前陆冲断带断裂流体流动机制及其油气地质意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在构造运动中形成的断裂,对地层中流体流动的影响及油气成藏的意义重大。目前在断裂在活动期垂向输导流体的部位、断裂活动对流体动力场的影响、活动期开启断裂的垂向输导性及其与油气成藏的关系等关键问题的研究比较薄弱,因此通过研究前陆冲断带断裂流体流动机制,阐述其对油气运移、成藏的影响,不仅具有重要理论意义,而且有助于提高前陆地区的油气勘探水平。
     本文选取典型挤压环境下前陆盆地冲断带——库车前陆克拉苏冲断带为主要解剖区,并结合川西北龙门山前陆冲断带野外露头观察,开展了断裂在活动期垂向输导流体的部位及其分布的预测,断裂活动后的流体动力场,断裂活动期的瞬时流场,断裂在活动期的垂向输导性评价及断裂与油气成藏的关系等主要方面的研究,试图阐明前陆冲断带断裂流体的流动机制及其油气地质意义。
     研究中,立足野外露头观察及所取样品的室内测试分析,识别出断裂流体,分析其流动规律,总结出挤压型断裂垂向输导流体的有利部位。在此基础上,通过基于地质力学的有限元法,利用ANSYS10.0软件模拟恢复盐下断裂活动期的区域应力场,结合断裂垂向有利输导部位的受力机制的分析,预测断裂在活动期垂向有利输导部位的分布。利用已知流体压力节点约束下的沉积型超压数值模拟、构造挤压增压模型及断裂传递超压量计算,恢复出断裂活动后的流体动力场。利用Processing Modflow软件,进行断裂活动中瞬时流场的刻画,并提取关键参数——活动期开启断裂的渗透系数,进而计算综合考虑渗透性和流体动力,表征断裂输导性的参数——断裂流动系数。最后,应用以上研究成果,结合油气成藏年代、现今油气分布及储量差异等,分析活动期开启断裂与油气成藏的关系,取得了如下的认识。
     1)断裂破裂带是流体垂向运移的有利通道,往往处于应力扰动的部位。库车克拉苏冲断带平面应力扰动部位主要分布在断裂转换带、断裂走向交叉处、断裂末端,这些部位是断裂在活动期破裂带发育和流体垂向运移的有利部位。
     2)克拉苏冲断带断裂活动后的流体动力场具有多个低势或高势区;北部构造高部位低气势区向南迁移,北部气势总体高于南部;断裂传递超压后,气势在断裂顶部增大,在被传递压力的底部降低。
     3)在断裂活动期的瞬时流场中,断裂的顶部出现局部高气势的凸起区,是流体向围岩的释放区;而底部出现“U”字形低气势下凹区,为压力的释放和流体的吸入区;顺断裂纵向气势梯度减小
     4)克拉苏冲断带盐下断裂在活动期的断裂流动系数,受挤压构造强度影响,北部靠近山前断裂大于南部,克拉苏地区高于大北地区。其中大北地区各断裂流动系数,主要由断裂的渗透系数决定;克拉苏地区断裂流动系数,由本身对流体的渗透性和流体在断裂内运移时的流体动力共同决定。
     5)通过对比大北1气田和克拉2气田天然气成藏受断裂影响的异同,发现克拉2气田天然气的分布,明显受断裂在活动期垂向有利输导部位的控制,以垂向运移成藏为特色;而大北1气田的形成主要以天然气的侧向运移成藏为主。断裂活动中的瞬时流场产生的“泵吸”作用,提高了断裂的输导和油气成藏效率。形成各气田各相关断裂加权后的流动系数,克拉2气田高大北1气田3个数量级,可能是是引起了两气区成藏效率及探明地质储量的巨大差异主要原因。穿越处于脆-塑性转化深度段以上的盐岩滑脱层的“通天断裂”,往往会破坏油气成藏,降低成藏有效性。
Faults formed during tectonic movement play an important part on fluid flowing and hydrocarbon accumulation. Nowadays, the research of issues include the part and capability of vertical transporting fluid of faults during the activity stage, the active faults influence on hydrodynamic field, and their relationship with hydrocarbon accumulation is weak and the further study is necessary. Thus, the studying of fluid flowing mechamism in forland basin and its influence on hydrocarbon migration and accumulation has not only great theoretical significance but also contributing to improving the exploration level.
     Combining observation of outcrop in Longmen Mountain thrust belt of Northwest in Sichuan province, Kelasu thrust belt under the typical tectonic compressive stress invironment in Kuqa forland basin is the main study area. Focused on the vertical transporting fluid parts of fault and their distribution prediction in the activity stage, the hydrodynamic field after faulting, the transient flow field during faulting, the estimate of vertical transportation capability of faults in the activity stage, and their relationship with hydrocarbon accumulation, the flowing mechanism of fault fluid and its significance in petroleum geology are tried to state.
