal of Food Engineering,2006,75(2):205-214.
    [83]王宁,刘文秀,李凤城,等.杏低温薄层干燥试验与建模[J].农业机械学报,2011,42(1):140-143.
    [84]Bouraoui M. Microwave and convective drying of potato slices [J]. Journal of food process engineering,1994,17(3):353-363.
    [85]Yesilata B, Aktacir M A. A simple moisture transfer model for drying of sliced foods [J]. Applied Thermal Engineering,2009,29(4):748-752.
    [86]刘云宏,朱文学,刘建学.地黄真空红外辐射干燥质热传递分析[J].农业机械学报,2011,42(10):135-140.
    [87]Kahyaoglu T, Kaya S. Modeling of moisture, color and texture changes in sesame seeds during the conventional roasting [J]. Journal of Food Engineering,2006,75(2) 167-177.
    [88]Chunthaworn S, Achariyaviriya S, Achariyaviriya A, et al. Color kinetics of longan flesh drying at high temperature [J]. Procedia Engineering,2012,32:104-111.
    [89]Ponkham K, Meeso N, Soponronnarit S, et al. Modeling of combined far-infrared radiation and air drying of a ring shaped-pineapple with/without shrinkage [J]. Food and Bioproducts Processing,2012,90(2):155-164.
    [1]Doymaz I. Convective air drying characteristics of thin layer carrots [J]. Journal of Food Engineering,2004,61(3):359-364.
    [2]Dreosti I E. Vitamins A, C, E and β-carotene as protective factors for some cancers [J]. Asia pacific journal of clinical nutrition,1993,2(1):21-5.
    [3]Hiranvarachat B, Devahastin S, Chiewchan N. Effects of acid pretreatments on some physicochemical properties of carrot undergoing hot air drying [J]. Food and Bioproducts Processing,2011,89(2):116-127.
    [4]Togrul H. Suitable drying model for infrared drying of carrot [J]. Journal of Food Engineering,2006,77(3):610-619.
    [5]Sandu C. Infrared radiative drying in food engineering:a process analysis [J]. Biotechnology Progress,1986,2(3):109-119.
    [6]Afzal T M, Abe T. Modeling far infrared drying of rough rice [J]. Journal of microwave power and electromagnetic energy,1997,32(2):80-86.
    [7]Skjoldebrand C. Infrared processing [M]. In:Henry CJK, Chapman C, editors. The nutrition handbook for food processors. Cambridge, UK:Woodhead Publishing,2002, p 423-432.
    [8]Gabel M, Pan Z, Amaratunga K S P, et al. Catalytic infrared dehydration of onions [J]. Journal of Food Science,2006,71(9):351-358.
    [9]Pan Z, McHugh T H. In U.S. Patent Application.20060034981. Filed 8/13/2004, published 2/16/2006.
    [10]Zhu Y, Pan Z. Processing and quality characteristics of apple slices under simultaneous infrared dry-blanching and dehydration with continuous heating [J]. Journal of Food Engineering,2009,90(4):441-452.
    [11]Zhu Y, Pan Z, McHugh T H, et al. Processing and quality characteristics of apple slices processed under simultaneous infrared dry-blanching and dehydration with intermittent heating [J]. Journal of Food Engineering,2010,97(1):8-16.
    [12]Mihoubi D, Timoumi S, Zagrouba F. Modelling of convective drying of carrot slices with IR heat source [J]. Chemical Engineering and Processing,2009,48(3):808-815.
    [13]胡洁,崔政伟.胡萝卜远红外真空干燥试验参数的研究[J].食品科技,2008,2:36-39.
    [14]蒋赣,罗倩,丁静.不同干燥方法对胡萝卜品质的影响[J].广东农业科学,2011,17: 67-74.
    [15]钱革兰,张琦,崔政伟.真空微波和冷冻干燥组合降低胡萝卜片的干燥能耗[J].农业工程学报,2011,6(27):387-392.
