热压原位反应合成金属/金属硅化物复相合金的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
难熔金属硅化物具有高熔点、高强度、较低的密度以及良好的高温抗氧化性能,是非常具有潜力的高温结构材料,但是高的室温脆性阻碍了其工业应用。
     实践证明通过合金化和复合化以及先进的材料制备技术可以有效地改善高温金属间化合物的高的室温脆性和低的高温强度。
     本研究基于原位合成材料制备理念,设计Cu-Mo-Si、Co-Mo-Si和Ni-Mo-Si三种金属硅化物复相合金,以工业纯Cu、Co、Ni、Mo和Si元素粉体为原料,采用机械球磨活化配合以热压烧结的工艺方法(简称MA/HP工艺)原位反应合成制备金属固溶体弥散分布在金属硅化物基体中的复相合金材料。通过XRD、OM、SEM和EPMA等分析手段对实验所得合金进行了相组成、组织和相关力学性能的分析和表征,研究了韧性金属Cu、Co和Ni含量的变化对合金的微观结构和力学性能的影响。
     研究发现,通过本设计试验,Cu-Mo-Si、Co-Mo-Si和Ni-Mo-Si三种合金系金属硅化物合金均可以形成复相结构,其显微组织由Mo_5Si_3、Co_3Mo_2Si或Ni_3Mo_2Si金属硅化物和分布于其间的金属固溶体Cu(Mo,Si)、Co(Mo,Si)和Ni(Mo,Si)等物相组成,且各相分布均匀。Cu-Mo-Si系合金为Cu_(ss)/Mo_5Si_3复相结构;Co-Mo-Si和Ni-Mo-Si系合金其构成为Co基固溶体/Co_3Mo_2Si和Ni基固溶体/Ni_3Mo_2Si的复相结构。随着韧性金属Cu、Co和Ni含量的提高,各合金中的金属硅化物Mo_5Si_3、Co_3Mo_2Si和Ni_3Mo_2Si的含量减少,合金的硬度下降,但是合金的抗弯强度提高。Cu-Mo-Si系合金的抗弯强度由435.7MPa提高到784.8MPa;Co-Mo-Si系合金的抗弯强度由的335.7MPa提高到756.2Mpa;Ni-Mo-Si系合金由375.7MPa提高到1323.1MPa,可见韧性金属相Cu、Co和Ni有效的提高了合金的韧性。与此同时金属硅化物Mo_5Si_3、Co_3Mo_2Si和Ni_3Mo_2Si的高强度又可以使合金的保持较高的整体强度。
     另外,本研究还对三类复相合金材料的烧结行为进行了初步的分析和讨论,并建立了其致密化和金属硅化物相生成之间关系的简单模型。
Transition metal silicides have been considered as promising candidate structural materials to be used at high temperatures due to their high melting points, high strength retention at high temperatures, reasonable densities and oxidation-resistant. However, its brittleness is the drawback hindering its industrial applications. The brittle behaviour can be reduced effectively by two different means: by alloying, or by microstructure control including in-situ composites. It is compared the microstructures and properties of silicides made hot-pressing(HP) method with those materials made by cast and reactive hot pressing without pre-alloyed mixture powder that the former has a density and homogeneous structure without segregation and crack.
     With the thought of in-situ compositing, Cu-Mo-Si composite silicide (with metal solid solution/metal silicid structure), Co-Mo-Si and Ni-Mo-Si composite silicides (with metal solid solution/Laves phase structures) were prepared by MA+HP method using the raw materials of Cu, Co, Ni, Mo and Si powder. Then the composite silicides were characterized through XRD, OM, SEM and EPMA etc. The Cu-Mo-Si, Co-Mo-Si and Ni-Mo-Si ternary metal silicide alloys have a dense and uniform microstructure consisting of the metal silicids (Mo_5Si_3,Co_3Mo_2Si,Ni_3Mo_2Si) and the metal (Cu, Co, Ni) solid solution. With the increasing of the metal (Cu, Co, Ni) content, volume fraction of the metal silicids (Mo_5Si_3, Co_3Mo_2Si,Ni_3Mo_2Si) and the average hardness of the Me-Mo-Si (Me=Cu, Co, Ni) alloys decrease, nevertheless the bending strength of the alloys increase, 435.7~784.8MPa, 335.7~756.2Mpa, 375.7-1323.1MPa, respectively. Compared with the single-phase ternary metal silicides, the metal solid solution toughened metal silicide alloys have an excellent balance of strength and ductility, which was attributed to the effective toughening of ductile metal (Cu, Co, Ni) solid solution.
     Furthermore the sintering process of the Me-Mo-Si (Me=Cu, Co, Ni) metal silicde alloys was disgussed, the model of the sintering/metal silicide formation was builded.
引文
[1] 张德尧.硅化物高温结构材料的主要进展.稀有金属快报,2001,(3):17-18
    