     Based on outcrop observation and the samples tests, fluid flowing related with faulting is identified and the flowing regulation of fault fluid is analyzed. Finally, the favorable vertical transportation parts of compressional faults are summarized. Finite-element method based on geomechanics is used to restoring regional stress field during faulting by ANASYS10.0. Then, combining the force mechanism analysis, the distribution of favorable vertical transportation parts of faults is predicted. The hydrodynamic after faulting is restored by numerical simulation of overpressure stemming from undercompaction, the model of increasing pressure stemming from the maximum horizontal principal compressive stress of tectonic, the calculation of overpressure transferred by faults. The transient flow field during faulting is characterized by the software of Processing Modflow. During the modeling, hydraulic conductivity, the key parameter of faults in activity stage is extracted. Then, the flow coefficient of faults, which characterized the transportation capability of faults and considered the permeability of faults and hydrodynamic, is calculated. Finally, by using above research results and combining geochronology of hydrocarbon accumulation, hydrocarbon distribution and difference of oil and gas reserves, etc., the relationship between hydrocarbon accumulation and opening faults during activity stage is analyzed. The main research results are as follows:
     1) The damage zones of faults are the favorable pathway of fluid vertical migration, which usually develops in the zone of stress perturbation. The zones of plane stress perturbation in Kelasu thrust belt mainly distribute in the fault transformation belts, fault segment intersection and fault termination, which also are the favorable part of fault damage zone development and vertical fluid migration.
     2) The hydrodynamic after faulting in Kelasu thrust belt have multiple low and high potential zones. The low gas potential zone of structural high part in north moves towards the south. As a result, the gas potential of north is higher than the south. The overpressure transfer by faults results in enhancing the regional gas potential and reducing the gas potential of strata in which the overpressure is transferred by faults.
     3) In the transient flow field during faulting, the upwarp areas of high gas potential are the releasing areas of fluid and the sinking areas of low gas potential in the shape of letter "U" are the areas of pressure releasing and fluid suction. The potential gradient gas is decreased along fault.
     4) Influenced by the strength of tectonic compression, the flow coefficient of under-salt faults in the north is greater than the south and the coefficient in Kelasu area is greater than Dabei area. Between the two areas, the coefficient in Dabei area is determined by hydraulic conductivity and the coefficient in Kelasu area is determined by both hydraulic conductivity and hydrodynamic.
     5) By comparing the difference of gas accumulation influenced by faults with Dabeil and Kela2gasfield, the characteristic is that the gas distribution of Dabeil gasfield is controlled obviously by the parts of vertical transportation and the gas has the characteristic of vertical migration and accumulation, and the gas of Dabeil gas oilfield mainly migrate and accumulate laterally. The pump sucks function generated from transient flow field enhances the efficiency of fault transformation and hydrocarbon accumulation. The weighted average number of the flow coefficient of faults related with the formation of each gas field indicates that the Kela2gas field is three orders of magnitude higher than Dabei1gas field, which is probably primary cause of the difference in gas accumulation efficency and proven gas reserves. When the fault cut off the salt detachment strata which are above the depth in conversion of plastic to stiffness, the reservoir would be destroyed, and the hydrocarbon accumulation efficency would be decreased.