    [16]刘正怀.切片胡萝卜热风干燥过程中传热模拟分析与试验研究[J].金华职业技术学院学报,2006,3(6):1-4.
    [17]Li Z, Raghavan G S V, Wang N. Carrot volatiles monitoring and control in microwave drying [J]. LWT-Food Science and Technology,2010,43(2):291-297.
    [18]AOAC (Association of Official Analytical Chemists). Official Methods of Analysis,17th ed. Washington, DC, USA,2000.
    [19]Minolta. Colour measurement manual:CM-3500d Spectrophotometer. Japan:IGHAJ Press, 1999.
    [20]Nsonzi F, Ramaswamy H S. Quality evaluation of osmoconvective dried blueberries [J]. Drying Technology-An International Journal,1998,16(3-5):705-723.
    [21]Marabi A, Livings S, Jacobson M, et al. Normalized Weibull distribution for modeling rehydration of food particulates [J]. European Food Research and Technology,2003,217(4): 311-318.
    [22]Lewicki P P. Some remarks on rehydration of dried foods [J]. Journal of Food Engineering, 1998,36(1):81-87.
    [23]O'Callaghan J R, Menzies D J, Bailey P H. Digital simulation of agricultural dryer performance [J]. Journal of Agricultural Engineering Research,1971,16(3):223-244.
    [24]Bruce D M. Exposed-layer barley drying, three models fitted to new data up to 150℃ [J]. Journal of Agricultural Engineering Research,1985,32(4):337-347.
    [25]Page G E. Factors influencing the maximum rates of air drying shelled corn in thin layers [S]. Department of Mechanical Engineering, Purdue University, USA,1949.
    [26]Zhang Q, Litchfield J B. An optimisation of intermittent corn drying in a laboratory scale thin layer dryer [J]. Drying Technology,1991,9(2):383-395.
    [27]Henderson S M, Pabis S. Grain drying theory. Ⅱ. Temperature effects on drying coefficients [J]. Journal of Agricultural,1961,44:1111-1122.
    [28]Wang C Y, Singh R P. Use of variable equilibrium moisture content in modelling rice drying. Transactions of American Society of Agricultural Engineers,1978,11:668-672.
    [29]Togrul I T, Pehlivan D. Mathematical modelling of solar drying of apricots in thin layers [J]. Journal of food engineering,2002,55(3):209-216.
    [30]Henderson S M. Progress in developing the thin layer drying equation [J]. Transactions of the ASABE,1974,17(6):1167-1168.
    [31]Midilli A, Kucuk H, Yapar Z. A new model for single layer drying [J]. Drying Technology, 2002,20(7):1503-1513.
    [32]Diamante L M, Munro P A. Mathematical modelling of hot air drying of sweet potato slices [J]. International Journal of Food Science & Technology,1991,26(1):99-109.
    [33]Afzal T M, Abe T. Diffusion in potato during far infrared radiation drying [J]. Journal of Food Engineering,1998,37(4):353-365.
    [34]Togrul H. Simple modeling of infrared drying of fresh apple slices [J]. Journal of Food Engineering,2005,71(3):311-323.
    [35]Crank J. Mathematics of Diffusion, second ed [M]. Oxford University Press, London,1975.
    [36]Mazza G, Lemaguer M. Dehydration of onion:some theoretical and practical considerations [J]. International Journal of Food Science & Technology,1980,15(2):181-94.
    [37]Baker C G L. Industrial drying of foods [M]. London:Chapman and Hall,1997, p 309.
    [38]Shi J, Pan Z, McHugh T H, et al. Drying and quality characteristics of fresh and sugar-infused blueberries dried with infrared radiation heating [J]. LWT-Food Science and Technology,2008,41(10):1962-1972.
    [39]Koca N, Burdurlu H S, Karadeniz F. Kinetics of colour changes in dehydrated carrots [J]. Journal of Food Engineering,2007,78(2):449-455.
