Cu-Cr-Zr和Cu-Zn-Cr-Zr合金时效特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用铸锭冶金法制备了大功率异步牵引电动机转子用导条合金和端环合金,通过硬度测试、室温拉伸、高温拉伸、电导率测定、金相分析、XRD、SEM、TEM等方法研究了不同加工工艺和热处理工艺对上述合金力学性能、导电性能及其组织结构的影响和变化规律,并从理论上进行了分析和解释。研究结果表明:
     1.Cu-Zn-Cr-Zr合金是典型的时效强化型合金。在本论文实验条件下,导条合金综合性能较好的加工工艺为挤压—水淬—冷拉—450℃/4h时效,合金的力学和电学性能可达:σb=467MPa,σ0.2=390MPa.δ5=20.8%σr=64.6%IACS;端环合金综合性能较好的加工工艺为热锻—固溶—450℃/4h时效,合金的力学和电学性能可达:σb=388MPa,σ0.2=315MPa.δ5=27.8%,σr=84.65%IACS。
     2.研究合金不仅在常温具有很好的强度和导电性,而且具有较高的高温强度,导条合金在350℃时σb仍保持在274MPa左右,σ0.2仍保持在250MPa左右;端环合金在350℃时σb仍保持在200MPa以上,σ0.2仍保持在165MPa以上。
     3.研究合金的强化机制包括固溶强化、加工硬化及析出强化。形变热处理(固溶—冷拉—时效)工艺可大大提高合金时效后的最终强度,时效后形变热处理对电阻率影响很小。冷拉后的合金时效过程中受到析出和再结晶过程交互作用的影响。析出的第二相粒子不仅强化了基体而且一定程度上抑制了再结晶的进行,从而使合金的硬度进一步提高。
     4.冷变形—时效过程中影响合金电导率变化的主要因素有回复—再结晶过程、过饱和固溶体的分解和析出,回复和再结晶使合金的电导率提高,过饱和固溶体的分解使得基体固溶度显著降低同时也使电导率显著升高。
     5.合金高导电性的根本原因在于时效后形成的弥散型复相结构,细小的析出粒子弥散分布于高电导率的基体之中,对电导率的影响很小。其导电机制可用单元立方体导电模型来解释。
Cu-Zn-Cr-Zr conducting bar alloy and Cu-Cr-Zr end ring alloys used for superpower asynchronous traction motor rotor were prepared by Ingot Metallurgy. Using hardness measurement, tensile test at room and higher temperature, electrical resistance test at room and higher temperature, optical microscopy, XRD, SEM, and TEM, the mechanical and electric properties and the microstructure of above alloys at different treatment were studied. Them were also analysed and explained in theory. The results show that:
    The first, Cu-Zn-Cr-Zr alloy is a typical aging strengthing alloy; the optimal process of bar alloy is extrusion-quench-cold-drawing-aging(450PC/4h), it's mechanical and electrical performance can reach o b=467MPa, o 0.2=390MPa, 8 5=20.8%, a r=64.6%IACS; the optimal process of end ring alloy is hot-forging-solution-aging(450癈/4h), it's mechanical and electrical performance can reach o b=342MPa, o 0a=216MPa. 6 5=27.8%, o r=74.3%IACSo
    The second, above alloys not only have good strength and conductibility at room temperature but also have good strength at high temperature. Bar alloy can hold o b=274MPa and o o2=250MPa at 350癈 while end ring alloy can hold o b=200MPa and o 02=l65MPa at350癈.
    The third, the strengthening mechanisms of above alloys mainly include solution strengthening, strain-strengthening and aging strengthening. Thermomechanical treatment(solution-cold-drawing-aging) can increase alloys' strength greatly. The alloy in aging after cold-drawing was influenced by the interaction of precipitation and recrystaUization. The precipitates not anly can strengthen the matrix but also can restrain recrystaUization.
    The fourth, electrical conductivity of alloys was influenced by reversion-recrystaUization and precipitation of supersaturation solid solution. Reversion-recrystaUization can increase electrical conductivity. Precipitation can also increase conductivity by reducing solid solubility in matrix.
    FinaUy, high-conductivity of aUoys come from disperse and duplex phase structure. It's conducting mechanism can be explained by cubic conducting unit model.