引文
[1]Allan, U. S. Model for hydrocarbon migration and entrapment within faulted structures [J]. AAPG Bulletin,1989,73:803-811
    [2]Alvar B., Jan T., Haakon F., et al. Fault facies and its application to sandstone reservoirs [J]. AAPG Bulletin,2009,93 (7):891-917
    [3]Aydin, A. Fractures, faults, and hydrocarbon migration and flow [J]. Marine and Petroleum Geology, 2000,17:797-814
    [4]B. Jamtveit and B.W.D Yardley. Fluid flow and transport in rocks—Mechanisms and effects [M]. Chapman&Hall,1997,263-295
    [5]Berry F. A. F. High fluid potentials in California Coast Ranges and their tectonic significance [M]. AAPG Bill.,1973,57 (7):1219-1249
    [6]Blanpied, M. L., Lockner, D. A. and Byerlee, J. D. An earthquake mechanism based on rapid sealing of faults [J]. Nature,1992,358:574-580
    [7]Boles, J. R. Evidence for oil-derived organic acids in reservoirs, in Y. K. Kharaka and A. S. Maest, eds., Waterrock interaction [J]. Proceedings of 7th International Symposium, Park City, Utah,1992, 311-314
    [8]Boles, J. R., P. Eichhubl, G. Garven, and J. Chen. Evolution of a hydrocarbon migration pathway along basin bounding faults:Evidence from fault cement [J]. AAPG Bulletin,2004,88(7):947-970
    [9]Brantley, S. L. The effect of fluid chemistry on quartz micro-crack lifetimes [J]. Earth and Planetary Science Letters,1992,113:56-145
    [10]Byerlee, J. D. Friction. Overpressure and fault-normal compression [J]. Geophysical Research Letters, 1990,2109-2121
    [11]Byerlee, J. D. The role of water in the evolution of large crustal faults such as the San Andreas fault in California [J]. US Geological Survey, open file report,1993,228-322
    [12]Caine, J. S., J. P. Evans, and C. B. Forster. Fault zone architecture and permeability structure [J]. Geology,1996,24:1025-1028
    [13]Carver, R.E. Differential compaction as a cause of regional contemporaneous faults [J]. Bull. Am, Assoc. Pet. Geol.,1968,52:414-419
    [14]Chan, M. A., W. T. Parry, and J. R. Bowman. Diagenetic hematite and manganese oxides and fault-related fluid flow in Jurassic sandstones, southern Utah [J]. AAPG Bulletin,2000.84:1281-1310
    [15]Chester, F. M., J. P. Evans, and R. L. Biegel. Internal structure and weakening mechanisms of the San Andreas fault [J]. Journal of Geophysical Research-Solid Earth,1993,98:771-786
    [16]Cox, s., Wall, V., Etherdge, M and Potter, T. Deformation and metamorphic process in the formation of mesothermal vein-hosted gold deposits-example from the Lachlan fold belt in central Victoria, Australia [J]. Ore Geology Reviews,1991,6:391-423
    [17]Cozzarelli, I. M., R. P. Eganhouse, and M. J. Baedecker. Transformation of monoaromatic hydrocarbons to organic acids in anoxic groundwater environment [J]. Environmental Geology and Water Sciences,1990,16:135-141
    [18]Craig H. Isotopic variations in meteoric waters [J]. Science,1961,133 (3465):1702-1703
    [19]Davatzes, N. C., A. Aydin, and P. Eichhubl. Overprinting faulting mechanisms during the dev elopment of multiple fault sets in sandstone. Chimney Rock fault array, Utah, U.S.A [J]. Tect onophysics,2003,363 (1-2):1-18