    [40]Nahimana H, Zhang M. Shrinkage and Color Change during Microwave Vacuum Drying of Carrot [J]. Drying Technology,2011,29(7):836-847.
    [41]Sumnu G, Turabi E, Oztop M. Drying of carrots in microwave and halogen lamp-microwave combination ovens [J]. LWT-Food Science and Technology,2005,38(5):549-553.
    [42]冯寅洁,石芳荣,应铁进.加工工艺和复水条件对脱水胡萝卜复水性的影响[J].中国食品学报,2009,9(4):149-154.
    [43]Krishnamurthy K, Khurana H K, Soojin J, et al. Infrared Heating in Food Processing:An Overview [J]. Comprehensive Reviews in Food Science and Food Safety,2008,7(1),2-13.
    [44]Panagiotou N M, Krokida M K, Maroulis Z B, et al. Moisture diffusivity:literature data compilation for foodstuffs [J]. International Journal of Food Properties,2004,7(2):273-299.
    [45]Zielinska M, Markowski M. Air drying characteristics and moisture diffusivity of carrots [J]. Chemical Engineering and Processing,2010,49(2):212-218.
    [46]Rasouli M, Seiiedlou S, Ghasemzadeh H R, et al. Influence of drying conditions on the effective moisture diffusivity and energy of activation during the hot air drying of garlic [J]. Australian Journal of Agricultural Engineering,2011,2(4):96-101.
    [47]Limpaiboon K. Effects of Temperature and Slice Thickness on Drying Kinetics of Pumpkin Slices [J]. Walailak Journal of Science and Technology,2011,8(2):159-166.
    [48]Sutar P P, Thorat B N. Drying of Roots [M]. In Drying of Foods, Vegetables and Fruits-Volume 2, Published in Singapore,2011, pp:43-74.
    [1]陈晓明.热烫处理抑制脱水胡萝卜维生素的损失和色泽变化[J].食品研究与开发,2009,29(3):63-65.
    [2]Lavelli V, Zanoni B, Zaniboni A. Effect of water activity on carotenoid degradation in dehydrated carrots [J]. Food Chemistry,2007,104(4):1705-1711.
    [3]Gornicki K, Kaleta A. Drying curve modelling of blanched carrot cubes under natural convection condition [J]. Journal of Food Engineering,2007,82(2):160-170.
    [4]Bomben J L. Effluent generation, energy use and cost of blanching [J]. Journal of Food Process Engineering,1977,1(4):329-341.
    [5]Vanlaanen P. Freezing Fruits and Vegetables. Texas Agricultural Extension Service,2003, L-2215.
    [6]Mihoubi D, Timoumi S, Zagrouba F. Modelling of convective drying of carrot slices with IR heat source [J]. Chemical Engineering and Processing,2009,48(3):808-815.
    [7]Van Zuilichem D J, Riet V T K, Stolp W. Food engineering and process applications [M]. In: Maguer L M, Jelen P (Eds.), Transport Phenomena, vol.1. Elsevier applied science, New York,1985, pp.595-610.
    [8]Ponne C T, Baysal T, Yuksel D. Blanching leafy vegetables with electromagnetic energy [J]. Journal of Food Science,1994,59(5):1037-1041.
    [9]Zhu Y, Pan Z. Processing and quality characteristics of apple slices under simultaneous infrared dry-blanching and dehydration with continuous heating [J]. Journal of Food Engineering,2009,90(4):441-452.
    [10]Vishwanathan K H, Giwari G K, Hebbar H U. Infrared assisted dry-blanching and hybrid drying of carrot [J]. Food and Bioproducts Processing,2013,91(2):89-94.
    [11]Pan Z, McHugh T H. In U.S. Patent Application.20060034981. Filed 8/13/2004, published 2/16/2006.
    [12]Halpin B E, Lee C Y. Effect of blanching on enzyme activity and quality changes in green peas [J]. Journal of Food Science,1987,52(4):1002-1005.
