苹果砧木耐盐突变体的筛选及其RAPD分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苹果是重要的果树树种之一,主要靠嫁接繁殖,其耐盐性主要取决于砧木。因此,选择利用具有较高耐盐能力的砧木是提高苹果耐盐力的关键。利用组织培养与诱变技术相结合选育抗性突变体,可极大提高耐盐砧木育种效率,获得优良的新种质。但是经诱变和耐盐性反复筛选而获得的突变体,不排除部分个体是由环境胁迫而产生的适应性改变,而并非稳定的遗传变异。因此,突变体的鉴定是诱变育种的关键环节之一。
     本试验以苹果砧木M_7、78-48及其耐盐诱变株系为材料,对苹果砧木耐盐诱变体进行了筛选和RAPD分子标记分析,主要研究结果如下:
     1.采用高浓度NaCl 0.8%和1.0%作为选择压,对2个砧木的耐盐诱变株系进行多代交替盐筛选,获得耐盐性稳定的突变株系。
     2.在盐培养下对M_7及其5个耐盐突变株系Z_1-Z_5和78-48及其2个耐盐突变株系L_1、L_2的形态指标进行观察和测定,结果表明:各突变株系的存活率高于对照,受害率和受害指数低于对照,表现较高的耐盐性。
     3.建立了苹果砧木稳定、高效的RAPD反应体系,即20μL体系中,模板DNA的用量约40ng,Taq DNA聚合酶用量为1.25U,引物浓度0.25μM,dNTPs浓度为0.2mM,Mg~(2+)浓度为3.0mM,1×Buffer。45个扩增循环为宜。
     4.本试验对M_7、78-48及其耐盐突变株系进行了RAPD分析。用153个引物检测到M_7的突变株系Z_2的2个多态性位点、Z_3的4个多态性位点和Z_5的1个多态性位点,而78-48的突变株系L_1、1_2多态性位点数分别为42和32个。对2个砧木及其各突变株系的多态性和遗传背景进行统计分析,结果表明,各突变株系与对照的遗传背景高度一致,但在DNA分子水平上确认发生了变异。从而证明了突变的真实性。但所检测出的多态性位点那些与耐盐性突变有关,还需作进一步研究。
     5.分析了苹果砧木耐盐突变体耐盐性鉴定的形态和生理生化指标,认为:受害指数能够综合表现苹果砧木受盐害的程度,较准确地反映出盐胁迫对砧木的生长抑制作用,可作为描述苹果砧木耐盐性的形态学指标;细胞膜透性、MDA和Cl~-含量、SOD和POD酶活性等生理生化指标在苹果耐盐突变筛选初期,可作为耐盐性鉴定的参考指标。利用分子标记技术,从DNA分子水平上探查突变体,是鉴定环境适应性改变和遗传突变的最准确的手段。
Apple rootstocks were decisive in apple salt tolerance. Screening and breeding salt tolerant mutants could improve apple salt tolerant ability. Recently tissue culture and mutagenesis technique were used in screening salt tolerant mutant successful in many crops. But the mutant's reality was often doubtful, because it might not be genotype. So it is the most important to identify the genotype of the mutants.
    The research was carried out with two apple rootstocks: My and 78-48, as well as their salt tolerant regenerations. The mutants were screened were screende out by salt-stressed culture for many generations. The mutants were identified through RAPD technique. The main results were as follows:
    1.To obtain salt tolerant rootstocks, high level NaCl (0.8% & 1.0%) was added into the culture medium directly. Though salt stress culture for six successive generations, the salt tolerant mutants were obtained.
    2.The survival rate of two apple rootstocks and their mutants cultured on salt medium were higher than control, but the injury rate and injury index of mutants were lower than control. The mutants showed higher level of salt tolerance.
    3.A consistent amplication reaction system were established by adding 20uL mixture containing 1.25 units Taq DNA polymerase, 20ng template DNA, 0.25uM primer, 0.2mM dNTPs, 3.0mM Mg + and 1-fold Buffer. 45 amplified cycles were carried out with a set of PCR.