    [20]Davatzes, N. C., and A. Aydin. Distribution and nature of fault architecture in a layered sandstone and shale sequence:An example from the Moab fault, Utah, in R. Sorkhabi and Y. Tsuji, eds., Faults, fluid flow, and petroleum traps [J]. AAPG Memoir,2005,85:153-180
    [21]DAVIES R K. Introduction to AAPG Bullet in thematic is sueon fault seals [J]. AAPG Bulletin,2003, 87:377-380
    [22]Dickey, P.A., Shriram, C.R. and Paine, W.R. Abnormal pressures in deep wells of southwestern Louisiana [J]. Science,1968,160:608-615
    [23]Dinckinson, G. Geological aspects of abnormal reservoir pressures in Gulf Coast Louisiana [J]. Bull. Am. Assoc. Pet. Geol.,1953,37:410-432
    [24]Donovan, T. J. Petroleum micro-seepage at Cement, Oklahoma—Evidence and mechanisms [J]. AAPG Bulletin,1974,58:429-446
    [25]Donovan, T. J., I. Friedman, and J. D. Gleason Recognition of petroleum-bearing traps by unusual isotopic composition of carbonate-cemented surface rocks [J]. Geology,1974,2:351-354
    [26]Doughty, P. T. Clay smear seals and fault sealing potential of an exhumed growth fault, Rio Grande rift, New Mexico [J]. AAPG Bulletin,2003,87:427-444
    [27]Eichhubl, P., and J. R. Boles. Focused fluid flow along faults in the Monterey Formation, coastal California [J]. Geological Society of America Bulletin,2000a,112:1667-1679
    [28]Eichhubl, P., and J. R. Boles. Rates of fluid flow in fault systems-Evidence for episodic fluid flow in the Miocene Monterey Formation, coastal California [J]. American Journal of Science,2000b,300: 571-600
    [29]Eichhubl, P., P. D'Onfro, A. Aydin, J. Waters, and D. K. McCarty Structure, petrophysics, and diagenesis of shale entrained along a normal fault, Black Diamond Mines, California—Implications for fault seal [J]. AAPG Bulletin,2005,89:1113-1137
    [30]Eichhubl, P., W. L. Taylor, D. D. Pollard and A. Aydin. Paleo-fluid flow and deformation in the Aztec Sandstone at the Valley of Fire, Nevada—Evidence for the coupling of hydrogeologic, diagenetic, and tectonic processes [J]. Geological Society of America Bulletin,2004,116:1120-1136
    [31]Fischer, C. J. and Paterson, M. S. Measurement of permeability and storage capacity in rocks during deformation at high temperature and pressure, in Fault Mechanics and Transport Properties of Rocks (eds B. Evans and T. F. Wong) [J]. Academic Press,1992,52-213
    [32]Fowler Jr., W.A. Pressure, hydrocarbon accumulation and salinites-Chocolate Bayou field, Brazoria County, Texas [J]. J. Pet. Technol.,1970,22:411-432
    [33]Foxford, K. A., I. R. Garden, S. C. Guscott, S. D., et al. The field geology of the Moab fault, in A. C. Huffman, W. R. Lund, and L. H. Godwin, eds., Geology and resources of the Paradox Basin [J]. Utah Geological Association Guidebook,1996,25:265-283
    [34]Franks, S. G., R. F. Dias, K. H. Freeman, et al. Carbon isotopic composition of organic acids in oil field waters, SanJoaquin Basin, California, U.S.A [J]. Geochimical Cosmochimica Acta,2001,65: 1301-1310
    [35]Garden, J. R., S. C. Guscott, K. A. Foxford, S. D., et al. An exhumed fill and spill hydrocarbon fairway in the Entrada Sandstone of the Moab anticline, Utah, in J. Hendry, P. Carey, J. Parnell, A. Ruffel, and R. Worden, eds., Migration and interaction in sedimentary basins and orogenic belts [J]. Geofluids,1997,2:287-290
    [36]Garden, J. R., S. C. Guscott, S. D. Burely, K. A., et al. An exhumed paleohydrocarbon migration fairway in a faulted carrier system Entrada Sandstone of southeastern Utah, U.S.A. [J]. Geofluids, 2001,1:195-213
    [37]Gratier, J. P., P. Favreau, F. Renard, and E. Pili. Fluid pressure evolution during the earthquake cycle controlled by fluid flow and pressure solution crack sealing [J]. Earth Planets Space,2002,54: 1139-1146