    [13]Gunes B, Bayindirli A. Peroxidase and lipoxygenase inactivation during blanching of green beans, green peas and carrots [J]. Lebensmittel Wissenschaft Technologie Food Science Technology,1993,26(5):406-410.
    [14]Sheu S C, Chen A O. Lipoxygenase as blanching index for frozen vegetable soybeans [J]. Journal of Food Science, an Official Publication of the Institute of Food Technologists, 1991,56(2):448-451.
    [15]Burnette F S. Peroxidase and its relationship to food flavor and quality:a review [J]. Journal of Food Science,1977,42(1):1-6.
    [16]Lee C Y, Smith N L, Hawbecker D C. Enzyme activity and quality of frozen green beans as affected by blanching and storage [J]. Journal of Food Quality,1989,11(4):279-287.
    [17]Anthon G E, Barrett D M. Kinetic parameters for the thermal inactivation of quality-related enzymes in carrots and potatoes [J]. Journal of Agricultural and Food Chemistry,2002, 50(14):4119-4125.
    [18]Setti L, Scali S, Angeli I D, et al. Horseradish peroxidase-catalyzed oxidative coupling of 3-methyl-2-benzothiazolinone hydrazone and methoxyphenols [J]. Enzyme and Microbial Technology,1998,22(8):656-661.
    [19]AOAC (Association of Official Analytical Chemists). Official Methods of Analysis,17th ed. Washington, DC, USA,2000.
    [20]Gabel M, Pan Z, Amaratunga K S P, et al. Catalytic infrared dehydration of onions [J]. Journal of Food Science,2006,71(9):351-358.
    [21]Shi J, Pan Z, McHugh T H, et al. Drying and quality characteristics of fresh and sugar-infused blueberries dried with infrared radiation heating [J]. LWT-Food Science and Technology,2008,41(10):1962-1972.
    [22]Mazza G, Lemaguer M. Dehydration of onion:some theoretical and practical considerations [J]. International Journal of Food Science & Technology,1980,15(2): 181-94.
    [23]Baker C G L. Industrial drying of foods [M]. London:Chapman and Hall,1997, p 309.
    [24]Zhu Y, Pan Z, McHugh T H, et al. Processing and quality characteristics of apple slices processed under simultaneous infrared dry-blanching and dehydration with intermittent heating [J]. Journal of Food Engineering,2010,97(1):8-16.
    [25]Saraival J, Oliveira J C, Lemos A, et al. Analysis of the kinetic patterns of horseradish peroxidase thermal inactivation in sodium phosphate buffer solutions of different ionic strength [J]. International Journal of Food Science and Technology,1996,31(3):223-231.
    [26]Rodrigo C, Rodrigo M, Alvarruiz A, et al. Inactivation and regeneration kinetics of horseradish peroxidase heated at high temperatures [J]. Journal of Food Protection,1997, 60(8):961-966.
    [27]Morales-Blancas E F, Chandia V E, Cisneros-Zevallos L. Thermal inactivation kinetics of peroxidase and lipoxygenase from broccoli, green asparagus and carrots [J]. Journal of Food Science,2002,67(1):146-154.
    [28]Chua K J, Chou S K. A comparative study between intermittent microwave and infrared drying of bioproducts [J]. International Journal of Food Science and Technology,2005, 40(1):23-39.
    [29]Nahimana H, Zhang M. Shrinkage and Color Change during Microwave Vacuum Drying of Carrot [J]. Drying Technology,2011,29(7):836-847.
    [30]Koca N, Burdurlu H S, Karadeniz F. Kinetics of colour changes in dehydrated carrots [J]. Journal of Food Engineering,2007,78(2):449-455.
    [31]Devahastin S, Niamnuy C. Modelling quality changes of fruits and vegetables during drying:a review [J]. International Journal of Food Science & Technology,2010,45(9): 1755-1767.
