海洋近岸溢油污染微生物修复技术的应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
筛选自长期受到石油污染区域的高效石油烃降解菌株,在实验室的研究过程中一般都会表现出较高的烃降解性能,但是当把它们投放到现场的应用环境中后,由于缺乏对现场环境的适应能力,大多数微生物菌株并不能很好地再现其高效的石油烃降解性能。国外对微生物修复处理技术的应用研究较早,而在国内,微生物修复的处理技术还处在实验室的研究阶段,很少有大规模现场实验的开展,更无严格的应用标准进行遵循。因此,本论文通过从实验室研究到现场应用的一系列完整的微生物修复实验,探讨了微生物修复技术在海洋近岸溢油污染环境中应用的可行性,并得出以下结论:
     (1)从青岛港近岸的水样中筛选得到4株石油烃降解菌: Ochrobactrum sp.N1(No.HQ231209)、Brevibacillus parabrevis N2(No.HQ231210)、Brevibacillusparabrevis N3(No.HQ231211)、Brevibacillus parabrevis N4(No.HQ231212)。将N系列石油烃降解菌和产生物表面活性剂菌株Bbai~(-1)复配成高效石油烃降解菌群,该菌群在富集培养基中经过16个小时进入生长稳定期,在油培养基中经过20小时进入生长稳定期。油培养基中的菌浓可达9.12×10~9cell·mL~(-1),对原油降解的最适宜环境条件为:pH=8.0,T=25oC,盐度为(NaCl%)25g·L~(-1)。
     (2)原油因风化作用在初始阶段的质量损失主要来源于原油中轻质组分的大量挥发,分子量较大且结构复杂的石油烃组分受风化作用的影响较小。通过气相色谱分析,原油在风化过程中的质量损失主要来源于C17之前的烃组分挥发。
     通过海水模拟实验柱对油污染水体环境进行了模拟。用化学消油剂处理海水表层的溢油污染物时,随着海水深度的不断增加,海水垂直方向上石油烃组分的浓度逐渐减小;用微生物修复菌剂处理海水中的溢油污染物时,在初始阶段微生物菌株会优先利用溶解态的石油烃组分进行生长代谢,之后在生长过程中产生的生物表面活性剂等代谢产物会促进油组分的溶解,水体表层石油烃浓度高于底层。
     在近岸滩涂沉积物模拟实验环境中,通过室内摇瓶实验可知油砂混合物在海水的冲刷作用下经过10小时达到吸附解吸平衡,水体中石油烃组分的含量为6.40mg·L~(-1)。通过柱型模拟实验证明,在近岸滩涂溢油污染区域应加强10cm以内海砂的修复处理工作。
     (3)在微生物修复室内摇瓶实验过程中(25oC,120r/min),烃降解菌N1-N4对原油的降解率为63.2%,通过对微生物降解动力学过程的考察,N系列功能菌对原油的降解较好的符合了一级动力学过程。产生物表面活性剂菌株Bbai~(-1)的加入在一定程度上加快了N1-N4对石油烃组分的降解速率,降解率为66%。
     (4)微生物修复室内箱体模拟实验是对室内摇瓶实验的放大,在水体温度为20oC时,细菌总数和石油烃降解菌数量维持在10~7CFU mL~(-1)的水平。菌剂对水体表层原油的乳化效果不理想,实验池中溶解态总烃的含量为5.11mg·L~(-1)。在水体温度为25oC时室内温度为19oC,在短时间内细菌总数和石油烃降解菌数量由最初的的10~6~10~7CFU mL~(-1)上升至10~8CFU mL~(-1),原油的物理状态从实验之初较大的块状逐渐被乳化成很小的球状或片状,水体中溶解态总烃的含量由0.129~0.370mg L~(-1)逐渐上升至32.597~34.366mg L~(-1),乳化效果优于20oC时的乳化效果。通过GC和GC-MS检测,水体温度为20C,微生物菌剂的降油效果不明显,水体温度为25C,微生物菌剂对石油烃的降解指数可达51.1%。
     (5)微生物修复野外模拟实验共进行了103天,实验开始之初对各菌株进行了大型的工业发酵,石油烃降解菌N1-N4系列的菌剂共发酵6吨,产生物表面活性剂菌株Bbai-1发酵4吨,菌剂的保质期为20天。实验池水体中细菌总数和烃类降解菌的数量都经历了先减小后增大而后再减少的过程。添加了微生物修复菌剂的各实验池水体中的细菌总数维持在10~6~10~7CFU·mL~(-1)之间,烃降解菌的数量维持在10~5CFU·mL~(-1)以上,空白池的细菌总数始终在10~4CFU·mL~(-1)左右,石油烃降解菌总数保持在10~3CFU·mL~(-1)以下。总体来看以M06池(油、N1-N4)和M01池(油、N1-N4、Bbai-1、营养盐)中的微生物长势较好。
     实验过程中各实验池中细菌所产糖脂含量不断增加,以最佳修复条件下M01池代谢所产糖脂含量最高。通过GC和GC-MS检测微生物代谢所产脂肪酸主要为十六烷酸和二十二烷酸。通过分子生态学的分析可知,随着培养时间的增长,布设了微生物修复菌剂的实验池中条带的亮度和丰度都大幅度上升,变化情况同细菌总数和烃降解菌数量的测定结果相符。通过油指纹分析可知,处于最佳降解条件下的M01池中石油烃降解菌对原油的降解效果最好,平均降解指数达到57.39%,M06、M07和M08池中由于营养盐或表面活性剂的缺乏,外加实验开展期间天气复杂多变,平均降解指数分别为39.88%、30.50%、31.99%。
     (6)在微生物修复滩涂现场实验中,利用沸石吸附石油烃降解菌,可以较好地耐受海水的冲刷,从而起到更长久的保菌和修复效果。T04区域细菌总数为5.51×10~7CFU·mL~(-1),石油烃降解菌数量为1.49×10~6CFU·mL~(-1)。T03区域细菌总数为3.08×106CFU·mL~(-1),石油烃降解菌数量为5.90×10~5CFU·mL~(-1)。
     (7)在微生物修复海底现场实验中,海水表层和底层的各个位点相对于参照位点细菌总数都有不同程度的增长,底层水中的石油烃降解菌的数量要高于表层水中的烃降解菌数量,实验漂移位点的菌数要高于固定位点菌数。各位点微生物所产代谢产物的含量遵循先增加后减少的趋势,漂移位点HD06Wb和HD07Wb所测糖脂含量在第33天达到最高,分别为43.54mg·L~(-1)和42.98mg·L~(-1),这与菌数变化趋势相对应。分子生态学分析的结果表明第14天和第35天各位点条带的丰度和亮度都比本底值有不同程度的增大,且添加的菌剂的条带在各位点中都有出现且亮度较大。
     通过室内摇瓶实验、室内箱体模拟实验、野外模拟实验、滩涂现场实验以及海底现场应用等一系列完整的微生物修复实验,评价和优化了微生物修复技术在实际应用过程中的各项工艺参数,为海洋石油污染微生物修复体系的现场应用提供了技术支持。