    [38]Gunatilaka, A., Spheroidal dolomites-origin by hydrocarbon seepage? [J]. Sedimentology,1989,36: 701-710
    [39]HALL H N. Compressibility of reservoir rocks [J]. Trans. AIME.1953,198:309
    [40]Harkins, K.L. and Baugher III, J.W. Geological significance of abnormal formation pressures [J]. J. Pet. Technol.,1969,21(8):961-966
    [41]Helgeson, H. C, A. M. Knox, C. E. Owens, and E. L. Shock. Petroleum, oil field waters, and authigenic mineral assemblages:Are they in metastable equilibrium in hydrocarbon reservoirs [J]. Geochimica et Cosmochimica Acta,1993.57:3295-3339
    [42]Hooper E. Fluid migration along growth fault in compacting sediments [J]. Journal of PETROLEUM GEVLOGG,1991,14(2):160-190
    [43]Hubbert M K. Entrapment of petroleum under hydrodynamic conditions [J]. AAPG Bulletin,1953,37 (6):1954-2026
    [44]Irwin, H., C. Curtis, and M. Coleman. Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments [J]. Nature,1977.169:209-213
    [45]Jia Chengzao, Wei Guoqi. Structural characteristics and petroliferous features of Tarim Basin [J]. Chinese Science Bulletin,2002,47 (supp.):1-11
    [46]Jones, P.H. Hydrology of Neogene deposits in the northern Gulf of Mexico Basin, LA. Water Resour [J]. Res. Inst., Bull., GT-2, Louisiana State Univ., Baton Rouge. LA,1969,105
    [47]Keith M L, Weber J N. Isotopic composition and environmental classification of selected limestones and fossils [J]. Geochimica et Cosmochimica Acta,1964,28:1787-1816
    [48]Knipe, R. J., Q. J. Fisher, G. Jones, et al. Fault seal analysis:Successful methodologies, application and future direction, in P. Moller-Pedersen and A. G. Koestler, eds., Hydrocarbon seals, importance for exploration and production [J]. Amsterdam, Elsevier,1997,15-38
    [49]Larter S R. Reservoir geochemistry as a reservoir appraisal and management tool, and evaluation [J]. AAPG Bulletin,1995,79 (8):27-28
    [50]Lehner, F. K., and W. F. Pilaar. The emplacement of clay smears in synsedimentary normal faults: Inferences from field observations near Frechen, Germany, in P. Moller-Pedersen and A. G. Koestler, eds., Hydrocarbon seals, importance for exploration and production [J]. Amsterdam, Elsevier,1997, 39-50
    [51]Lewan, M. D., and E. D. Pittman. Introduction to the role of organic acids in geological processes, in E. D. Pittman and M. D. Lewan, eds., Organic acids in geological processes [J]. Berlin, Springer, 1994,1-21
    [52]Likuan Zhang, Xiaorong Luo, Qianjin Liao et al. Quantitative evaluation of synsedimentary fault opening and sealing properties using hydrocarbon connection probability assessment [J]. AAPG Bulletin,2010,94(9):1379-1399
    [53]Lohmann, K. C. Geochemical patterns of meteoric diagenetic systems and their application to studies of paleocarst, in N. P. James, and P. W. Choquette, eds., Paleocarst:New York, Springer-Verlag [J]. 1988,58-80
    [54]Losh S, Oil migration in a Major growth fault Structure Analysis of the pathfinder Core, South Engere island Black 330, off share Loaisiana [J]. AAPG Bulletin,1999,82:1690-1720
    [55]Luo X R, Dong W L, Yang J H, Yang W. Overpressuring Mechanisms in the Yinggehai Basin, South China Sea [J]. Am. Assoc. Pet. Geo 1. Bull.,2003,87 (4):629-645
    [56]Luo X R, V asseur G.. Natural hydraulic cracking:numerical model and sensitivity study [J]. Earth and Planetary Science Letters.2002,201:431-446
    [57]Luo X R, Yang J H, Wang Z F. The overpressuring mechanisms in aquifers and pressure prediction in basins [J]. Geological Review,2000,46 (1):22-31
    [58]Macaulay, C. I., A. E. Fallick, R. S. Haszeldine, et al. Oil migration makes the difference:Regional distribution of carbonate cemented 13C in northern North Sea Tertiary sandstones [J]. Clay Minerals, 2000,35:73-80
