高锂含量xLiNbO_3-(1-x)(K_(0.5)Na_(0.5))NbO_3(LNKN)高温无铅压电陶瓷的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用传统固相烧结工艺制备了xLiNbO_3-(1-x)Na_(0.5)K_(0.5)NbO_3(简写为LNKN,其中0.146≤x≤0.618)高温无铅压电陶瓷。讨论了烧结温度、极化条件对陶瓷材料的影响;运用X射线衍射分析和扫描电子显微镜技术对制备出的陶瓷材料的相结构、微观组织等进行了分析,研究了陶瓷材料的晶相结构随x含量的变化并提出变化模型;讨论了LNKN高温无铅压电陶瓷的介电、压电性能随x的含量的变化趋势。结果表明,LNKN无铅压电陶瓷是高温无铅领域中很具有前景的一类材料。通过实验研究,我们发现:
     1.高Li含量的LNKN随着x的增加,发生了一个从四方钙钛矿相到四方钨青铜相、再到LiNbO_3相的转变,结构的变化也正是由于Li的加入引起晶格的畸变而形成的。
     2.在NKN的钙钛矿相和LiNbO_3相之间存在着一个过渡相,即K_3Li_2Nb_5O_(15)或K_3LiNb_6O_(17)的四方钨青铜相。其中K_3Li_2Nb_5O_(15)是一种完全填满型钨青铜结构,而K_3LiNb_6O_(17)是一种非填满型钨青铜结构,尚存在着碱金属阳离子的空位。
     3.在LiNbO_3的含量一定时,陶瓷中可能存在四方钙钛矿相、四方钨青铜相以及三方LiNbO_3相中的多种,形成复相结构
     4.与准同型相界(MPB)类似,钙钛矿相与钨青铜相的转变以及钨青铜相与LiNbO_3结构的转变是一个突变的过程。即可以同时存在其中一种或几种相,但是几乎不明显存在它们之间的某种混乱的杂相。
     5.NaNbO_3与KNbO_3是无限固溶体,但是NaNbO_3和KNbO_3,与LiNbO_3并不是无限固溶体。当LiNbO_3的含量较低时,可以与NaNbO_3、KNbO_3固溶而形成钨青铜结构,但当含量较高时,首先会有NaNbO_3析出,然后KNbO_3也会因晶格的畸变而析出。
     6.当x在0.25到0.45之间时,d_(33)几乎保持不变,大约为70~80pC/N。当x=0.382时,压电常数d_(33)=74pC/N,居里温度T_c=526℃。当x=0.500时,压电常数d_(33)=53pC/N,居里温度T_c=537℃。
     7.当加入助熔剂CuO时,机械品质因子Qm从52提高到82,而且并没有引起居里温度的剧烈下降,但是压电常数却下降很多。
     通过本论文的研究,取得以下具有明显创新性的研究成果:
     1.提出了高LiNbO_3含量LNKN无铅压电陶瓷(其中0.146≤x≤0.618),并成功制备并表征了居里温度大于500℃,压电常数在70到80pC/N的高温无铅压电陶瓷。
     2.对高锂含量LNKN系列陶瓷进行了相结构和微观组织进行了表征,首次提出高锂含量LNKN陶瓷随Li含量的相结构的变化。
xLiNbO_3-(1-x)Na_(0.5)K_(0.5)NbO_3 (abbreviated as LNKN) which x was selected between 0.146 and 0.618 were fabricated by Conventional Solid-state Sintering method. The effects of sintering temperature and polarization conditions on the properties of ceramics were discussed. The crystal structure, surface appearance, dielectric and piezoelectric properties were studied with the increase of x in this paper.
     Through this work, the main novel conclusions obtained are as follows:
     1. With the increase of Li, the crystal structures of LNKN ceramics have a transformation process from tetragonal perovskite phase to tetragonal tungsten bronze phase and then to a rhombohedral phase of LiNbO_3 type by the distortion of crystal lattice.
     2. There are such transition phases as K_3Li_2Nb_5O_(15) and K_3LiNb_6O_(17) tungsten bronze structures between the phases of NKN and LN.