Hydrocarbon degrading bacteria are usually screened from oil-contaminatedareas. Generally, they could performe very well in laboratory oil degradingexperiments. But the bacteria usually could not reproduce their efficienthydrocarbon-degrading ability in the field environment due to the lack of the ability toadapt to the on-site envirnment. The study abroad has reached high levels onmicrobial remediation treatment technology while the techonology is still in thelaboratory research stage at home. There are few large-scale field experiments to carryout, even less stringent standards to follow. Experiments were performed to assess theeffect of environmental factors on the viability of oil-degradation bacteria in sea water.The aim is mainly to evaluate the application feasibility and screen the most suitablehydrocarbon-degrading bacteria in a proper way. All the conclusions are as follows:
     (1) Four hydrocarbon degrading bacteria were isolated from Qingdao Port:Ochrobactrum sp. N1(No.HQ231209), Brevibacillus parabrevis N2(No.HQ231210),Brevibacillus parabrevis N3(No.HQ231211), Brevibacillus parabrevis N4(No.HQ231212). N series bacteria combined with a biosurfactant producer Bbai~(-1) hashigh efficient in petroleum degrading experiment. The mixed bacteria flora couldreach into the growth stationary phase after16hours culture in the enrichmentmedium. In the oil medium, the bacteria reach into the stationary phase after20hoursculture. Cell concentration was9.12×10~9cell·mL~(-1). The optimum conditons forcrude oil degradation are determined to be pH of8.0, temperature of25oC and salinityof (NaCl%)25g·L~(-1).
     (2) The initial stage of quality loss in crude oil weathering process mainlycomes from volatilization of light component. Large molecular weight and structureof the complex hydrocarbon component of oil is rearely affected by weathering.Through gas chromatography analysis of crude oil in the weathering process, lossmainly comes from the hydrocarbon component volatilization before C17.
     When the oil spills are treated with chemical dispersants, the oil concentration inseawater decrease along with the increasing of water depth. When micribial agents isapplied in the treatment of oil spills, the bacteria in the initial stage only use thedissoluted oil in seawater. After the bacteria adapt to the marine environment,biosurfactant produced in the growth process could increase the dissolution of the oilcomponent. Hydrocarbon concentration in the surface of the seawater is higher thanthe one in the bottom.
     In the oil migration shake flask experiment, the oil-sand mixture reach theadsorption-desorption equilibrium after10hours of washing action of the sea water.The components of petroleum hydrocarbons in water is of6.40mg·L~(-1). Columnarsimulation experiment show that the treatment of inshore oil contaminated areasshould be strengthened within10cm of sea sand.
     (3) N series bacteria could degrade63.2%of the crude oil in the shake flaskexperiment. Microbial degradation of crude oil consists with first-order kinetics.Biosurfactant producer strain Bbai-1could accelerate the degradation of crude oil byN series bacteria. The degradation rate is66%.