    [32]Kaya A, Aydin O, Kolayh S. Effect of different drying conditions on the vitamin C (ascorbic acid) content of Hayward kiwifruits (Actinidia deliciosa Planch) [J]. Food and Bioproducts Processing,2010,88(2-3):165-173.
    [1]Ling A C, Lund D B. Determining kinetic parameters for thermal inactivation of heat resistant and heat-labile isozymes from thermal destruction curves [J]. Journal of Food Science,1978,43(4):1307-1310.
    [2]Zhu Y, Pan Z, McHugh T H, et al. Processing and quality characteristics of apple slices processed under simultaneous infrared dry-blanching and dehydration with intermittent heating [J]. Journal of Food Engineering,2010,97(1):8-16.
    [3]Midilli A, Kucuk H, Yapar Z. A new model for single layer drying [J]. Drying technology, 2002,20(7):1503-1513.
    [4]Togrul H. Suitable drying model for infrared drying of carrot [J]. Journal of Food Engineering,2006,77(3):610-619.
    [5]Zhu Y, Pan Z. Processing and quality characteristics of apple slices under simultaneous infrared dry-blanching and dehydration with continuous heating [J]. Journal of Food Engineering,2009,90(4):441-452.
    [6]Crank J. Mathematics of Diffusion, second ed [M]. Oxford University Press, London,1975.
    [7]Kahyaoglu T, Kaya S. Modeling of moisture, color and texture changes in sesame seeds during the conventional roasting [J]. Journal of Food Engineering,2006,75(2):167-177.
    [8]Ponkham K, Meeso N, Soponronnarit S, et al. Modeling of combined far-infrared radiation and air drying of a ring shaped-pineapple with/without shrinkage [J]. Food and Bioproducts Processing,2012,90(2):155-164.
    [9]Saraival J, Oliveira J C, Lemos A, et al. Analysis of the kinetic patterns of horseradish peroxidase thermal inactivation in sodium phosphate buffer solutions of different ionic strength [J]. International Journal of Food Science and Technology,1996,31(3):223-231.
    [10]Rodrigo C, Rodrigo M, Alvarruiz A, et al. Inactivation and regeneration kinetics of horseradish peroxidase heated at high temperatures [J]. Journal of Food Protection,1997, 60(8):961-966.
    [11]Morales-Blancas E F, Chandia V E, Cisneros-Zevallos L. Thermal inactivation kinetics of peroxidase and lipoxygenase from broccoli, green asparagus and carrots [J]. Journal of Food Science,2002,67(1):146-154.
    [12]Afzal T M, Abe T. Diffusion in potato during far infrared radiation drying [J]. Journal of Food Engineering,1998,37(4):353-365.
    [13]Rasouli M, Seiiedlou S, Ghasemzadeh H R, et al. Influence of drying conditions on the effective moisture diffusivity and energy of activation during the hot air drying of garlic [J]. Australian Journal of Agricultural Engineering,2011,2(4):96-101.
    [1]Lavelli V, Zanoni B, Zaniboni A. Effect of water activity on carotenoid degradation in dehydrated carrots [J]. Food Chemistry,2007,104(4):1705-1711.
    [2]Gornicki K, Kaleta A. Drying curve modelling of blanched carrot cubes under natural convection condition [J]. Journal of Food Engineering,2007,82(2):160-170.
    [3]Bomben J L. Effluent generation, energy use and cost of blanching [J]. Journal of Food Process Engineering,1977,1(4):329-341.
    [4]Grabowski S, Marcotte M. Drying of fruits and vegetables and spices [M]. In:Handbook of Postharvest Technology:Cereals, Fruits, Vegetables, Tea and Spices; Chakraverty A, Mujumdar A S, Raghavan G S V, Ramaswamy H S, Eds., Marcel Dekker:New York,2003, 653-688.