    4.Through RAPD analysis of rootstock M7 and its mutants, 5 out of 153 randomized primers could be detected to have DNA polymorphism of three mutated lines Z2, Z3 and Z5; 36 random primers could be detected to have DNA polymorphism of 78-48's mutated lines (L1, L2) definitely. Results showed the mutants varied at the DNA molecular level, which provided an evidence of the mutation. Further study is required to obtain the molecular marker of RAPD closely linked to the salt tolerant mutation locus.
    5.There were many indicators for salt tolerance identification. Discriminatory analysis showed that injury index could reflect the injuried degree of apple rootstocks under salt stress. So the injury index could be used as a morphological index to accurately evaluate the levels of salt tolerance of rootstocks. In earlier screening, the cell membrane permeability, MDA and Cl content, SOD and POD activity, and some other biochemical indicators could be used as references to assess salt tolerance. However, application of
    
    
    
    molecular marker techniques is a precise method to detect the mutant.
引文
[1] 刘友良,汪良驹.植物对盐胁迫的反应和耐盐性[A].余叔文,汤章城.植物生理与分子生物学[M].北京:科学技术出版社,1998,752-769.
    [2] 巴逢辰,赵羿.中国海涂土壤资源[J].土壤学报,1997,28(2):49-51.
    [3] 张福锁.植物营养生态生理学和遗传学[M].北京:中国科技出版社,1993.
    [4] 郭蓓,秋丽娟,李向华.植物盐诱导基因的研究进展[J].农业生物技术学报,1999,7(4):401—408.
    [5] 刘凤华,郭岩,谷冬梅,等.转甜菜碱醛脱氢酶基因植物的耐盐性研究[J].遗传学报,1997,24(1):54-58.
    [6] 肖岗,张耕耘,刘凤华,等.山菠菜甜菜碱醛脱氢酶基因研究[J].科学通报,1995,40(8):741-745.
    [7] 刘俊君,王海云,黄绍兴,等.转基因烟草的甘露醇合成和耐盐性[J].生物工程学报,1996,12(2):106-210.
    [8] McCue K F, Hanson A D. Salt-inducible betaine aldehyde dehydrogenase from sugar beet:cDNA cloning and expression[J]. Plant Molecular Biology, 1992, 18(1): 1—11.
    [9] Knight H, Trewavas A J, Knight M R. Calcuim signaling in Arabikopsis thaliana responding to drought andsalinity[J]. Plant Journal, 1997, 12(5): 1067—1078.
    [10] Cushman J C. Molecular cloning and expression of chloroplast NADP-malate dehydrogenase during Crassulacean acide metab olism induction by salts stress. Photosynthesis Research, 1993, 35(1): 15-27.
    [11] 邵宏波,初立业.植物耐盐蛋白的研究[J].生命的化学,1995,15(5):29—30.
    [12] 舒卫国,陈受宜.植物在渗透胁迫下的基因表达及信号传递[J].生物工程进展,2000,20(3):3—6.
    [13] 马翠兰,刘星辉,陈中海,等.果树对盐胁迫的反应及耐盐性鉴定的研究进展[J].福建农业大学学报,2000,29(2):161-166.
    [14] 周荣仁,杨燮荣,余叔文.利用组织培养研究植物耐盐性机理与筛选耐盐突变体的进展[J].植物生理学通讯,1989(5):11-19.
    [15] 刘功弼.柑桔茎尖组织培养及其人工诱变处报[J].园艺学报,1983,(4):277—281.
    [16] 王存喜,程炳崇,李雅志,等.中国猕猴桃耐盐变异体筛选[J].核农学报,1990,4(4):206-212.
    [17] 贺道耀,余叔文.水稻高脯氨酸愈伤组织变异体的选择及其耐盐性[J].植物生理学报,1995,21(1):65—72.
    [18] 陈晖,匡柏健,王敬驹.羊草抗羟脯氨酸细胞变异系的筛选及其特性分析[J].植物学报,1995,37(2):42—46.
    [19] 刘旭,史娟,张学勇,等.小麦耐盐种质的筛选鉴定和耐盐基因的标记[J].植物学报.2001,43(9):948—954.