     (4) The indoor mesocosm experiment is the amplification of the shake flaskexperiment. When the temperature is20oC, TVC and the number of the HDB remainat the level of10~7CFU·mL~(-1). The dissolved hydrocarbons concentration is of5.11mg·L~(-1). When the temperature is25oC, the room temperature is19oC. TVC and thenumber of the HDB could reach up to10~8CFU mL~(-1)from10~7CFU mL~(-1). Oilconcentration in seawater is32.597to34.366mg L~(-1). The emulsification efficience isbetter than the one in the temperature of20oC. Based on the GC and GC-MS analysis,the degradation rate is51.1%in the temperature of25oC.
     (5) The field simulation experiment is conducted for103days. N series bacteriaagent is fermented a total of six tons. Biosurfactant producer strain Bbai-1isfermented to be4tons. In the experimental pool, TVC and the number of HDB areexperienced a process of decreas, increas and finally decrease. TVC in eachexperimental pool maintain at the level of10~6~10~7CFU·mL~(-1). The number of HDB ismaintained at more than10~5CFU·mL~(-1). TVC and HDB in the control were 10~4CFU·mL~(-1)and10~3CFU·mL~(-1)respectively. The strains in M06(oil, the microbesare growing well in the N1-N4) and M01(oil, N1-N4, Bbai-1nutrient) grow betterthan other pools.The glycolipid content produced by the strains maintains increase ineach experimental pool. Glycolipid in M01has the hightest yield. Based on the GCand GC-MS analysis, the metabolites are mainly hexadecanoic acid and behenic acid.Molecular Ecology's analysis shows that, with the growth of the culture time,brightness and abundance of the inocula experiment pool bands increasedsignificantly. The degradation rate in M01pool was57.39%. The average degradationrates in M06, M07and M08are39.88%,30.50%,31.99%due to the lack of nutrientsor surfactant.
     (6)In the bioremediation of shore site experiment, the use of zeolite adsorbinghydrocarbon degrading bacteria could tolerate the washing effect from seawater. Itcan keep the number of function bacteria in a high level. TVC and the number of theHDB in T04region are5.51×10~7CFU·mL~(-1)and1.49×10~6CFU·mL~(-1)respectively.TVC and the number of the HDB in T03region are3.08×10~6CFU·mL~(-1)and5.90×10~5CFU·mL~(-1)respectively.
     (7) In the bioremediation of marine sediment experiment, TVC both in thesurface water and in the bottom increase to a certaine extent compared with thecontrol station. The number of HDB in the bottom water is higher than the one in thesurface wate. The bacteria in drifting station are more than the fixed station.
     Glycolipid produed in the drifting stations HD06Wb and HD07Wb are43.54mg·L~(-1)and42.98mg·L~(-1)respectively after33days experiment. It is correspondingwith the bacteria growth trend. Molecular ecology analysis results show that theabundance and brightness on the14d and the35d are greater than the background.
     Each technological parameter is optimized through the series of bioremediationexperiment from indoor shake flask experiment to marine site application. Theprogram conducted in this study is the exploration, in China, in forming a commonmethod to evaluate petroleum-utilizing abilities of bioremediation agents.
引文
[1] Oh YS, Sim DS, Kim SJ. Effects of nutrients on crude oil biodegradation in the upperintertidal zone. Marine Pollution Bul1etin,2001,42(12):1367~1372
    [2]Bragg JR. Effectiveness of biodegradation for the Exxon Valdez oil spill. Nature,1994,368:413~418
    [3] Fingas MF, Charles J. The Basic of Oil Spill Clean up. Second edition. USA: LewisPublishers,2001,39~50
    [4]张天胜,郭丽梅,黄惠玲,等.生物表面活性剂及其应用.北京:化学工业出版社,2005,267~293
    [5]郑西来,王秉忱,佘宗莲.土壤-地下水系统石油污染原理与应用研究.北京:地质出版社,2004,6~7
    [6]宋志文,夏文香,曹军,等.海洋石油污染物的微生物降解与生物修复.生态学杂志,2004,23(3):99~102.