     3. When x is a certain value, there are one or more phases of tetragonal perovskite phase, tetragonal tungsten bronze phase and LiNbO_3 phase. They form a multi-phases crystal structure.
     4. Analogous to MPB, the transformation between these phases is an abrupt process. There could be one or more phases of the three ones mentioned above.
     5. NaNbO_3 and KNbO_3 are infinite solid solution but they are not infinitely dissolved with LiNbO_3. When x is more than a certain value, NaNbO_3 separates from the solid solution and then KNbO_3 separates with the continuous increase ofx.
     6. When x increases, the piezoelectric constant declined but it holds in a range of 70~80pC/N stably between 0.236 and 0.438 of x. When x=0.382, Piezoelectric constant d_(33)=74pC/N and Curie Temperature T_c=526℃. Whenx=0.500, d33=53pC/N and Tc=537℃。
     7. If fusing agent CuO is added into the ceramics, the quality factor will be promoted significantly with small decline of Curie temperature, however, the piezoelectric properties decreases.
     Through this work, some innovative achievements are described as below:
     1. Lead-free piezoelectric ceramics used in high temperature environment with LNKN system(0.146≤x≤0.618) were put forward and fabricated, which have high piezoelectric constant between 70 and 80 pC/N and high Curie temperature above 500℃.
     2. Crystal phases and micro structure of high lithium LNKN based ceramics were carefully characterized. The lattice transformation of LNKN based ceramics with the increase of x were first carried out.
引文
[1] 肖定全,王天民.晶体物理学[M].四川:四川大学出版社,1989.
    [2] 孙慷,张福学.压电学[M].北京:国防工业出版社,1984.
    [3] 许煜寰.铁电与压电材料[M].北京:科学出版社,1978.
    [4] 钟维烈.铁电体物理学tM].北京:科学出版社,1996.
    [5] 电子陶瓷情报网.压电陶瓷应用[M].山东:山东大学出版社,1985.
    [6] Lain K H, Wang X X, Chart H L W. Lead-free piezoceramic cymbal actuator [J]. Sensors and Actuators A, 2006, 125: 393-397.
    [7] Lin Dunmin, Xiao Dingquan, Zhu Jianguo, Yu Ping. Piezoelectric and ferroelectric properties of lead-free [Bi_(1-y)(Na_(1-x-y)Li_x)]_(0.5)Ba_yTiO_3 ceramics [J]. Journal of the European Ceramic Society, 2006, 26: 3247-3251.
    [8] Zhou X Y, GuaH S, Wang TY, Li WY. Piezoelectric properties of Mn-doped (Na_(0.5)Bi_(0.5))_(0.92)Ba_(0.08)TiO_3 ceramics[J]. Materials Letters, 2005, 59: 1649-1652.
    [9] Yang Zupei, Zong Ximei, Li Hui, Chang Yunfei. Structure and electrical properties of new Pb(Zr, Ti)O_3-Pb(Fe_(2/3)W_(1/3))O_3-Pb(Mn_(1/3)Nb_(2/3))O_3 ceramics[J]. Materials Letters, 2005, 593476-3480.
    [10] Takenaka T, Sakata K. Grain orientation and electrical properties of hot-forged Bi4Ti3Ol2 ceramics [J]. Japanese Journal of Applied Physics, 1980, 19 (1): 31-39.
    [11] Megriche A, Lebrun L, Troccaz M. Materials of Bi_4Ti_3O_(12) type for high temperature acoustic piezo-sensors [J]. Sensors and Actuators A, 1999, A78 (2-3): 88-91.
    [12] ZhangZhen, YanHaixue, DongXianlin, WangYongling. Prepareation and electrical properties of bismuth layer-structured ceramics Bi_3NbTiO_9 solid solution [J]. Materials Research Bulletion, 2003, 38: 241-248.
    [13] Pardo L, Castro A, MillanP, AlemanyC, JimenezR, Jimenez B. (Bi_3TiNbO_9)_x(SrBi_2Nb_2O_9)_(1-x) aurivillius type structure piezoelectric ceramics obtained from mechanochemically activated oxides [J]. Aeta Materialia, 2000, 48 (9): 2421-2428.