    [20] 郭蓓,邱丽娟,邵桂花,等.大豆耐盐基因的PCR标记[J].中国农业科学,2000,33(1):
    
    10-16.
    [21] 王海英,孙建设,王旭静,等.果树耐盐性研究进展[J].河北农业大学学报,2000,23(2):54—58.
    [22] 罗士韦.高等植物突变细胞系的研究[J].细胞生物学杂志,1982,4(22):1-9.
    [23] 赵云,王茂林,郑洪武.油菜细胞诱变及抗草酸突变体的筛选[J].中国油料,1996,18(4):10-14.
    [24] 邓占鳌,章文才,万蜀渊.柑桔耐盐系的离体诱发与原生质体植株再生[J].园艺学报,1993,20(2):127~132.
    [25] 于惠敏,霍丽云,陈保金.葡萄耐羟脯氨酸变异细胞系的筛选及其特性研究[J].植物生理学通讯,1998,34(5):352~355.
    [26] 张兰.苹果砧木组培苗诱变耐盐筛选技术研究[D].保定:河北农业大学,2002.
    [27] 李增裕.苹果砧木耐盐变异细胞系筛选和鉴定指标的研究[D].保定:河北农业大学,2003.
    [28] 王海英,孙建设,马宝焜,等.苹果砧木组培苗耐盐筛选技术研究[J].果树科学,2000,17(3):164—169.
    [29] 张兰,孙建设,刘国荣.NaN_3在苹果砧木组培苗诱变耐盐筛选中的应用[J].河北农业大学学报,25(增刊):108-110.
    [30] 汪良驹,刘友良,马凯等.无花果细胞系耐盐性与抗氧化酶活性的变化[J].园艺学报,1999,26(6):351~355.
    [31] 陆卫,贾敬芬.谷子耐盐系的几种同工酶的变化及外源aba对它们的影响[J].西北植物学报,1996,16(4):337~344.
    [32] 陆卫,贾敬芬.谷子胚性愈伤组织耐盐系的选择及其生理生化特性分析[J].作物学报,1994,20(3):241~246.
    [33] 汤章城.逆境条件下植物脯氨酸的积累及其可能的意义[J].植物生理学通讯,1984(1):15~21.吕晓波,陈力,刘丽艳等.
    [34] 对复盐筛选水稻体细胞变异体的研究[J].黑龙江农业科学,1994,4:32~35.
    [35] 杜秀达.植物细胞突变体的选择和应用[J].植物生理学通讯,1979,3:76~82.
    [36] 夏英武.作物诱变育种[M].北京:中国农业出版社,1997.
    [37] 孙建设,王海英,刘冬云.利用苹果砧木组培苗进行盐筛选和诱变技术研究[J].中国农学通报,2000,16(2):25—27.
    [38] 杜中军,翟衡,罗新书,等.苹果砧木耐盐性鉴定及其指标判定[J].果树学报,2002,19(1):4-7.
    [39] 赵进春,任庆棉,刘捍中,等.部分苹果属植物的抗盐性鉴定[J].北方果树,1995,(1):9-10.
    [40] 杜中军,翟衡,王志刚,等.苹果砧木耐盐性田间鉴定[J].中国果树,2001,(2):1-4.
    [41] 於丙军,刘友良.大豆耐盐性研究进展[J].大豆科学,2000,19(2):154-158.
    [42] 于少华,李梦,李国全,等.辐射大豆诱发突变体及其突变体的检测[J].核农学报,1997,11(3):129-134.
    [43] 于秀普,杜连恩,魏玉昌,等.大豆化学诱发突变体的胚芽过氧化物同工酶IE等电聚焦电泳分析[J].大豆科学,1994,(4):371-374.
    
    
    [44] 陈一舞,常汝镇,邵桂华.盐胁迫下大豆超氧化物歧化酶的变化[J].作物学报,1994m20(3):363-367.
    [45] 罗庆云,於丙军,刘友良.大豆苗期耐盐性鉴定指标的检验[J].大豆科学,2001,20(3):177-182.