引文
1.王笑天,金属材料学,北京:机械工业出版社,1987:267~274
    2.Taubenblet P.W.et al,Hogh conductivity cooper and aluminum alloys,Los Angles Calif USA,26Fed~1Mar,1984:18~27
    3.金子秀夫,新型合金材料,北京:宇航工业出版社,1989:84~92
    4.Krotz,Phill P P,Metall Trans,1993,24A(1):5
    5.王深强等,高强高导铜合金的研究现状与展望,材料工程,1995(7):3
    6.吴彦卿等,DH2-1型铬锆铜电极合金,焊接学报,1985.9(3):143
    7.王绍雄,铜和铜合金在电子工业中的新趋向,铜加工,1992(3):6
    8.E.ARPACI等,铜材—性能以及在电工电子学中的应用,西德Metall,1996(46)Nol:21
    9.王隆寿 宝钢铬锆铜结晶器铜板的研制,冶金设备,1999.12(6):34
    10.五十岚廉,引线框架材料,日本金属学会会报,1989.1:63
    11.温宏权等,高速列车用新型铜合金接触线,材料导报,1998.1(2):25
    12.尹志民,高培庆,汪明朴,李世泽等,中国发明专利(99101884.9),1999
    13.陈北盈等,铜和铜合金,长沙:中南工业大学出版社,1987:
    14.迁正博等,高强度高导电性铜合金,[日]公开特许专利公报(A)60-245751:281
    15.山根寿已,高强度高导电铜合金的设计基础,伸铜技术研究会志,1990(29):12
    16.P.M.Berge等,一种新型的高强度高导电率的铜合金线,Wire Journal International,1991(11):62
    17.Alain Lodini,Cu-Cr-Zr型合金制造方法制取的新型合金及其应用,Patent No 2520759(FR),1982
    18.N.T. Tang等,Precipitation and aging in high-conductivity Cu-Cr alloys with additions of zirconium and magnesium, Materials Science and Technology, 1985 No. 1:270
    19.杨朝聪,高强高导电铜合金的研究及进展,云南冶金,2000.12(6):26~27
    20.何启基,金属的力学性能,北京:冶金工业出版社,1982:193
    21.郑雁军等,高强高导铜合金研究现状及展望,材料导报,1997.11(6):52~55
    22.王深强,陈志强等,高强高导铜合金的研究概述,材料工程,1995,7:3
    23.廖素三,Cu-Cr和Cu-Cr-Zr合金的组织和性能,中南工业大学硕士学位论文,长沙:中南工业大学,2000.1:3
    24.冯端等,金属物理学(第一卷),北京:科学出版社,1987:154
    25.陈存中,关于开发导电高铜合金之管见,铜加工,1985(3):42
    26.Tiainen T, Proc.Metal matrix composires-processing, Microstructure and properties conf. Roskilde, Denmark, Sempt., 2~6, 1991:689
    27.Spilzig W A, et al, Characterization of the strength and microstructure of heavily cold worked Cu-Nb composite, Acta Metall, 1987.35(10): 2427~2442
    
    
    28.曾松岩等,一种新型制备金属基复合材料的方法—接触反应法,宇航材料工艺,1995(5):27~30
    29.张瑞丰,沈宁福,快速凝固高强高导铜合金的研究现状及展望,材料科学与工程,2000.12(4):141
    30.沈宁福等,凝固理论进展与快速凝固,金属学报,1996.7:674
    31.李振宇等,快速凝固铜合金的研究现状,粉末冶金技术,1998(16):59
    32.亢若谷,弥散强化铜合金的现状与发展,云南冶金,1995(5):1~5
    33.贾燕民,丁秉钧,制备弥散强化铜的新工艺,稀有金属材料与工程,2000.4(2):141
    34.孙世清等,高强高导铜基复合材料,河北科技大学学报,2000.21(1):20
    35.葛继平,形变铜基原位复合材料的研究进展,功能材料,1999,30(2):129~130
    36.Spitzig W A, et al, Krota P D, Comparision of the strengths and microstructure of Cu-20%Ta and Cu-20%Nb in situ composites, Acta Metall, 1988, 36(7): 1709~1715
    37.Adachik, Tsubokawas, Takeuchi T, et al, Plastic deformation of Cr phase in Cu-Cr compostion cold rolling, Jap Inset Met, 1997.61(5):391~396
    38.曹育文等,中国铜合金引线框架材料的现状与发展,《功能材料》增刊,1998.10:714~716
    39.刘平等,铜基集成电路引线框架材料的发展概况,材料开发与应用,1998.6(3):714
    40.王碧文,大规模集成电路引线框架材料发展动向及对策,有色金属,1997.8(3):97
    41.崔旻,铜系合金引线框架材料的技术进步,第六届有色金属材料与工程、合金加工学术交流会,昆明,1997
    42.霍明远等,稀土的理论与应用研究,北京,高等教育出版社,1992.9:63~70
    43.廖乐杰,何福忠,稀土在铜及铜合金中的作用及其应用效果,特种铸造及有色金属,1997(2):52~53
    44.谈荣生,孙连超,稀土在纯铜和铜合金中的应用与研究现状,中国稀土学报,1995.7(13):445~449
    45.方正春,耐热和导电铜合金发展现状,材料开发与应用,1997.8(4):30
    46.陈兴张,我国铜加工材产品发展战略思考,世界有色金属,2000.3:20~22
    47.金永武,铜及铜合金酸洗钝化新工艺的应用,汽车工艺材料,1998.6:17~18
    48.高培庆,电力机车异步电动机的开发及其应用,机车电传动,1999.1:23~26
    49.赵小刚等,我国发展交流传动电力机车技术模式的探讨,机车电传动,1998.7:1