    [59]MaertenL, Maerten F. Chronologic modeling of faulted and fractured reservoirs using geomechanically based restoration:Technique and industry applications [J]. AAPG Bulletin.2006, 90(8):1201-1226
    [60]Manzocchi, T., A. E. Heath, B. Palananthakumar, et al. Faults in conventional flow simulation models: A consideration of representational assumptions and geological uncertainties [J]. Petroleum Geoscience,2008,14:91-110
    [61]Manzocchi, T., J. J. Walsh, P. Nell, and G. Yielding. Fault transmissibility multipliers for flow simulationmodels [J]. Petroleum Geoscience,1999,5:53-63
    [62]Mark R. P. Tingay, Richard R. Hillis, and Richard E. Swarbrick, et al. Origin of overpressure and pore-pressure prediction in the Baram province, Brunei [J]. AAPG Bulletin,2009,93(1):51-74
    [63]Meyers, J.D. Differential pressures:a trapping mechanism in Gulf Coast oil and gas field [J]. Trans. Gulf Coast Assoc. Geol. Soc.,1968,18:56-80
    [64]Murray, G.E. Geology of the Atlantic and Gulf Coast Province of North America [J]. Harper and Brothers, New York, NY,1961,692
    [65]O'Brien, G. W., and E. P. Woods Hydrocarbon-related diagenetic zones (HRDZs) in the Vulcan sub-basin, Timor Sea:Recognition and exploration implications [J]. Australian, Petroleum Exploration Association Journal,1995,35:220-252
    [66]Peter Eichhubl, Nicholas C. Davatzes, and Stephen P. Becker. Structural and diagenetic control of fluid migration and cementation along the Moab fault, Utah [J]. AAPG Bulletin,2009,93(5):655-681
    [67]Rubey, W.W. and Hubbert, M.K., Role of fluid pressure in mechanics of overthrust faulting, Ⅱ. Overthrust belt in geosynclinal area of western Wyoming in light of fluid-pressure hypothesis [J]. Geol. Soc. Am. Bull.1959,70(2):167-206
    [68]Scholz, C.H., Sykes, L. and Aggarwal, Y. Earthquakes prediction [J]. A physical basis, Science,1973, 181:1803-813
    [69]Seront, B., T. F. Wong, J. S. Caine, et al. Bruhn. Laboratory characterization of hydromechanical properties of a seismogenic normal fault system [J]. Journal of Structural Geology,1998,20:865-881
    [70]Shackleton, N. J. Oxygen isotope analyses and paleotemperatures reassessed [J]. Nature,1967,215: 15-17
    [71]Shawe, D. R. Sedimentary rock alteration in the Slick Rock district, San Miguel and Dolores Counties, Colorado:U.S. [J]. Geological Survey Professional Paper No.1976,576-D:51
    [72]Sibson, R, H. Stopping of earthquake rupture at dilational fault jogs [J]. Nature,1985,316:51-248
    [73]Sibson, R, H., Moore, J.M. and Rankin, A. H. Seismic pumping-A hydrothermal fluid transport mechanism [J]. Journal of the Geological Society, London,1975,131:653-662
    [74]Sibson, R. H. Fluid flow accompanying faulting:Field evidence and model, in D.W. Simpson and P. G. Richards, eds., Earthquake prediction—An international review[J]. American Geophysical Union Monograph, Maurice Ewing Series,1981,4:593-603
    [75]Sibson, R. H. Implication of fault-valve behavior for rupture nucleation and recurrence [J]. Tectonophysics,1992,211:283-377
    [76]Silje Storen Berg and Erlend (?)ian. Hierarchical approach for simulating fluid flow in normal fault zones [J]. Petroleum Geoscience,2007,13:25-35
    [77]Sinbson, R. H., Robert, F. and Poulsen, K. H. High-angle reverse faults, fluid pressure cycling and mesothermal gold-quartz deposits [J]. Geology,1988,16:551-556
    [78]Sleep. N. H. and Blanpied, M. L. Ductile creep and compation:A mechanism for transiently increasing fluid pressure in mostly sealed fault zones [J]. Pure and Applied Geophysics,1994,143: 40-49