    [7]阎季惠.海上溢油与治理.海洋技术,1996,3:29~3
    [8]夏文香,林海涛,张英,等.海上溢油的污染控制技术.青岛建筑工程学院学报,2004,25(1):54~57
    [9] Zhendi Wang, Merv Fingas. Developments in the analysis of petroleum hydrocarbons in oils,petroleum products and oi-spill-related environmental samples by gas chromatography.Journal of Chromatography A,1997,774,51~78
    [10]王萌,张鹏,安利国,等.微生物对石油污染的降解作用.科技信息,2009,14~15
    [11]刘金雷,夏文香,赵亮,等.海洋石油污染及其生物修复.海洋湖沼通报,2006,3:48~53
    [12]姜楠,曲媛媛,周集体.地下水中BTEX的原位生物修复研究进展.2009,31(5):76~79
    [13]马彦超,张发旺,张胜,等.石油污染土壤的生物技术浅析.科技资讯,2009,10:6~7
    [14]周少奇.环境生物技术.北京:科学出版社.2003,252
    [15]李刚,黄翔,郭雅妮.浅析原位生物修复技术及应用.环境与可持续发展,2009,(3):30~33
    [16] Beolchini, F., Rocchetti, L., Regoli, F., Dell’Anno, A.,2010. Bioremediation of marinesediments contaminated by hydrocarbons: Experimental analysis and kinetic modeling. J.Hazard. Mater.182,403~407
    [17] Brodkorb, T.S., Legge, R.L.,1992. Enhanced biodegradation of phenanthrene in oil tarcontaminated soils with Phanerocha ete Chrysosporium. Appl. Environ. Microb.58,3117~3121
    [18] Hii, Y.S., Law, A.T., Shazili, N.A.M., Abdul-Rashid, M.K., Lee, C.W.,2009. Biodegradationof Tapis blended crude oil in marine sediment by a consortium of symbiotic bacteria. Int.Biodeter. Biodegr.63,142~150
    [19] Mohajeri, L., Aziz, H.A., Isa, M.H., Zahed, M.A.,2010. A statistical experiment designapproach for optimizingbiodegradation of weathered crude oil in coastal sediments.Bioresource. Technol.101,893~900
    [20] Murado, M.A., Vázquez, J.A., Rial, D., Beiras, R.,2011. Dose–response modeling with twoagents: Application to the bioassay of oil and shoreline cleaning agents. J. Hazard. Mater.185,807~817
    [21] Solano-Serena, F., Marchal, R., Heiss, S., Vandecasteele, J.P.,2004. Degradation of isooctaneby Mycobacterium austroafricanum IFP2173: growth and catabolic pathway. J. Appl.Microbiol.97,629~639
    [22] Townsend, G.T., Prince, R.C., Suflita, M.,2004. Anaerobic biodegradation of alicyclicconstituents ofgasoline and natural gas condensate by bacteria from an anoxic aquifer. Fems.Microbiol. Ecol.49,129~135
    [23] Vogel, T.M.,1996. Biaugmentation as a soil bioremediation approach. Curr. Opin. Biotech.7,311~316
    [24] Wang, X.B, Chi, C.Q., Nie, Y., Tang, Y.Q., Tan, Y., Wu, G., Wu, X.L.,2011. Degradation ofpetroleum hydrocarbons (C6–C40) and crude oil by a novel Dietzia strain. Bioresource.Technol.102,7755~7761
    [25] Wardlaw, G.D., Nelson, R.K., Reddy, C.M., Valentine, D.L.,2011. Biodegradation preferencefor isomers of alkylated naphthalenes and benzothiophenes in marine sediment contaminatedwith crude oil. Org. Geochem.42,630~639
    [26]郑天凌,庄铁城,蔡立哲等.微生物在海洋污染环境中的生物修复作用.厦门大学学报(自然科学版),2001,40(2):524~534
    [27]丁明宇,黄键,李永祺.海洋微生物降解石油的研究.环境科学学报,2001,21(1):84~88
    [28]卢显妍,尹华,彭辉等.石油降解菌的筛选及其降解能力的研究.环境污染治理技术与设备,2003,4(12):13~16
    [29]刘陈立,邵宗泽.海洋石油降解微生物的分离鉴定.海洋学报,2005,27(4):114~120
    [30] Margesin R. Potential of cold-adapted microorganisms for bioremediation of oil-pollutedAlpine soils. International Biodeterioration&Biodegradation,2000,46:3~10
    [31] Watanabe K. Microorganisms relevant to bioremediation. Current Opinion in Biotechnology,2001,12:237~241
    [32] Harayama S, Kasai Y, Hara A. Microbial communities in oil-contaminated seawater. CurrentOpinion in Biotechnology,2004,15:205~214
    [33] Chhatre S, Purohit H, Shanker R, etal. Bacterial consortia for crude oil spill remediation.Water Science Technology.1996,34(10):187~193
    [34] Alber TD, Zhu XQ. Venosa. Biodegradation of Crude Oil Contaminating Marine Shorelinesand Freshwater Wetlands. Spill Science&Technology Bulletin,2003,8(2):163~178
    [35]任南琪,马放,杨基先等编著.污染控制微生物学.哈尔滨:工业大学出版社.2002,358~369
    [36]张青田.生物技术在海上溢油处理中的应用.海洋信息,2005,2:14~17
    [37] Atlas RM. Petroleum Biodegradation and Oil Spill Bioremediation. Marine Pollution Bulletin,1995,31:178~182
    [38]郭楚玲,郑天凌,洪华生.多环芳烃的微生物降解与生物修复.海洋环境科学,19(3):24~29
    [39] Boopathy R.Factors limiting bioremediation technologies. Bioresource Technology,2000,74:63~67