    [2] 林一坚.从金属间化合物结构材料的发展历史谈新材料研究的方向.上海钢研,1995, (3):45-49
    
    [3] Miracle D B,Mendiratta M G,Westbrook J H,et al.Intermetallic Composites in Intermetallic Compounds,Vol.2.Chichester:Wiley,1994,287-300
    
    [4] 陈国良.金属间化合物结构材料研究现状与发展.材料导报,2000,14(9):1-5
    
    [5] 杨遇春.金属间化合物及其应用.有色金属再生与利用,2004,(9):29-30
    
    [6] 赵海云,王华明.激光熔覆过渡金属硅化物Laves相增强高温耐磨抗氧化涂层组织与性能 研究.应用激光,2002,22(2):89-92
    
    [7] Koch C C. Intermetallic matrix composites prepared by mechanical Alloying-a review, Materials Science and Engineering, 1998, A244:39-48
    
    [8] Lu Qingyi, Hu Junqing, Kaibin Tang. Benzene-thermal co-reduction reaction for nanocrystalline intermetallics FeSi and NiAl. Solid State Ionics, 1999,124:317-321
    
    [9] Schneeweiss O, Piz(?)rov(?)N, Jir(?)skov(?)Y, et al. Fe_3Si surface coating on SiFe steel, Journal of Magnetism and Magnetic Materials,2000,215-216:115-117
    
    [10]陈国良,林均品.有序金属间化合物结构材料物理金属学基础.北京:冶金工业出版 社,1999,10-11
    
    [11] Chen K C, Allen S M, Livingston J D. Factors affecting the room- temperature mechanical properties of TiCr_2-base Laves phase alloys. Materials Science and Engineering, 1998,A242:162-173
    
    [12] Shah D M, Berczik D, Anton D L, et al. Appraisal of other silicides as structural materials , Materials Science and Engineering,1992,A155:45-57
    
    [13] VasudeVan A K, Petrovic J J. A comparative overview of molybdenum disilicide composites,Materials Science and Engineering,1992,A155:1-17
    
    [14]李爱民,董维芳,孙康宁.金属间化合物的研究现状及其最新发展趋势.现代技术陶瓷, 2004,100(2):27-31
    
    [15]叶恒强,郭建亭.高性能金属间化合物结构材料的关键基础性问题.中国科学基金, 2000,14(2):117-121
    
    [16]李云峰.Fe-Al系化合物合金的制备与组织性能研究.[兰州理工大学硕士学位论文].兰 州,兰州理工大学材料科学与工程学院,2004,1-2
    
    [17]Heron A J, Schaffer G B. Mechanical alloying of MoSi_2 with ternary alloying elements. Materials Science and Engineering, 2003, A359:319-325
    
    [18]Natesan K, Deevi S C. Oxidation behavior of molybdenum silicides and their composites, Intermetallics,2000,8:1147-1158
    
    [19]Erik Strom. Mechanical properties of Mo_5Si_3 intermetallics as a function of composition. Materials Characterization,2005,55:402-411
    
