Chitosan/PB-MSCs可注射组织工程骨用于骨质疏松种植修复的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨质疏松是以骨量减少、骨组织显微结构退化为特征的一种系统性骨代谢疾病。颌骨作为全身骨骼的一部分,与全身其他骨骼一样会受到骨质疏松的影响,导致颌骨内骨组织的数量和质量下降,使种植体植入后愈合时间延长,BIC、BD、BA下降,对种植牙长期稳定的发挥功能构成了威胁;同时,骨质疏松加快了剩余牙槽嵴吸收速度,降低牙槽嵴高度和宽度,使牙槽骨扩增术面临着更大的失败风险。鉴于此,骨质疏松被认为是种植牙治疗的相对危险症。针对骨质疏松患者,如何使种植体快速达到良好的骨整合状态,如何对萎缩的牙槽骨成功进行扩增,是很多种植科临床医生关注的问题。
     本研究从外周血中获得可以作为骨组织工程种子细胞的PB-MSCs;改良了壳聚糖凝胶使其能良好的保持种子细胞的活力;利用这两者构建一种可注射组织工程骨,应用到骨质疏松兔种植体周围,结果该可注射组织工程骨在种植体骨外悬空部分周围形成了新生骨组织与种植体紧密接触,在种植体骨内部分近心端形成较强的白色阻射影像。这提示该可注射组织工程骨在体内可以形成新生骨组织,既可以用于牙槽骨扩增术,也可以提高骨质疏松状态下BD、BA,进一步详细的深入研究有待以后进行。
     实验一骨髓与外周血间充质基质细胞的体外培养
     目的:研究外周血是否可以与骨髓一样作为骨组织工程种子细胞来源。
     方法:自腹主动脉抽取1月龄左右新西兰兔外周血,密度离心法分离兔外周血单个核细胞,冲洗收集长骨内骨髓,将两者在体外进行培养。取P_4代细胞,利用RT-PCR法检测表面分子标志物表达情况;进行成脂诱导,油红O染色观察脂滴形成情况;进行成骨诱导,组织学染色观察ALP、Ⅰ型胶原的表达及矿化结节形成情况。
     结果:骨髓原代培养细胞集落形成旱,细胞形态均一,呈典型的成纤维细胞样细胞,CD29表达阳性,CD34表达阴性。成脂诱导时大部分分化为脂肪细胞。成骨诱导1w时ALP表达阳性,3w时Ⅰ型胶原表达阳性,4w时形成数量较多的矿化结节。外周血原代培养细胞集落形成晚,细胞形态不一,种类多。细胞CD29表达阳性,CD34表达弱阳性。成脂诱导10d时部分细胞分化为脂肪细胞。成骨诱导2w时ALP表达阳性、4w时Ⅰ型胶原表达阳性,5w时有矿化结节形成,同时有管样结构形成。
     结论:外周血内含有多向分化潜能干细胞,成骨诱导时能分化为成骨细胞并形成矿化结节。外周血可以作为组织工程骨的种子细胞来源。
     实验二一种细胞活性保持良好的壳聚糖凝胶的制备
     目的:通过减少盐酸的浓度,升高壳聚糖溶液的PH值,减少交联剂β-GP用量,使壳聚糖凝胶具有生理渗透压,更好的保持细胞活性。
     材料与方法:用不同浓度盐酸配制2%壳聚糖溶液:A组,0.1M;B组,0.09M;C组,0.08M;D组,0.07M;E组,0.07M;A-D组常温搅拌溶解,E组高温搅拌溶解。持续搅拌6h后高温高压消毒。β-GP溶液分为3种浓度(w/v):Ⅰ组,11%;Ⅱ组,25%;Ⅲ组,50%。4ml壳聚糖溶液与1mlβ-GP溶液混匀组成壳聚糖凝胶,测量不同组分壳聚糖凝胶PH值并记录其在37℃时凝固所需时间。取E+Ⅰ、D+Ⅱ、D+Ⅲ三组凝胶与外周血间充质基质细胞混合凝固后体外培养3d,利用MTT检测凝胶内细胞活力保持情况。
     结果:盐酸浓度越低,消毒造成的壳聚糖溶液粘度损失越小,所获得的壳聚糖凝胶PH值越高,由不凝固变为凝固或凝固所需时间越短。E+Ⅰ组凝胶中大多数细胞具有活性,D+Ⅱ组凝胶中少数细胞具有活性,D+Ⅲ凝胶中只有个别细胞具有活性。
     结论:E+Ⅰ组凝胶含2.2%β-GP,具备生理渗透压,PH值为7.13,凝固时间为20min,能很好的保持细胞的活性。
     实验三去势法骨质疏松兔模型的建立及下颌牙槽骨的改变
     目的:去势法建立兔骨质疏松模型并观察下颌牙槽骨的改变。
     方法:20只雌性新西兰兔平均随机分为两组,手术组行双侧卵巢摘除术,对照组行假手术。检测术前及术后3m、6m血清中OC与TRAP水平、股骨与腰椎BMD.术后6m处死所有实验用兔,下颌骨脱矿后制作5μm切片,组织学染色观察颏孔附近骨形态,光镜下测量下颌中切牙内侧骨层厚度,拍片后使用photoshop软件计算下颌中切牙下方内侧骨面积比例。
     结果:手术组OC水平术后3m(3.39±0.63μg/L)、6m(3.22±0.98μg/L)高于假手术组(2.46±0.68μg/L;2.1 7±0.57μg/L,P<0.05);TRAP术后3m(OD值0.389±0.061)、6m(OD值0.371±0.051)高于假手术组(OD值:0.332±0.039:0.308±0.029,P<0.05)。术后3m两组的股骨、腰椎BMD无统计学差异.术后6m手术组股骨BMD(0.349±0.056g/cm~3)、腰椎BMD(0.257±0.042g/cm~3)均低于假手术组(股骨0.481±0.086g/cm3,P<0.01;腰椎0.360±0.042g/cm3,P<0.01)。术后6m手术组下颌骨松质骨内骨小梁变细,排列稀疏甚至消失,手术组下颌中切牙内侧骨层厚度(0.52±0.16mm)较假手术组(0.85±0.14mm,P<0.01)变薄;中切牙内下方骨小梁面积比(51.7±11.6%)明显低于假手术组(82.6±9.2%,P<0.01)。