    [46] 汪清胤,黄永芳,杜建植.高粱辐射诱变早熟品种(系)的同工酶分析[J].原子能农业应用,1986,(4):9-14.
    [47] 张维强.用 ~(60)Co-γ射线辐照玉米花粉对玉米籽粒中同工酶遗传变异的影响[J].原子能农业应用,1985,增刊,255-259.
    [48] 陆卫,贾敬芳.盐胁迫下外源ABA对谷子耐盐愈伤组织生理生化特性的影响[J].植物生理学报,1997,23(1):61-66.
    [49] 张超美.NaN_3对小麦的诱变效应[J].湖北农学院学报,1994,4(3):56-60.
    [50] 唐学玺,贾敬芳,郑国昌.小麦耐盐细胞系对盐胁迫的伤害性反应[J].植物学报,1999,41(7):757-760.
    [51] 米海莉,许兴,李树华,等.春小麦耐盐突变体的筛选及耐盐性的研究[J].宁夏农林科技,2001,(3):1-4.
    [52] 邹国林,奉胜彦,陈东明,等.低剂量~(60)Co-γ辐射对水稻幼苗SOD活性的影响[J].核农学报,1996,10(4):251-253.
    [53] Xu Pei Wen, Sun Huisheng, Yang Yuan jun, et al. A primary study on mutation induction of in vitro cultured garlic shoots by ~(60)Co-γ-ray irradiation[J]. Acta Agriculture Nucleatae Sinica, 1999, 13(3): 142-146.
    [54] Virk P. S, B V. Ford-lioyd, M. T. Jackson, et al. Prediction quantitative variation within rice germplasm using molecular marker[J]. Heredity, 1996, 76: 296-304.
    [55] Russell J P, J. D. Fuller, M. Macaulay Direct comparison of levels of genetic variation among barley accession detected by PFLPS[J]. SSRs. Theor. Appl. Genet, 1997, 95: 714-722.
    [56] 邱芳,李金国,翁曼丽,等.空间诱变绿豆长荚型突变的分子生物学分析[J].中国农业科学,1998,31(6):38-43.
    [57] 刘成明,梅曼彤.利用RAPD分析鉴别荔枝的焦核突变体[J].园艺学报,2002,29(1):57-59.
    [58] Willams J G K, Kubelik A R, Livak J, et al. DNA polymorphisms amplified by arbitaryprimers are useful as genetic markers [J]. Nucleic Acids Research, 1990, 18: 6531~6535.
    [59] Welsh J, M Mcclelland. Fingerprinting genomes using PCR with arbitrary primers Nucleic Acids Research, 1990, 18(24): 7213—7218.
    [60] 沈法富,于元杰,尹承佾.棉花和子期化学诱变获得的早熟品系及其RAPD分析[J].遗传学报,1999,269(2):174-178.
    [61] 陈翠霞,于元杰,王洪刚,等.棉花变异体的RAPD分析及抗盐生理研究[J].作物学报 1999,25(5):643-646.
    [62] 索广力,沈银柱,黄占景,等.小麦耐盐突变体的RAPD分析[J].西北植物学报,1999,19(3):376-380.
    [63] 索广力,黄占景,何聪芬,等.利用RAPD-BSA技术筛选小麦耐盐突变位点的分子标记[J].植
    
    物学报,2001,43(6):598-602.
    [64] 秘彩莉,沈银柱,黄占景,等.小麦耐盐突变体的分子生物学鉴定[J].遗传,1999,21(6):32-36.
    [65] 杨进.矮化苹果生产技术大全[M].郑州:河南科技出版社,1997.
    [66] 姜林,张翠玲,邵永春,等.12种国内外苹果因矮化砧木的苗期生长及嫁接表现[J].河北果树,1998,(2):8-9.
    [67] 查霞鹃,孙岚.苹果砧木耐盐性比较研究[J].中国果树,986,(2):5—9.
    [68] Doyle JL, Doyle JJ. Isolation of plant DNA from fresh tissue[J]. Focus, 1990, 12: 13-15.