    [79]Solum, J. G., B. A. vander Pluijm, and D. R. Peacor.Neocrystallization, fabrics and age of clay minerals from an exposure of the Moab fault, Utah [J]. Journal of Structural Geology,2005,27: 1563-1576
    [80]Steven D. Hood, Campbell S. Nelson et al. Modification of fracture porosity by multiphase vein mineralization in an Oligocene nontropical carbonate reservoir, Taranaki Basin, New Zealand [J]. AAPG Bulletin,2003,87 (10):1575-1597
    [81]Swarbrick, E. and Osborne, M.J. Mechanisms that generate abnormal pressures:an overview [J]. Am. Assoc. Pet. Geol. Mem.,1998,70:13-34
    [82]Terzaghi K and Peck R B. Soil mechanics in engineering practice [J]. Wiley New York, N. Y.566
    [83]Tingay, M., R.Hillis, R. Swarbrick, C. Morley, and A. Damit. "Vertically transferred" overpressures in Brunei:Evidence for a new mechanism for the formation of high magnitude overpressures [J]. Geology,2007,35:1023-1026
    [84]Tuccillo, M. E., I. M. Cozzarelli, and J. S. Herman. Iron reduction in the sediments of a hydrocarbon-contaminated aquifer [J]. Applied Geochemistry,1999,14:71-83
    [85]Turner, P. Continental red beds:Developments in sedimentology [J]. Amsterdam, Elsevier,1980,29: 562
    [86]Vasseur, G., and L. Demongodin. Convective heat transfer in sedimentary basins [J]. Basin Research, 1995,7:67-79
    [87]Walker, T. R. Red beds in the western interior of the United States:U.S. [J]. Geological Survey Professional Paper No.853, part Ⅱ,1975,49-56
    [88]Walker, T. R., B. Waugh, and A. J. Grone. Diagenesis in first-cycle desert alluvium of Cenozoic age, southwestern United States and northwestern Mexico [J]. Geological Society of America Bulletin, 1978,89:19-32
    [89]Watson, J. S., D. M. Jones, R. P. J. Swannell, et al. Formation of carboxylic acids during aerobic biodegradation of crude oil and evidence of microbial oxidation of hopanes [J]. Organic Geochemistry, 2002,33:1153-1169
    [90]Xie, X., S. T. Li, W. L. Dong, et al. Evidence for hot fluid flow along faults near diapiric structure of the Yinggehai Basin, South China Sea [J]. Marine and Petroleum Geology,2001,8:715-728
    [91]Yardley, G. S., and R. E. Swarbrick, Lateral transfer:A source of additional overpressure? [J]. Marine and Petroleum Geology,2000,17:523-538
    [92]Yielding, G., B. Freeman, and D. T. Needham Quantitative fault seal prediction [J]. AAPG Bulletin,,1997,81:897-917
    [93]曹瑞成,陈章明.早期探区断层封闭评价方法[J].石油学报,1992,13(1):33-37
    [94]地质矿产部《地质辞典》办公室.地质辞典(一),普通地质,构造地质分册(下册)[M].北京:地质出版社,1983.395
    [95]董树文等.陆内造山过程与流体排泄及油气聚集[R].第四届石油地质年会,2011.6
    [96]段毅.中西部盆地油藏地球化学[M].北京:科学出版社,2010,39-41
    [97]范昌育,王震亮,李萍.对沉积盆地被剥蚀地层超补偿沉积的新认识——以东濮凹陷为例[J].沉积学报,2010,28(4):730-734
    [98]付广,王有功.断裂活动时期的垂向开启程度识别方法及其应用[J].油气地质与采收率,2007,14(4):12-14
    [99]付广,吕延防,杨一鸣,等.我国大中型气田断裂输导天然气能力综合评价[J].地球学报,2007,28(4):382-386
    [100]付晓飞,吕延防,付广,等.逆掩断层垂向封闭性定量模拟试验及评价方法[J].地质科学,2004,39(2):223-233
    [101]付晓飞等.中国中西部前路盆地断裂系统及控藏机理[R].东北石油大学,2010.10
    [102]郝芳,邹华耀,姜建群.油气成藏动力学及其研究进展[J].地学前缘,2000,7(3):11-21
    [103]蒋有录,刘华.断裂沥青带及其油气地质意义[J].石油学报,2010,31(1):36-41
    [104]黎茂稳.油气二次运移研究的基本思路和几个应用实例[J].石油勘探与开发,2000,27(4):11-19
    [105]林景晔,杨庆杰,尹大庆,等.对成藏期定量分析中自生矿物定年的探讨[J].大庆石油地质与开发,2005,24(6):14-16
    [106]柳广弟,孙明亮,吕延防,等.库车坳陷天然气成藏过程有效性评价[J].中国科学D辑:地球科学,2008,38,增刊Ⅰ:103-110
    [107]柳广弟,孙明亮.剩余压力差在超压盆地天然气高效成藏中的意义[J].石油与天然气地质,2007,28(7):203-208
    [108]柳广弟,王雅星.库车坳陷纵向压力结构与异常高压形成机理[J].天然气工业,2006,26(9):29-31
    [109]柳少波,宋岩,洪峰,等.中国中西部前陆盆地烃源岩特征与油气资源潜力分析[J].地学前缘,2005,12(3):59-65
    [110]吕修祥,范秋梅,杨明慧.库车前陆盆地形成过程中的走滑作用及其对油气分布的影响[J].第四届油气成藏机理与资源评价国际学术研讨会论文集,2008,552-558
    [111]吕延防黄劲松付广,等.砂泥岩薄互层段中断层封闭性的定量研究[J].石油学报,2009,30(6):824-829
    [112]吕延防,陈章明.非线性映射分析判断断层封闭性[J].石油学报,1995,16(2):36-41