    [40]赵剑强,朱浚黄.溢油生物降解技术的探讨.交通环保,1996,17(3):4~6,25
    [41]李丽,张利平,张元亮.石油烃类化合物降解菌的研究概况.微生物学通报,2001,28(5):89~92
    [42] Arias B R. The microbiology of aquatic oil spills. Advances in applied microbiology,1997,3(2):5~11
    [43]李永祺,丁美丽.海洋污染生物学.北京:海洋出版社,1991
    [44]顾传辉,陈桂珠,石油污染土壤生物降解生态条件研究.生态科学,2000,19(4):67~72
    [45]沈德中.污染环境的生物修复.北京:化学工业出版社,2002
    [46]汪洋,史典义,聂春雨,等.石油污染土壤的微生物修复技术.生物技术,2009,19(2):94~96
    [47]史家粱,徐亚同,张圣章.环境微生物学.上海:华东大学出版社,1993:183~189
    [48]陈熹兮,李堃宝,李道棠.低温微生物及其在生物修复领域中的应用.自然杂志,2001,23(3):163~167
    [49]史君贤,陈忠元,胡锡钢.海洋微生物对石油烃降解的研究Ⅰ浙江省海岛海域石油烃降解细菌的生态分布.东海海洋,1997,15(4):38~45
    [50]钟卉,夏文香,唐晨光,等.营养剂在清除海洋石油污染中的应用.海洋湖沼通报(增),2007,147~151
    [51]郑洲,缪锦来,刘芳明,等.南极多环芳烃低温降解菌的筛选及其降解特性研究.现代农业科技,2008,19:264~265
    [52] Ronald M, Atlas. Petroleum Biodegradation and Oil Spill Bioremediation. Marine PollutionBulletin,1995,31:178~182
    [53] Arias RM, Bartha R. Degradation and mineralization of petroleum in seawater: limitation bynitrogen and phosphorus. Biotechnology and Bioengineering,1972,14:309~317
    [54] Prince RC, Lessard RR, Clark JR. Bioremediation of marine oil spills. Oil&Gas Science andTechnology,2003,58(4):463~468
    [55]夏文香,李金成,宋志文,等.生物修复剂在清除海滩石油污染中的应用.环境工程学报,2007,1(8):9~14
    [56] WrennBA, Suidan MT, Storhmeier KL, et al. Nutrient transpot during bioremediation oncontaminated beaches: Evaluation with lithium as a conservative tracer. Water Research,1997,31:515~524
    [57] Olivieri R, Bacchin P, Robertiello A, et al. Microbial degradation of oil spills enhanced by aslow release fertilizer. Applied and Environmental Microbiology,1976,31:629~634
    [58] Atlas RM. Bioremediation of petroleum pollutants. International Biodeterioration andBiodegradation,1995,35(1):317~327
    [59] Pritchard PH, Mueller JG, Rogers JG, et al. Oil spill bioremediation: Experiences, lessens andresults from the Exxon Valdez oil spill Alaska. Biodegradation,1992,3:109~132
    [60] Swannell RPJ, Lee K, McDonagh M. Field evaluation of marine oil spill bioremediation.Microbiological Reviews,1996,60(2):342~365
    [61] Lee K, Trembley GH. Bioremediation: Application of slow-release fertilizers on low energyshorelines. Proceedings of the1993oil spill conference. American Petroleum Institute.Washington, D C,1993,449~454
    [62] Pritchard PH, Costa CF, Suit L. Alaska oil spill bioremediation project.EPA/600/9-91/046a&b, Office of Research and Development, U S EPA, Gulf Breeze, FL,1991
    [63] Lee K, Levy EM. Enhancement of the natural biodegradation of condensate and crude oil onbeaches of Atlantic Canada. Proceeding of1989Oil Spill Conference. American PetroleumInstitute. Washington, D C,1989,479~486
    [64] Ladousse A, Tramier B. Results of12years of research in spilled oil bioremediation: InipolEAP22, Proceeding of1991Oil Spill Conference. American Petroleum Institute. Washington,D C,1991,577~581
    [65] Sveum P, Ladousse A. Biodegradation of the oil in the Arctic: Enhancement of oil-solublefertilizer application. Proceeding of1989Oil Spill Conference. American Petroleum Institute.Washington, D C,1989,436~446
    [66] Sims JL, et al. Approach to bioremediation of contaninated soil. Hazardous Waste andHazardous Materials,1990,7(2):117~149
    [67] Lewis RF. Site demonstration of slurry-phase biodegradation of PAH in various soil strata ata creosote contaminated site. Biodegradation,2000,11(6):391~399
    [68] Saponaro S, Bonomo L, Petruzzelli G, et al. Polycyclic aromatic hydrocarbons (PAHs) slurryphase bioremediation of a manufacturing gas plant (MGP) site aged soil. Wat. Air and SoilPollut.,2002,135(1-4):219~236
    [69] Joner EJ, Corgie SC, Amellal N, et al. Nutritional constraints to degradation of polycyclicaromatic hydrocarbons in a simulated rhizosphere. Soil Biology&Biochemistry,2002,34:859~864
    [70]孙铁珩,宋玉芳,许华夏,等.植物法生物修复PAHs和矿物油污染土壤的调控研究.应用生态学报,1999,10(2):225~229
    [71]宋玉芳,许华夏,孙铁珩.湿地土壤中矿物油和多环芳烃(PAHs)植物修复调控研究.应用生态学报,2000,11(supp):99~102