    [14] DuHongliang, Li Zhimin, Tang Fusheng, QuShaobo, Pei Zhibin, Zhou Wancheng. Preparation and piezoelectric properties of (K_(0.5_Na_(0.5))NbO_3 lead-free piezoelectric ceramics with pressure-less sintering[J]. Materials Science and Engineering B, 2006, 131: 83-87.
    [15] Zeng Jiangtao, Li Yongxiang, Yang Qunbao, Yin Qingrui. Ferroelectric and piezoelectric properties of vanadium-doped CaBi_4Ti_4O_(15) ceramics [J]. Materials Science and Engineering B, 2005, 117: 241-245.
    [16] 李承恩,李毅,周家光.铋层状结构压电陶瓷及敏感元件高温特性研究[J].电子元件与材料,2002,21(5):11-13.
    [17] Zhang Shujun, Kim Namchul, Shrout Thomas R, Kimura Masahiko, Ando Akira. High temperature properties of manganese modified CaBi_4Ti_4O_(15) ferroelectric ceramics[J]. Solid State Communications, 2006, 140: 154-158.
    [18] YanHaixue, ZhangZhen, ZhuWeimin, He Lianxin, YuYouhua, LiChengen, Zhou Jiaguang. The effect of(Li,Ce) and (K, Ce) doping inAurivillius phase material CaBi_4Ti_4O_(15) [J]. Materials ResearchBulletin, 2004, 39: 1237-1246.
    [19] Zheng Liaoying, Li Guorong, Zhang Wangzhong, Chen Daren, Yin Qinrui. The structure and piezoelectric properties of(Ca_(1-x)Sr_x)Bi_4Ti_4O_(15) ceramics[J]. Materials Science and Engineering, 2003, B99: 363-365.
    [20] Toshio Ogawa. Ferroelectric domain structures in lead free piezoelectric ceramics composed of Bi-layer structured SrBi_4Ti_4O_(15) [J]. Journal of the European Ceramic Society2004, 24: 1517-1520.
    [21] 上海玻璃搪瓷研究所铌酸锂单晶小组,铌酸锂晶体的研制[J].玻璃与搪瓷,1979,Z2:39-49.
    [22] Guo Yiping, Kakimoto Ken-ichi, Ohsato Hitoshi. Phase transitional behavior and piezoelectric properties[J]. Applied Physics Letters, 2004, 85 (18): 4121-4123.
    [23] G.uo Yiping, Kakimoto Ken-ichi, Ohsato Hitoshi. (Na_(0.5)K_(0.5))NbO_3- LiTaO_3 lead-free piezoelectric ceramics[J]. Materials Letters, 2005, 59: 241-244.
    [24] Juanga Y D, Daib S B, Wangc Y C, Choub W Y, Hwangb J S, Hud M L, Tse W S. Phase transition of Li_xNa_(1-x)NbO_2 studied by Raman scattering methods[J]. Solid State -Communications, 1999, 111: 723-728.
    [25] Erling Ringgaard, Thom Wurlitzer. Lead-free piezoceramics based on alkali niobates[J]. Journal of the European Ceramic Society, 2005, 25: 2701-2706.
    [26] Jimenez B, Jimenez R, Castro A, Pardo L. Compositional evolution of structural phase transitions in sodium niobates[J]. Journal of the European Ceramic Society, 2004, 24 (6): 1521-1524.
    [27] Shirane G, Newnham R, Pepinsky R. Dielectric Properties and Phase Transitions of NaNbO_3 and (Na, K)NbO_3 [J]. Physics Review 1954, 96: 581-588.
    [28] Egerton L, Dilon D M. Piezoelectric and dielectric properties of ceramics in the system potassium-sodium niobate [J]. Journal of American Ceramics Society1959, 42: 438-442.
    [29] Haertling G H. Properties of Hot-Pressed Ferroeleetric Alkali Niobate Ceramics [J]. Journal of the Ameriean Ceramic Society 1967, 50: 329-330.
    [30] ReismanA, Holtzberg F, Triebwasser S, Berkenblit M. Journal of American Ceramics Society[J]. 1956, 78: 719-721.