    50.赵恒连,叶家金,电源频率对三相异步牵引电动机影响的探讨,机车电传动,1992.2:20~22
    51.胡礼源,电力机车牵引电动机讲座,电力机车技术,1995.1:30~33
    52.赵祖德等,铜及铜合金材料手册,北京:科学出版社,1993
    53.中国金属学会,中国有色金属学会,金属物理性能及测试方法,北京:冶金工业出版社,1987.12:421
    
    
    54. 陈高恩,薛殿麒等,用X射线衍射仪法测定纯铜点阵常数,中南民族学院学报(自然科学版),1998.12(4):27~30
    55. 王洪信,X射线衍射仪精确测定点阵常数的研究,河北师范大学学报(自然科学版),1994.9(3):35~36
    56. 邓至谦,周善初,金属材料热处理,长沙:中南工业大学出版社,1989.6:71
    57. Luo C P, Dahmen U et al., Precipitation in dilute Cu-Cr alloy: the effect of phosphorus impurities and aging procedure, Scripta metallurgica et matefialia, 1992(26): 649~654
    58. Luo C P, Dahmen U et al., Morphology and crystallography of Cr precipitates in A Cu-0.33wt%Cr alloy, Acta metall.mater, 1994(4): 1923~1932
    59. Fujii T, Nakazawa H, crystallography and Morphology of nanosized Cr paeficles in a Cu-0.2%Cr alloy, Actamater, 2000(48): 1033~1045
    60. Tang N Y, Taplin D M R, Precipitation and aging in high-conductivity Cu-Cr alloys with additions of Zirconium and magnesium, Materials science and technology, 1985(1): 270~274
    61. Appello M, Penici P, Solution heat treatment of a Cu-Cr-Zr alloy, Materials science and engineering A, 1988(102): 69~75
    62. Morris M A, Leboeuf M, recrystallization mechanisms in a Cu-Cr-Zr alloy with a bimodal distribution of particles, Materials science and engineering A, 1994(188): 255~265
    63. Batra IS, Dey G K, Microstructure and properties of a Cu-Cr-Zr alloy, Journal of Nuclear Materials, 2001(299): 91~100
    64. Zeng K J, Hamalainen M, A theoretical study of the phase equilibra in the Cu-Cr-Zr system, Journal of alloy and compounds, 1995(220): 53~61
    65. Zeng K J, Hamalainen M, Lilius K, Phase relationships in Cu-rich corner of the Cu-Cr-Zr phase diagram, Scripta metallurgica et materialia, 1995(12): 2009~2014
    66. Uwe Holzwarth, Hermann Stamm,The precipatation behaviour of ITER-grade Cu-Cr-Zr alloy after simulating the thermal cycle of hot isostatic pressing, Journal of Nuclear Materials, 2000(279): 31~45
    67.Cahn RW,雷廷权等译,金属与合金工艺,材料科学与技术丛书(第15卷),北京:科学出版社,1999.7:402
    68. 肖纪美,合金相与相变,北京:冶金工业出版社,1987:250
    69. S.S.Gorelik,仝健民译,金属和合金的再结晶,北京:机械工业出版社,1985:369~390
    70. 赫资伯格 R W,工程材料的变形与断裂力学,北京:机械工业出版社,1982:201
    71. 束德林,金属力学性能,北京,机械工业出版社,1997.10:16
    72. 方俊鑫,陈栋,固体物理,北京,高等教育出版社,1981:156
    73. 刘平,黄金亮等,快速凝固高强度高导电Cu-Cr合金的组织和性能,兵器材料科学与工程,1999.1:12~16
    74. 田莳,合金物理性能,北京,航空工业出版社,1994:36
    
    
    75.Batawi, et al. Effect on Small Alloying Additions on Behavior of Rapidly Solidified Cu-Cr Alloy. Materials Science and Technology, 1990; 6:892
    76.罗丰华等,微量Zr,Cr对Cu13Zn合金力学性能的影响,稀有金属材料与工程,2001(2):145~148
    77.Kittel C.Introduction to Solid State Physics.Warsaw:Polish Scientific Publishers,1970;236
    78.В.Г.Дивщиц,王润译,金属和合金的物理性能,北京,中国工业出版社,1961:54
    79.江全元,何俊佳,CuCr复合材料的导电性,华中理工大学学报,1998.8(3):78~80
    80.费铸铭等,颗粒增强金属基复合材料的导热率,复合材料导报,1990.7(3):27~32
    81.李震彪,陈青松,接触头复合材料电阻率的理论研究,中国电机工程学报,1996.16(3):185~188

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700