    [72] Kaestner M, Mahro B. Microbial degradation ofpolycyclic aromatic hydrocarbons in soilsaffected by the organic matrix of compost. Appl. Microbiol. Biotechnol.,1996,44(5):668~675
    [73] Haderlein A, Legros R, Ramsay B. Enhancing pyrene mineralization in contaminated soil bythe addition of humic acids or composted contaminated soil. Appl. Microbiol.Biotechnol.,2001,56(3-4):555~559
    [74] HolmanHYN, Nieman K, Sorensen DL, et al. Catalysis of PAH biodegradation by humicacid shown in synchrotron infrared studies. Environment Science and Technology,2002,36(6):1276~1280
    [75] Lee K, Park JW, Ahn IS. Effect of additional carbon source on naphthalene biodegradation byPseudomonas putida G7. Journal of Hazardous Materials,2003,105(1-3):157~167
    [76] Bengtsson G, Zerhouni P. Effectes of carbon substrate enrichment and DOC concentration onbiodegradation of PAHs in soil. Journal of Applied Microbiology,2003,94(4):608~617
    [77] Carmichael LM, Pfaender FK. The effect of inorganic and organic supplements on themicrobial degradation of phenanthrene and pyrene in soils. Biodegradation,1997,8(1):1~13
    [78] Bachoon, D.S., Hodson R.E., Araujo, R.,2001. Microbial community assessment inoil-impacted salt marsh sediment microcosms by traditional and nucleic acid-based indices. J.Microbiol. Meth.30,37~49
    [79] Christoph, G., Gunnar, G., Kenneth, N.T., Peter, N.G.,2009. Microbial consortia in mesocosmbioremediation trial using oil sorbents, slow-release fertilizer andbioaugmentation. Fems.Microbiol. Ecol.69,288~300
    [80] McKew, B.A., Coulon, F., Osborn, A.M., Timmis, K.N., McGenity, T.J.,2007. Determiningthe identity and roles of oil-metabolizing marine bacteria from the Thames estuary, UK.Environ. Microbiol.9,165~176
    [81] Obayori, O.S., Adebusoye, S.A., Adewale, A.O., Oyetibo, G.O., Oluyemi, O.O., Amokun,R.A., Ilori, M.O.,2009. Differential degradation of crude oil (Bonny Light) by fourPseudomonas Strains. J. Environ. Sci.-China21,243~248
    [82] Sei, K., Sugimoto, Y., Mori, K., Maki, H., Kohno, T.,2003. Monitoring of alkane-degradingbacteria in a sea-water microcosm during crude oil degradation by polymerase chain reactionbased on alkane-catabolic genes. Environ. Microbiol.5,517~522
    [83] Nie, M.Q., Yin, X.H., Ren, C.Y., Wang, Y., Xu, F., Shen, Q.,2010. Novel rhamnolipidbiosurfactants produced by a polycyclic aromatic hydrocarbon-degrading bacteriumPseudomonas aeruginosa strain NY3. Biotechnol. Adv.28,635~643
    [84] Hao, R.X. and Lu, A.H.,2009. Biodegradation of heavy oils by halophilic bacterium. Prog.Nat. Sci.19,997~1001
    [85] Venosa, A.D., Suidan, M.T., Wrenn, B.A., Strohmeier, K.L., Haines, J.R., Eberhart, B.L.,1996. Bioremediation of an experimental oil spill on the shoreline of Delaware Bay. Env. Sci.Tec.30,1764~1775
    [86] Liu, C.W., Chang, W.N., Liu, H.S.,2009. Bioremediation of n-alkanes and the formation ofbiofloccules by Rhodococcus Erythropolis NTU-1under various saline conditions and seawater. Biochem. Eng. J.45,69~75
    [87] Huang, L., Ma, T., Li, D., Liang, F.L., Liu, R.L., Li, G.Q.,2008. Optimization of nutrientcomponent for diesel oil degradation by Rhodococcus Erythropolis. Mar. Pollut. Bull.56,1714~1718
    [88] Brakstad, O.G., Lodeng, A.G.G.,2005. Microbial diversity during biodegradation of crude oilin seawater from the North Sea. Microb. Ecol.49,94~103
    [89] Volkering F., Breure AM. Influence of nonionic surfactants on bioavailability andbiodegradation of polycyclicaromatic hydrocarbons. Appl. Environ. Microbiol.,1995,61(5):1699~1705
    [90] Carriere PPE, Mesania FA. Enhanced biodegradation of creosote contaminated soil. WasteManagement,1996,15(8):579~583
    [91] Tiehm A, Stieber M, Werner P, et al. Surfactant-enhanced mobilization and biodegradation ofpolycyclic aromatic hydrocarbons in manufactured gas plant soil. Environment Science andTchnology,1997,31(9):2570~2576
    [92]宋玉芳,孙铁珩,许华夏.表面活性剂TW-80对土壤中多环芳烃生物降解的影响.应用生态学报,1999,10(2):230~232