    [5]Gabel M, Pan Z, Amaratunga K S P, et al. Catalytic infrared dehydration of onions [J]. Journal of Food Science,2006,71(9):351-358.
    [6]Togrul H. Suitable drying model for infrared drying of carrot [J]. Journal of Food Engineering,2006,77(3):610-619.
    [7]Mihoubi D, Timoumi S, Zagrouba F. Modelling of convective drying of carrot slices with IR. heat source [J]. Chemical Engineering and Processing,2009,48(3):808-815.
    [8]Hiranvarachat B, Devahastin S, Chiewchan N. Effects of acid pretreatments on some physicochemical properties of carrot undergoing hot air drying [J]. Food and Bioproducts Processing,2011,89(2):116-127.
    [9]Pan Z, McHugh T H. In U.S. Patent Application.20060034981. Filed 8/13/2004, published 2/16/2006.
    [10]Zhu Y, Pan Z. Processing and quality characteristics of apple slices under simultaneous infrared dry-blanching and dehydration with continuous heating [J]. Journal of Food Engineering,2009,90(4):441-452.
    [11]Sandu C. Infrared radiative drying in food engineering:a process analysis [J]. Biotechnology Progress,1986,2(3):109-119.
    [12]Afzal T M, Abe T. Modeling far infrared drying of rough rice [J]. Journal of microwave power and electromagnetic energy,1997,32(2):80-86.
    [13]Skjoldebrand C. Infrared processing [M]. In:Henry CJK, Chapman C, editors. The nutrition handbook for food processors. Cambridge, UK:Woodhead Publishing,2002, p 423-432.
    [14]Krishnamurthy K, Khurana H K, Soojin J, et al. Infrared Heating in Food Processing:An Overview [J]. Comprehensive Reviews in Food Science and Food Safety,2008,7(1),2-13.
    [15]Morales-Blancas E F, Chandia V E, Cisneros-Zevallos L. Thermal inactivation kinetics of peroxidase and lipoxygenase from broccoli, green asparagus and carrots [J]. Journal of Food Science,2002,67(1):146-154.
    [16]Zhu Y, Pan Z, McHugh T H, et al. Processing and quality characteristics of apple slices processed under simultaneous infrared dry-blanching and dehydration with intermittent heating [J]. Journal of Food Engineering,2010,97(1):8-16.
    [17]Chua K J, Chou S K. A comparative study between intermittent microwave and infrared drying of bioproducts [J]. International Journal of Food Science and Technology,2005,40(1): 23-39.
    [18]Martinez-Romero D, Castillo S, Valero D. Quality Control in Frozen Vegetables [M]. Marcel Dekker, Inc., New York, U.S.A.2004.
    [19]Vishwanathan K H, Giwari G K, Hebbar H U. Infrared assisted dry-blanching and hybrid drying of carrot [J]. Food and Bioproducts Processing,2013,91(2):89-94.
    [20]Nahimana H, Zhang M. Shrinkage and Color Change during Microwave Vacuum Drying of Carrot [J]. Drying Technology,2011,29(7):836-847.
    [21]Koca N, Burdurlu H S, Karadeniz F. Kinetics of colour changes in dehydrated carrots [J]. Journal of Food Engineering,2007,78(2):449-455.
    [22]Ratti C. Shrinkage during drying of foodstuffs [J]. Journal of Food Engineering,1994,23(1): 91-105.
    [23]Sjoholm I, Gekas V. Apple shrinkage upon drying [J]. Journal of Food Engineering,1995, 25(1):123-130.
    [24]Wang N, Brennan J G. Changes in structure, density and porosity of potato during dehydration [J]. Journal of Food Engineering,1995,24(1):61-76.
    [25]Ketelaars A, Jomaa W, Puigalli J, et al. Drying shrinkage and stress [M]. In Mujumdar A S. (Ed.), Drying'92, Part A. Amsterdam, The Netherlands:Elsevier.1992, pp.293-303.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700