    [20]Takasugi T, Kumar K S, Liu C T, et al. Microstructure and mechanical properties of two-phase Cr-Cr_2Nb, Cr-Cr_2Zr and Cr-Cr_2(Nb, Zr) alloys. Materials Science and Engineering, 1999,A260:108-123
    
    [21]Petrovic J J, Vasud(?)van A K, Key developments in high temperature structural silicides, Materials Science and Engineering, 1999, A261:1-15
    
    [22]Wang H M, Cao F, Cai L X, et at. Microstructure and tribological properties of laser clad Ti_2Ni_3Si/NiTi intermetallic coatings. Acta Materialia, 2003,51:6319-6327
    
    [23]Liu Y F, Zhao H Y, Wang H M. Microstructure and wear resistance of laser clad Ti_5Si_3/NiTi_2 composite coating. Chinese Journal of materials Research, 2002,16(3):313-318
    
    [24]P.Jiang,J.J.Zhang,L.G.Yu,H.M.Wang,Wear-resistant Ti_5Si_3/Ti composite coatings by laser surface alloying, Rare Metal Materiales and Engineering, 2000,29(4):269-
    
    [25]赵海云,王华明.激光熔覆过渡金属硅化物Laves相增强高温耐磨抗氧化涂层组织与性能 研究.应用激光,2002,22(2):89-92
    
    [26]Duan G,Wang H M.High-temperature wear resistance a laser clad γ/Cr_3Si metal silicide composite coating,Scripta Materialia,2002,46:107-111
    
    [27]马勤,康沫狂.高温结构硅化物研究的新进展.材料工程,1997,(7):73-6
    
    [28] Thom A J, Akinc M. Effect of ternary additions on the oxidation resistance of Ti_5Si_3. Advanced Ceramics for Structural and Tribological Applications, 2003, 619-627
    
    [29] Umakoshi Y, Nakashima T. High temperature deformation of Ti_5Si_3 single crystals with D8_8 structure. Scripta Metallurgica et Materialia, 1994, 30: 1431-1436
    
    [30] Liu C T, Zhu J H, Brady M P, et al. Physical metallurgy and mechanical properties of transition-metal Laves phase alloys, Intermetallics, 2000,8 :1119-1129
    
    [31]鲁 世 强,黄 伯 云,贺 跃 军 等.Laves 相 合 金 的 物 理 冶 金 特 性.材 料 导 报,2003,17(1): 11-14
    
    [32] Machon L, Sauthoff G. Deformation behaviour of Al-containing C14 Laves phase alloys. Intermetallics, 1996, 4: 469
    
    [33] Thoma D J, Perepezko J H. A geometric analysis of solubility ranges in Laves phases. Journal of Alloys and Compounds, 1995, 224: 330
    
    [34] Stein F, Palm M, Sauthoff G. Structure and stability of Laves phases part Ⅱ-structure type variations in binary and ternary systems. Intermetallics,2005,13:1056-1074
    
    [35] Thoma D J, Chu F, Peralta P, et al. Elastic and mechanical properties of Nb (Cr, V)_2 C15 Laves phases. Materials Science and Engineering, 1997, A239/240: 251
    
    [36] Chu F, Thoma D J, Kotula P G, et al. Phase stability and defect structure of the C15 laves phase Nb(Cr,V)_2. Acta Materialia, 1998, 46: 1759-1769
    
    [37] Okaniwa H, Shindo D, Yoshida M, et al. Determination of site occupancy of additives X (X=V, Mo, W and Ti) in the Nb-Cr-X Laves phase by ALCHEMI. Acta Mater 1999, 47: 1987-1992
    
    [38] Yan X L, Chen Xing-Qiu, Grytsiv A. On the ternary Laves phase {Sc,Ti}_2M_3Si (M=Cr, Mn, Fe, Co, Ni) with MgZn_2-type. Journal of Alloys and Compounds, 2007,429: 10-18
    
    [39]吕 旭 东,王 华 明.Mo_2Ni_3Si/NiSi 复 合 材 料 涂 层 的 滑 动 磨 损 行 为.材 料 研 究 学 报, 2003,17(4):389-395
    