    [69] 张开春,毕晓颖,李荣旗,等.苹果屈(Malus)显型矮化主基因Dw的RAPD分子标记[J].农业生物技术学报,1999,7(2):183-185.
    [70] J.萨姆布鲁克,E.F.费里奇,T.曼尼阿蒂斯.分子克隆实验指南[M].北京:科学出版社,1992.
    [71] 黄占景,沈银柱,刘植义,等.小麦T型细胞质雄性不育系与相应保持系线粒体DNA的RAPD分析[J].遗传,1997,16(4):8-11.
    [72] Gwakisa P S, Kemp S J. Characterization of Zuba cattle breeds in Tanazania using random amplified polymorphic DNA markers[J]. Animal Genetics., 1994, 25: 89-94.
    [73] 管泽强,沈毓渭,蒋琳,等.一个GMS水稻育性恢复突变体的RAPD分析[J].遗传学报,1997,24(6):501-506.
    [74] 马文宾,庄杰云,彭应才,等.三系杂交水稻亲本随机扩增多态性DNA(RAPD)分析[J].遗传,1998,20(2):1-4.
    [75] 张建华,陈火英,庄天明.番茄耐盐体细胞变异体的离体筛选[J].西北植物学报,2002,22(2):257-262.
    [76] 张福锁.环境胁迫与植物育种[M].北京:农业出版社,1993.
    [77] 王海英.苹果砧木试管苗耐盐筛选技术研究[D].保定:河北农业大学园艺系,1998.43.
    [78] 赵锦.枣树品种,品系及其近缘种的RAPD分析[D].保定:河北农业大学,2000.
    [79] 刘孟军,Shin Yong-UK,Yae Byeong-Woo.苹果属植物RAPD分析的影响因素及其稳定性研究[J].河北农业大学学报,1998(4):48-54.
    [80] Devos KM, Gale MD. The use of polymorphic DNA markers in Wheat[J]. Theoretical and Applied Genetics, 1992, 84: 567-572.
    [81] Genomen B, Jenmstad KD, Neale DB, et al. Development of random amplified polymorphic DNA markers for genetic mapping in pacific yew [J]. Car. J. For. Res, 1996, 26(3): 497-503.
    [82] Bielawski JP, Noack K, Pumo DE. Reproducible amplification of RAPD markers from vertebrate DNA[J]. Biotechniques, 1995, 18(5): 856-860.
    [83] Caeoche A, Gaudei DA, Schaalij GB, et al. Grouping and identification of low temperature basidiomycetes using mating, RAPD and RFLP analysis [J]. Mycological Research, 1995, 99(33): 297-310.
    [84] Parent JG, Lacroixn M, Page D, et al. Identification of Erwinia carotovora from soft rot diseased plant by random amplificaties polymorphic DNA (RAPD) analysis [J]. Plant disease m 1996m
    
    80(50): 494-499.
    [85] 严小龙,张福锁.植物营养遗传学[M].北京:中国农业出版社,1997.183-184.
    [86] 赵可夫.植物抗盐生理[M].北京:中国科学技术出版社,1993.293-314.
    [87] Kilian A. Analysis of mutational line gained from the barley treated with NaN_3 by restriction fragment length polymorphism[R]. Katowice Proc. 2nd res. conrd. Meet., 1988.
    [88] Caetano-Anolles G. Enhanced detection of polymorphic DNA by multiple arbitrary amplicon profiling of endonuclease digested DNA [J]. MGG, 1993, 241: 57-64.
    [89] Kunp B, avomik B. Evaluation of genetic variability among common buckwheat (Fagopyrum esculentum Moench) populations by RAPD markers[J]. Plant Sci., 1996, 114 (2): 149-158.
    [90] Subudhi D K, Borkakati R P, Virmani S S, et al. Molecular mapping of a therosensitive genetic male sterility gene in rice using bulked segregant analysis [J]. Genome., 1997, 40(2): 188-194.
    [91] 汪小全,邹喻平,张大明,等.RAPD应用于遗传多样性和系统研究中的问题[J].植物学报,1996,38(12):954-962.