    [113]吕延防,付广.断层封闭性研究[M].北京:石油工业出版社,2002,31-34;66-138
    [114]吕延防,孙永河,付晓飞,等.逆断层中天然气运移特征的物理模拟[J].地质科学,2005,40(4):464-475
    [115]罗群,姜振学,庞雄奇,著.断裂控藏机理与模式[M].北京:石油工业出版社,2007,302-303
    [116]罗晓容,杨计海,王振峰.盆地内渗透性地层超压形成机制及钻前压力预测[J].地质论评,2000,46(1):22-31
    [117]罗晓容.断裂开启与地层中温压瞬态变化的数学模拟[J].石油与天然气地质,1999,20(1):1-6
    [118]罗晓容.构造应力超压机制的定量分析[J].地球物理学报,2004,47(6):1086-1093
    [119]马启富,陈斯忠,张启明等.超压盆地与油气分布[M].北京:地质出版社,2000,1-29
    [120]欧阳健.测井地应力分析—以库车坳陷克拉2井气藏解释为例[J].新疆石油地质,1999,20(3):213-217
    [121]庞雄奇.中国西部叠合盆地深部油气勘探面临的重大挑战及其研究方法与意义[J].石油与天然气地质,2010,31(5):517-534
    [122]皮学军,谢会文,张存,等.库车前陆逆冲带异常高压成因机制及其对油气藏形成的作用[J].科学通报,2002,47(增刊):84-90
    [123]漆家福等.库车坳陷克拉苏构造带重点目标构造建模及确证研究[R].中国石油大学(北京),2009.1
    [124]方世虎等.“十一五”国家油气重大专项.中西部前陆盆地油气成藏与富集规律[R].中国石油集团科学技术研究院,2011.4
    [125]石万忠,陈红汉,何生.库车坳陷构造挤压增压的定量评价及超压成因分析[J].石油学报, 2007,28(6):59-64
    [126]寿建峰,斯春松,朱国华,等.塔里木盆地库车坳陷下侏罗统砂岩储层性质的控制因素[J].地质论评,2001,47(3):272-277
    [127]宋岩,方世虎,赵孟军,等.前陆冲断带构造分段特征及其对油气成藏的控制作用[J].地学前缘,2005,12(3):31-38
    [128]宋岩,洪峰,夏新宇,等.异常压力与油气藏的同生关系——以库车坳陷为例[J].石油勘探与开发,2006,33(3):303-308
    [129]宋岩,柳少波,赵孟军,等.中国中西部前陆盆地油气分布规律及主控因素[M].北京:石油工业出版社,2008,7-74
    [130]孙永河,吕延防,付广,等.断裂输导体系输导天然气效率评价方法及其应用[J].天然气地球科学,2006,17(1):73-77
    [131]田作基,宋建国.塔里木库车新生代前陆盆地构造特征及形成演化[J].石油学报,1999,20(4):7-13
    [132]王红军,胡见义.库车坳陷白垩系含油气系统与高压气藏的形成[J].天然气工业,2002,22(1):5-8
    [133]王良书,李成、刘绍文,等.塔里木盆地北缘库车前陆盆地地温梯度分布特征[J].地球物理学报,2003,46(3):403-407
    [134]王延欣,侯贵廷,李江海,等.塔北隆起中西部新近纪末构造应力场数值模拟[J].北京大学学报(自然科学版),2008,44(6):52-57
    [135]王震亮,陈荷立.神木-榆林地区上古生界流体压力分布演化及对天然气成藏的影响[J].中国科学,2007,37:49-60
    [136]王震亮,李耀华,张健,等.川西地区上三叠统异常流体压力的主要形成机制[J].石油与天然气地质.2007,28(1):43-50
    [137]王震亮,刘林玉,于轶星,等.松辽盆地南部腰英台地区青山口组油气运移、成藏机理[J].地质学报,2007,81(3):419-426
    [138]王震亮,罗晓容,陈荷立.沉积盆地地下古水动力场恢复[J].西北大学学报,1997,27(2):155-159
    [139]王震亮,孙明亮,耿鹏,等.准南地区异常地层压力发育特征及形成机理[J].石油勘探与开发,2003,30(1):32-34
    [140]王震亮,张凤奇,范昌育,等.中西部前陆盆地油气成藏动力学研究(十一五国家科技重大专 项专题报告)[R].西北大学,2011.12
    [141]王震亮,张立宽,施立志,等.塔里木盆地克拉2气田异常高压的成因分析及其定量评价[J].地质论评,2005,51(1):55-62
    [142]王震亮.藏外流体的流体驱动力、流动过程与圈闭供气量的计算(天然气973项目专题报告)[R].西北大学,2003
    [143]王震亮.盆地流体动力学及油气运移研究进展[J].石油实验地质,2002,24(2):99-103
    [144]王子煜.库车坳陷西部中新生代地层岩石物理和力学性质[J].地球物理学进展,2002,17(3):399-405
    [145]魏国奇,贾承造,施央申,等.塔里木盆地新生代复合再生前陆盆地构造特征与油气[J].地质学报,2000,74(2):123-133
    [146]吴元燕,平俊彪,吕修祥,等.准噶尔盆地西北缘油气藏保存及破坏定量研究[J].石油学报,2002,23(6):24-28
    [147]夏新宇,宋岩,房德权.构造抬升对地层压力的影响及克拉2气田异常压力成因[J].天然气工业,2001,21(1):30-34
    [148]夏新宇,曾凡刚,宋岩.构造抬升是异常高压的成因吗?[J].石油实验地质,2002,24(6):496-500
    [149]徐士林,吕修祥,皮学军,等.新疆库车坳陷克拉苏构造带异常高压及其成藏效应[J].现代地质,2002,16(3):282-286
    [150]杨树峰,贾承造,陈汉林,等.特提斯构造带的演化和北缘盆地群形成及塔里木天然气勘探远景.科学通报,2002,47(增):36-43
    [151]曾联波,刘本明.塔里木盆地库车前陆逆冲带异常高压成因及其对油气成藏的影响[J].自然科学进展,2005,12:1485-1491
    [152]曾联波,周天伟,吕修祥.构造挤压对库车坳陷异常地层压力的影响[J].地质论评,2004,50(5):471-475
    [153]张洪,姜振学,庞雄奇.克拉2气田超压成因的物理模拟实验研究[J].石油学报,2006,27(4):59-62
    [154]张明利,谭成轩,汤良杰,等.库车坳陷克拉2气藏异常高地层压力成因力学分析[J].地球科学,2004,29(1):93-95
    [155]张文华.关于断层在断陷盆地中对油气运聚作用的几点认识[J].现代地质,1994,8(2):45-67
    [156]张仲培,王清晨,王毅,等.库车坳陷脆性构造序列及其对构造古应力的指示[J].地球科学— —中国地质大学学报,2006,31(3):309-315
    [157]赵靖舟.前陆盆地天然气成藏理论及应[M].北京:石油工业出版社,2003,121-153
    [158]赵孟军,卓勤功等.库车坳陷资源潜力评价与克拉苏构造带油气富集规律研究[R].中石油科学技术研究院,2011
    [159]赵文智,胡素云,董大忠,等.“十五”期间中国油气勘探进展及未来重点勘探领域[J].石油勘探与开发,2007,34(5):513-520
    [160]赵文智,王红军,单家增,等.克拉2气田高效成藏中构造抽吸作用的地质分析与物理模拟[J].中国科学D辑地球科学,2006,36(12):1084-1091
    [161]郑淑蕙,等.稳定同位素地球化学分析[M].北京:北京大学出版社,1986,12-106
    [162]周新桂,孙宝珊,谭成轩,等.现今地应力与断层封闭效应[J].石油勘探与开发,2000,27(5):127-131
    [163]周新桂,陈永峤,孙宝珊,等.塔里木盆地北部地层岩石力学特征及地质学意义[J].石油勘探与开发,2002,29(5):8-12
    [164]周兴熙.库车油气系统北带中、新生界主要储层孔隙流体超压成因探讨[J].古地理学报,2003,5(1):110-119
    [165]周兴熙.塔里木盆地库车油气系统中、新生界的流体压力结构和油气成藏机制[J].地学前缘,2001,8(4):351-361

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700