    [93] Zheng ZM. Obbard JP. Effect of non-ionic surfactants on elimination of polycyclic aromatichydrocarbons (PAHs) in soil-slurry by Phanerochaete chrysosporium. Journal of ChemicalTechnology and Biotechnology,2001,76(4):423~429
    [94] Zheng ZM. Obbard JP. Removal of polycyclic aromatic hydrocarbons from soil usingsurfactant and the white rot fungus Phanerochaete chrysosporium. Journal of ChemicalTechnology and Biotechnology,2000,75(12):1183~1189
    [95] Tayebe BL, Mitra S, Reza R, et al. An efficient biosurfactant-producing bacteriumPseudomonas aeruginosa MR01, isolated from oil excavation areas in south of Iran. Colloidsand Surfaces B: Biointerfaces,2009,69(2):183~193
    [96] Zheng CG, Wang MM, Wang YL, et al. Optimization of biosurfactant-mediated oil extractionfrom oil sludge. Optimization of biosurfactant-mediated oil extraction from oil sludge.Bioresource Technology,2012,10:338~342
    [97] Thavasi R, Jayalakshmi S, Banat IM. Application of biosurfactant produced from peanut oilcake by Lactobacillus delbrueckii in biodegradation of crude oil. Bioresource Technology,2011,102(3):3366~3372
    [98] Wei QF, Mather RR, Fotheringham AF. Oil removal from used sorbents using a biosurfactant.Bioresource Technology,2005,96(3):331~334
    [99] Ghojavand H, Vahabzadeh F, Shahraki AK. Enhanced oil recovery from low permeabilitydolomite cores using biosurfactant produced by a Bacillus mojavensis (PTCC1696) isolatedfrom Masjed-I Soleyman field. Journal of Petroleum Science and Engineering,2012,81:24~30
    [100] Rakeshkumar MJ, Kalpana M, Avinash M, et al. Physicochemical characterization ofbiosurfactant and its potential to remove oil from soil and cotton cloth. CarbohydratePolymers,2012,89(4):1110~1116
    [101] Kumari B, Singh SN, Singh DP. Characterization of two biosurfactant producing strains incrude oil degradation. Process Biochemistry,2012,47(12):2463~2471
    [102] Najafi AR, Rahimpour MR, Jahanmiri, AH, et al. Interactive optimization of biosurfactantproduction by Paenibacillus alvei ARN63isolated from an Iranian oil well. Colloids andSurfaces B: Biointerfaces,2011,82(1):33~39
    [103] Tumeo M, Braddock J, Venator T, et al. Effectiveness of a biosurfactant in removingweathered crude oil from subsurface beach material. Spill Science&Technology Bulletin,1994,1(1):53~59
    [104] Zhang XS, Xu DJ, Zhu CY, et al. Isolation and identification of biosurfactant producing andcrude oil degrading Pseudomonas aeruginosa strains. Chemical Engineering Journal,2012,209(15):138~146
    [105] Arino S, Marchal R, Vandecasteele JP. Identification and production of a rhamnolipidicbiosurfactant by a Pseudomonas species.Applied Microbiology and Biotechnology,1996,45:162~168
    [106] Burd G., Ward OP. Involvement of a surface-active high molecular weight factor indegradation of polycyclic aromatic hydrocarbons by Pseudomonas marginalis. CanadianJournal of Microbiology,1996,42(8):791~797
    [107] Heikamp M.A.,cemiglia c.E.Polycyclic aromatic hydrocarbons degradation by amycobacterium sp.in microcosms containing sediment and water from pristine ecosystem.Applied and Environmental Microbiology,1989,55:1968~1973
    [108]巩宗强,李培军,王新,等.芘在土壤中的共代谢降解研究.应用生态学报,200l,12(3):447~450
    [109] Mahaffey WR., et al. Bacterial oxidation of chemical carcinogens, formation of polycyclicaromatic acids from benz (a) anthracene. Applied and Environmental Microbiology,1988,54(10):2415~2423
    [110] Mueller JG, et al. Action of a fluoranthene-utilizing bacterial community on polycyclicaromatic hydrocarbon components of creosote. Applied and Environmental Microbiology,1989,55(12):3085~3090
    [111] Jerome FJ, Chikoshi S, Raul CYS. Composting of polycyclic aromatic hydrocarbons insimulated municipal solid waste. Wat Environ Res,1998,70(1):356~361
    [112]程国玲,李培军,王凤友.多环芳烃污染土壤生物修复的强化方法.环境污染治理技术与设备,2005,6(6):1~6
    [113] Hicks BN, Bioremediation: A natural solution, Pollution Engineering,1993,25(2):30~33.