    [92] Delourme R, Bouchereau A, Hubert N, et al. Identification of RAPD makers linked to a fertility restorer gene for the Ogura radish cytoplasmic male sterility of rapeseed (Brassia mapus L.)[J]. Theor, Appli. Genet., 1994, 67: 243-252.
    [93] 张今今,王跃进,李荣期.苹果短枝型性状的RAPD研究[J].农业生物技术学报,2000,8(3):285-288
    [94] 江苏农学院.植物生理学[M].北京:农业出版社,1984.
    [95] 汪良驹,王业遴,刘永良.无花果耐盐机理研究Ⅰ.盐逆境下脯氨酸和可溶性蛋白的积累[J].南京农业大学学报,1989,12(4):124-125.
    [96] 汪良驹,马凯,姜卫兵,等.NaCl胁迫下石榴和桃植株Na+、K+含量与耐盐性的研究[J].园艺学报,1995,22(4):336-340
    [97] 汪良驹,马凯,姜卫兵,等.五种落叶果树的氯离子分布于耐盐性研究[J].中国南方果树,1996,25(1):38-42.
    [98] Story R. Walfer RR. Citrus and salinity [J]. Scientia Horticulturae, 1999, 78: 39-81.
    [99] Sepaskhah A R, Maftoun M. Relative sale tolerance of pistachio cultivars [J]. J Hprt Sci, 1998, 639(10): 157-162.
    [100] Downton W J S. Influence of rootstocks on the accumulation of chloride. sodium and potassium in grapevines [J]. Aust J Agri Res, 1997, 7(28): 897.
    [101] Motosugi H, Sugiura A, Tomana T. Salt tolerance of various apple rootstock cultivars [J]. J Jap Hort Sci, 1987, 56(2): 135-141.
    [102] Sepskhah A R, Maftoin M. Relative salt tolerance of pistachio cultivars [J]. Hort Sci, 1988, 63(1): 157-162.
    [103] 利容千,王建波.植物逆境细胞及生理学[M].武汉:武汉大学出版社,2002.278.
    [104] Nabers M W, S E. Gibbs. NaCl tolerant tobacco plants from cultured cells[J]. Z. P flanzenphysiol, 1980, 97: 13-17.
    [105] 林鸿宣,柳原城司,庄杰云,等.应用分子标记检测水稻耐盐性的QTL[J].中国水稻科学,
    
    1998,12(2):72-78.
    [106] Foolad M R. Mapping QTLs conferring salt tolerance during germination in tomato by selective genotyping[J]. Molecular Breeding, 1997, 3(4): 269-277.
    [107] King I P. Characterization of Thinopyrum bessara bicum chromosome segments in wheat using random amplied polymorphic DNAs(RAPDs) and genomic in situ hybridization[J]. Theoretical and Applied Genetics. 1993, 86(8): 895-900.
    [108] Mano Y. Mapping quantitative trait loci for salt tolerance at germination and seedling stage in barley (Hordeum vulgate L.) [J]. Euphytica. 1997, 94(3): 263-2725.
    [109] 张耕耘,郭岩,刘风华,等.九个水稻耐盐突变体的RFLP分析[J].植物学报,1994,36(5):345-350.
    [110] Abdel T F M. Molecula markers for salt tolerance in some inbreds of maize (Zea mays L.) [J]. Arab Universities Journal of Agricultural Sciences. 1997, 5(2): 389-417.
    [111] Gorham J. Gebetic analysis and physiology of a trait for enhanced K~+/Na~+ discriminarion in wheat[J]. Proceeding of the Second New Physiologist symposium[J]. 1997, 137(1): 109-116.
    [112] 邵桂花,闫淑荣,常汝镇,等.大豆耐盐性遗传的研究[J].作物学报,1994,20(6):721-726.
    [113] Abel G H. Inheritance of the capacity for chloride inclusion and chloride exclusion by soybeans [J]. Crop science. 1969, 9(6): 697-698.
    [114] Howers T J. Stalinization and horticultural production [J]. Scientia Horticulturae, 1999. 78: 1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700