    [40]李爱兰,曾燮榕,李贺军.Nb增韧MoSi_2基复合材料的研究进展.材料工程,2002(2):6-9
    
    [41]李伟,杨海波,单爱党,吴建生.Mo对于Nb/Nb_5Si_3原位复合材料室温韧性的影响.材料 工程,2004,(4):31
    
    [42]刘 勇,李 安,张凌云,王华明.激光熔化沉积Co/Co_3Mo_2Si三元金属硅化物耐磨合金显 微组织.稀有金属材料与工程,2005,34(10):1657-1660
    
    [43]Liu Y,Wang H M.Elevated temperature wear behaviors of a Co-Mo-Si ternary metal silicide alloy.Scripta Materialia,2005,52:1235-1240
    
    [44]林栋梁.高温有序金属间化合物研究的新进展.上海交通大学学报,1998,32(2):95-108
    
    [45]陈国良.有序金属间化合物的物理金属学性能:北京.冶金工业出版社,2000,169-173
    
    [46]鲁世强,黄伯云,贸跃辉等.Laves 相合金的力学性能.材料工程,2003,(5):43-47
    
    [47]杨晓华,吕涛,丁华东.金属间化合物的增韧机理.稀有金属材料与工程,1996,25(4):1-4
    
    [48]Liu C T,Stiegler J O,Froes F H.Metals Handbook,Tenthed.,American Society for Metals, Metals Park,OH,1990,929-931
    
    [49] 曲选辉,何定玉,黄伯云.Laves相铬化物的研究.高技术通讯,1996,(12):27-30
    
    [50]Schulson E M,Barker D R.A brittle to ductile transition in NiAl of a critical grain size. Scripta Metallurgica,1983,17:519-522
    
    [51]聂 小 武,鲁 世 强,王 克 鲁 等.Laves 相 金 属 间 铬 化 物 的 制 备 研 究 进 展.铸 造 技 术 2006,27(7):756-760
    
    [52]Takasugi T, Kumar K.S, Liu C.T. Microstructure and mechanical properties of two-phase Cr-Cr_2Nb,Cr-Cr_2Zr and Cr-Cr_2(Nb,Zr) alloys. Materials Science and Engeering, 1993,A260: 108-123
    
    [53] Grujicic M, Tangrila S. Effcect of additions on structure of Laves phases in Nb-Cr-Fe alloys. Materials Science and Engineering , 1993,A160:37-38
    
    [54]何玉定.合金元素对Laves 相TiCr_2力学性能的影响.中国有色金属学报,1998,8(4):569-572
    
    [55] Geng Jie , Tsakiropoulos Panos, Shao Guosheng. A study of the effects of Hf and Sn additions on the microstructure of Nb_(ss)/Nb_5Si_3 based in situ composites. Intermetallics, 2007,15: 69-76
    
    [56] Bewlay B P, Sutliff J A, Jackson M R, et al. Microstructural and Crystallographic Relationships in Directionally Solidified Nb-Cr_2Nb and Cr-Cr_2Nb Eutectics, Acta Metallurgica et Materialia,1994, 42(8):2869-2878
    
    [57] Bewlay B P, Lipsitt H A, Jackson M R. Solidification processing of high temperature intermetallic eutectic-based alloys. Materials Science and Engineering, 1995, A192-193: 534-543
    
    [58] Przybylowicz J. Laser cladding and erosive wear of Co-Mo-Cr-Si coatings. Surface and Coatings Technology, 2000,125 :13-18
    
    [59] Lu X D, Wang H M. Dry sliding wear behavior of laser clad Mo_2Ni_3Si/NiSi metal silicide composite coatings.Thin Solid Films, 2005,472 :297-301
    
    [60]牛伟,孙荣禄.钛合金激光熔覆的研究现状与发展趋势.材料导报,2006,20(7):58-61
    
    [61] Lu X D, Wang H M. High-temperature phase stability and tribological properties of laser clad Mo_2Ni_3Si/NiSi metal silicide coatings. Acta Materialia, 2004,52:5419-5426
    