    [31] 郭演仪,郑玉芳,周家光.铌酸钠理铁电陶瓷[J].仪表材料,1984,15(1):50-56
    [32] Kakimoto Ken-ichi, Masuda Izumi, Ohsato Hitoshi. Lead-free KNbO_3 piezoceramics synthesized by pressure-less sintering[J]. Journal of the European Ceramic Society, 2005, 25: 2719-2722.
    [33] Matsubara M, Yamaguchi T, Sakarnoto W. Processing and piezoelectric properties of lead-free (K,Na) (Nb,Ta)O_3 ceramics[J]. Journal of American Ceramics Society, 2005, 88: 1190-1196.
    [34] Park S H, Aim C W, Nahrn S. Mierostructure and Piezoelectric Properties of ZnO-added (Na_(0.5)K_(0.5))NbO_3 ceramics[J]. Japanese Journal of Applied Physics, 2004, 43: 1072-1074.
    [35] Yasuyoshi Saito, Hisaaki Takao, Toshihiko Tani," Tatsuhiko Nonoyama, Kazumasa Takatori, Takahiko Homma, Toshiatsu Nagaya, Masaya Nakamura. Lead-free piezocer.amies[J]. Nature, 2004, 432: 84-87.
    [36] Cheol-Woo Ahn, Hwi-Yeol Park, Sahn Nahm, Kenji Uchino, Hyeung-Gyu Lee, Hwack-Joo Lee. Structural variation and piezoelectric properties of 0.95(Na_(0.5)K_(0.5))NbO_3-0.05BaTiO_3 ceramics[J]. Sensors and Actuators A xxx (2006)
    [37] Yang Zupei, Chang Yunfei, Liu Bing, Wei Lingling. Effects of composition on phase structure, microstructure and electrical properties of(K_(0.5)Na_(0.5))NbO_3-LiSbO_3 ceramics[J]. Materials Science and Engineering A, 2006, 432: 292-298.
    [38] Saito Y, Takao H. High performance lead-free piezoelectric ceramics in the (K,Na)NbO_3-LiTaO_3 solid solution system[J]. Ferroelectrics, 2006, 338: 17-32.
    [39] Zhang Shujun, Shrout Thomas R. Perovskite (Na_(0.5)K_(0.5))_(1-x)(LiSb)_x Nb_(1-x)O_3 lead-free piezoceramics[J]. Applied PhysicsLetters, 2006, 88: 212908-1-3.
    [40] Chang Yunfei, Yang Zupei, Wei Lingling, Liu Bing. Effects of AETiO_3 additions on phase structure, microstructure and electrical properties of (K_(0.5)Na_(0.5))NbO_3 ceramics[J]. Materials Science and Engineering A, 2006, 437: 301-305.
    [41] Barbara Malic, Janez Bernard, Janez Hole, Darja Jenko, Marija Kosec. Alkaline-earth doping in (K,Na)NbO_3 based piezoceramics [J]. Journal of the European Ceramic Society, 2005, 25: 2707-2711.
    [42] Tashiro Shinjiro, Ishii Keisuke, Wada Toshihiko. Fabrication of(Sr_xK_(0.5-x)Na_(0.5-x))NbO_3 pizoelectric ceramics and effects of MnO addition on their piezoelectric properties [J]. Japanese Journal of Applied Physics, 2006, 45 (9): 7449-7454.
    [43] Kizaki Y, Noguchi Y, Miyayama M. Defect control for low leakage current in K_(0.5)Na_(0.5)NbO_3 single Crystals[J]. Applied Physics Letters, 2006, 89 (14) 142910-1-3.
    [44] Kosec M, Kolar D. On activated sintering and electrical properties of NaKNbO_3[J]. Materials Research Bulletin, 1975, 10 (5): 335-340.
    [45] 郑立梅,王矜奉,臧国忠,赵明磊,亓鹏,杜鹃,苏文斌,明保全.无铅无铋压电陶瓷(Na_(0.5)K_(0.44)Li_(0.06))Nb_(0.95)Sb_(0.05)O_3-Na_(5.6)Cu_(1.2)Sb_(10)O_(29)研究[J].科学通报,2006,51(16):1955-1957.
    [46] Jiao Gangcheng, Fan Huiqing, Liu Laijun, Wang Wei. Structure and Piezoelectric properties of Cu-doped Potassium Sodium Tantalate Niobate ceramics[J]. Materials Letters, 2007, 51: 84-85.