    [114] Atlas RM, Cerniglia CE. Bioremediation of petroleum pollutants-diversity andenvironmental aspects of hydrocarbon biodegradation. Bioscience,1995,45(5):332~338
    [115]赵生成,崔树生,王绍斌.污染水体原位就地修复技术研究与应用.中国水利,2004(11):20~22
    [116] Hii YS, Law AT,Shazili N.A.M., et al. Biodegradation of Tapis blended crude oil in marinesediment by a consortium of symbiotic bacteria. International Biodeterioration&Biodegradation,2009,63(2):142~150
    [117] Hasinger M, Scherr KE, Lundaa T, et al. Changes in iso-and n~alkane distribution duringbiodegradation of crude oil under nitrate and sulphate reducing conditions. Journal ofBiotechnology,2012,157(4):490~498
    [118] Trejo-Hernández MR, Ortiz A, Okoh, AI, et al. Biodegradation of heavy crude oil Mayausing spent compost and sugar cane bagasse wastes. Chemosphere,2007,68(5):848~855
    [119] Venosa AD and Zhu XQ. Biodegradation of Crude Oil Contaminating Marine Shorelinesand Freshwater Wetlands. Spill Science&Technology Bulletin,2003,8(2):163~178
    [120] Thorn KA and Aiken GR. Biodegradation of crude oil into nonvolatile organic acids in acontaminated aquifer near Bemidji, Minnesota. Organic Geochemistry,1998,29(4):909~931
    [121] Wardroper AMK, Hoffmann CF, Maxwell JR, et al. Crude oil biodegradation undersimulated and natural conditions—II. Aromatic steroid hydrocarbons. Organic Geochemistry,1984,6:605~617
    [122] Cha neau CH, Rougeux G, Yéprémian C, et al. Effects of nutrient concentration on thebiodegradation of crude oil and associated microbial populations in the soil. Soil Biology andBiochemistry,2005,37(8):1490~1497
    [123] Bost FD, Frontera-Suau R, McDonald TJ, et al. Aerobic biodegradation of hopanes andnorhopanes in Venezuelan crude oils. Organic Geochemistry,2001,32(1):105~114.
    [124] Elshafie A, AlKindi AY,Al-Busaidi S, et al. Biodegradation of crude oil and n-alkanes byfungi isolated from Oman. Marine Pollution Bulletin,2007,54(11):1692~1696
    [125] Prince RC, McFarlin KM, Butler JD, et al. The primary biodegradationof dispersed crudeoil in the sea. Chemosphere,2013,90(2):521~526
    [126] Atlas, R.M., Bartha, R.,1972. Degradation and mineralization of petroleum in seawater:limitation by nitrogen and phosphorus. Biotechnol. Bioeng.14,309~318
    [127] Yakimov, M.M., Denaro, R., Genovese, M., Cappello, S., D’Auria, G., Chernikova, T.N.,Timmis, K.N., Golyshin, P.N., Giluliano, L.,2005. Natural microbial diversity in superficialsediments of Milazzo Harbor (Sicily) and community successions during microcosmenrichment with various hydrocarbons. Environ. Microbiol.7,1426~1441
    [128] Yakimov, M.M., Timmis, K.N., Golyshin, P.N.,2007. Obligate oil degrading bacteria. Curr.Opin. Biotech.18,257~266
    [129] Santas, R., Korda, A., Tenente, A., Buchholz, K., Santas, PH.,1999. Mesocosm assays of oilspill bioremediation with oleophilic fertilizers: Inipol, F1or both? Mar. Pollut. Bull.38,44~48
    [130] Cappello, S., Denaro, R., Genovese, M., Giuliano, L., Yakimov, M.M.,2007. Predominantgrowth of Alcanivorax during experiments on ‘oil spill bioremediation’ in mesocosms.Microbiol. Res.162,185~190
    [131] Torrea CD, Tornambè A, Cappello S, et al. Modulation of CYP1A and genotoxic effects inEuropean seabass (Dicentrarchus labrax) exposed to weathered oil: A mesocosmstudy.Marine Environmental Research,2012,76:48~55
    [132]范晓宁.烃降解菌的选育及其对海洋溢油生态修复室内模拟研究:[硕士学位论文].青岛:中国海洋大学化学化工学院,2008
    [133]张娟.生物表面活性剂及其修复沉积物中铅污染的应用研究:[硕士学位论文].青岛:中国海洋大学化学化工学院,2011
    [134]沈萍,范秀容,李广武.微生物学实验(第三版).北京:高等教育出版社,1999,28~32
    [135]中国石油天然气总公司. SY/T0530-93.油田污水中含油量测定方法-分光光度法.北京:石油工业出版社,2005
    [136]陈燕飞. pH对微生物的影响.太原师范学院学报(自然科学版),2009,8(3):121~131
    [137]中华人民共和国卫生部. GB/T4789.2-2008.中华人民共和国国家标准-食品卫生微生物学检验菌落总数测定.北京:中国标准出版社,2008-11-21
    [138]李金成,夏文香,郑西来,等.沙滩水体中溶解性石油烃的降解及吸附研究.海洋通报,2007,26(2):28~32,59
    [139]张旭,李广贺,黄巍.石油烃污染土层生物修复模拟实验研究.清华大学学报,2000,40(11):106~108
    [140]张秀霞,郑茂盛,王荣靖,等.石油污染土壤中高效石油烃降解菌Y-16的筛选及其降解性能.环境工程学报,2010,4(8):1916~1920
    [141] Wang ZD, Fingas M, Blenkinsopp S, et al. Comparisons of oil composition changes due tobiodegradation and physical weathering in different oils. Journal of Chromatography A,1998,809(1-2):89~107

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700