    [62] Suryanarayana C. Mechanical alloying and milling. Progress in Materials Science, 2001,46: 1-184
    
    [66]王兴庆,吕海波.粉末冶金法制取 Fe_3Al 金属间化合物的研究.上海大学学报(自然科学 版),2000,6(6):510-515
    
    [67]鲁世强,黄伯云,贺跃辉.机械合金化对 Laves 相 Cr_2Nb 固相热反应合成的影响.航空学 报,2003,24(6):568-572
    
    [68]何玉定,曲选辉,黄伯云.机械活化热压合成 Laves 相 TiCr_2 及其力学性能的研究.稀有金 属,2003,(3):303-306
    
    [69]彭拯.机械合金化热压烧结制备新型(Mo,Cr)_5Si_3高温结构材料的探索:[尔北大学硕士论 文].沈阳:东北大学,2003,13-14
    
    [70]周本濂.材料制备中的非平衡过程.材料研究学报,1997,11(6):576-585
    
    [71] Rosalesil, Schneibel J H. Stoichiometry and mechanical properties of Mo_3Si. Intermetallics, 2000, 8:885-889
    
    [72]Gras Ch, Verl D, Gaffet E, et al. Mechanical activation effect on the self-sustaining combustion reaction in the Mo-Si system. J of alloys and compounds, 2001, 314: 240-250
    
    [73] Yin Y X, Wang H.M. Microstructure and tribological properties of Cu_(ss)-toughened Cr-Cu-Si metal silicide alloys. Journal of Alloys and Compounds, 2006, 420: 218-224
    
    [74] Yin Y X, Wang H.M. Microstructure and wear properties of laser clad Cu_(ss)/Cr_5Si_3 metal silicide composite coatings. Applied Surface Science, 2006, 253: 1584-1589
    
    [75] Yin Y X, Wang H.M. High-temperature wear behaviors of a laser melted Cu_(ss)/(Cr_5Si_3-CrSi) metal silicide alloy. Materials Science and Engineering, 2007, A452-453: 746-750
    
    [76] Iwona Tomaszkiewicz, Hope G A, Charles M. Beck Ⅱ, et al. Thermodynamic properties of silicides V. The Journal of Chemical Thermodynamics, 1996, 28:29-42
    
    [77]O'Hare P A G. Thermodynamic properties of silicides Ⅲ. The Journal of Chemical Thermodynamics, 1993, 25:1333-1343
    
    [78] Iwona Tomaszkiewicz, Hope G A, Charles M. Beck Ⅱ, et al. Thermodynamic properties of silicides Ⅵ. The Journal of Chemical Thermodynamics, 1997, 29:87-98
    
    [79] Benkerri M, Halimi R, Bouabellou A, et al. Effect of Sb~+ implantation on copper silicides formation and morphology after annealing of Cu/Si structures. Materials Science in Semiconductor Processing, 2004, 7: 319-324
    
    [80] Yin Y X, Wang H M. Microstructure and high-temperature sliding wear property of Co_(ss)/Co_3Mo_2Si metal silicide alloys. Materials Science and Engineering, 2005, A396: 240-250
    
    [81]施剑林.固相烧结-Ⅰ气孔显微结构模型及其热力学稳定性致密化方程.硅酸盐学报, 1997,25(5):499-513
    
    [82]陆佩文.无机材料科学基础.武汉:武汉工业大学出版社,2001,281-313
    
    [83]王明智,王艳军,赵玉成,等.真空——保护气热压烧结及装备.金刚石与磨料磨具工程, 2000,1(115):12-16
    
    [84]Str(?)m Erik,Zhang Ji,Eriksson Sten.The influence of alloying elements on phase constitution and microstructure of Mo_3M_2Si_3(M=Cr,Ti,Nb,Ni,or Co).Materials Science and Engineering.2002,A329-331:289-294

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700