    [47] Matsubara M, Yamaguchi T, Kikuta K. Sinterability and piezoelectric properties of (K,Na)NbO_3 ceramics with novel sintering aid[J]. Journal of Applied Physics, 2004, 43: 7159-7163.
    [48] Matsubara M, Kikuta K, Hirano S. Piezoelectric properties of (K_(0.5)Na_(0.5))(Nb_(1-x)Ta_x)O_3-K_(5.4)CuTa_(10)O_(29) ceramics[J]. Journal of Applied Physics, 2005, 97 (11): 114105-1-7.
    [49] Matsubara Masato, Yamaguchi Toshiaki, Kikuta Koichi, Hirano Shin-Iehi. Synthesis and characterization of (K_(0.5)Na_(0.5))Nb_(0.7)Ta_(0.3)O_3 piezoelectric ceramics sintered with sintering aid K_(5.4)Cu_(1.3)Ta_(10)O_(29)[J]. Japanese Journal of Applied Physics, 2005, 44 (9 A): 6618-6623.
    [50] Matsubara M, Yamaguchi T, Kikuta K, Hirano S. Sintering and piezoelectric properties of potassium sodium niobate ceramics with newly developed sintering aid[J]. Japanese Journal of Applied Physics, 2005, 44 (1A): 258-263.
    [51] Jaeger R E, Egerton L. Hot pressing of potassium-sodiumniobates [J]. Journal of American Ceramics Society, 1962, 45 (5): 209-213.
    [52] Wang Ruiping, Xie Rongiun, Sekiya Tadashi, Shimojo Yoshiro. Fabrication and characterization of potassium-sodium niobate piezoelectric ceramics by spark-plasma-sintering method[J]. Materials Research Bulletin, 2004, 39: 1709-1715.
    [53] Zhang Bo-Ping, Zhang Li-Min, Li Jing-Feng, Zhang Hailong, Jin Songzhe. SPS sintering of NaNbO_3-KNbO_3 piezoelectric ceramics[J]. Materials Science Forum, 2005, 475-479: 1165-1168.
    [54] Kakimoto Ken-ichi, Adao Koichiro, Guo Yiping, Ohsato Hitoshi. Raman Scattering Study of Piezoelectric (Na_(0.5)K_(0.5))NbO_3-LiNbO_3[J]. Japanese Journal of Applied Physics, 2005, 44 (9B): 7064-7067.
    [55] 梁敬魁.相图与相结构(上、下册)[M].北京:科学出版社,1993.
    [56] 梁敬魁.粉末衍射法测定晶体结构(上、下册)[M].北京:科学出版社,2003.
    [57] 方奇,于文涛.晶体学原理[M].北京:国防工业出版社,2002.
    [58] 周公度.晶体结构的周期性和对称性[M].北京:高等教育出版社,1992.
    [59] 俞文海.晶体结构的对称群[M].安徽:中国科学技术大学出版社,1991.
    [60] 韩建成.多晶X射线结构分析[M].上海:华东师范大学出版社,1989.
    [61] 王元熙.X射线及X射线衍射[M].北京:高等教育出版社,1986.
    [62] 周上祺.X射线衍射分析原理方法应用[M].重庆:重庆大学出版社,1991.
    [63] 杨于兴,漆璿.X射线衍射分析(修订版)[M].上海:上海交通大学出版社,1994.
    [64] 刘粤惠,刘平安.X射线衍射分析原理与应用[M].北京:化学工业出版社,2003.
    [65] H.P.克鲁格,L.E.亚力山大.X射线衍射技术(多晶体和非晶材料)(第二版)[M].北京:冶金工业出版社,1986.
    [66] 胡恒亮,穆祥琪.X射线衍射技术[M].北京:纺织工业出版社,1990.
    [67] 邱道益.X射线衍射仪技术[M].四川:四川科学技术出版社,1994.
    [68] Fachinformationszentrum Karlsruhe. Inorganic Crystal Structure Database [Software]. Germany, 2004.
    [69] Materials Date inc. Jade 5.0[Software]. USA, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700