     结论:去势法兔骨质疏松模型成熟可靠。下颌牙槽骨表现出明显的骨质疏松样改变,提示骨质疏松状态下进行种植牙治疗有必要采取一些特殊措施来保证治疗的成功。
     实验四可注射组织工程骨用于骨质疏松种植修复的初步探索
     目的:将可注射组织工程骨安全有效的应用于种植体研究,初步观察其在骨质疏松状态下修复种植体周围骨量不足的效果。
     方法:(1)9只正常新西兰兔分为3组,每组3只,将1ml E+I配制的壳聚糖凝胶按照不同方式应用于种植部位骨内:第一组种植窝制备前注入;第二组种植窝制备后注入,并迅速植入种植体;第三组将壳聚糖凝胶凝固后置入种植窝。观察2h内实验用兔反应。(2)用自体PB-MSCs与E+I配制的壳聚糖凝胶构建可注射组织工程骨。所用种植体为BAM表面羟基磷灰石涂层的圆柱状无螺纹种植体,植入股骨干骺端。12只骨质疏松兔分为3组,每组4只。空白对照组单纯植入种植体;对照组种植体骨内周围及骨外悬空部分应用壳聚糖凝胶;实验组种植体骨内周围及骨外悬空部分应用可注射组织工程骨。术后10w处死所有骨质疏松兔取材,观察种植体悬空部分周围新骨形成情况。X片观察种植体骨内部分近心端的X线阻射情况。
     结果:(1)所有第一组新西兰兔在壳聚糖凝胶注射后10-30min内死亡。第二组、第三组新西兰兔无死亡。(2)空白对照组与大部分对照组种植体悬空部分周围无骨组织;实验组种植体悬空部分周围有不同程度的新生骨组织形成并与种植体紧密相接。空白对照组种植体近心端无X线阻射影;对照组部分标本种植体近心端有少量模糊的白色阻射影;实验组在种植体近心端有较强条纹状或蜂窝状的白色阻射影,提示有较多骨形成。
     结论:在生理条件下可以自发凝固的可注射凝胶直接注射入封闭的骨组织内有很高的风险。可注射组织工程骨既能在种植体骨外悬空部分周围形成新生骨组织,也能在种植体骨内部分周围形成X线阻射影像,提示该可注射组织工程骨可以用于牙槽骨扩增术及提高骨质疏松状态下BD、BA,进一步详细的深入研究有待以后进行。
Osteoporosis is a systematic bone metabolic disease characterized by decrease of bone mass and degeneration of bone microstructure.Jaw bones,as a part of systematic skeletal tissues,are also affected by osteoporosis.Quantity and quality of bone tissues in jaw bones are both decreased under osteoporotic status which result in a prolonged healing period and lower BIC,BD,BA aider dental implants are implanted.These unfavorable changes threaten the long and stable function of dental implants.Moreover osteoporosis enhances residual ridge resorption and confronts augmentation of alveolar bone with a higher risk of failure.Studies are in progress on how to obtain faster,better osseointegration of dental implants and successful augmentation of alveolar bone.
     In this paper,several efforts were managed to solve these problems. Mesenchymal stromal cells were obtained from peripheral blood and acted as seed cells.A well-cytoactivity-preserving hydrogel based on chitosan was prepared and acted as scaffold.An injectable tissue engineered bone constructed by these two components was applied to dental implants in an osteoporotic rabbit model.10w later,new bone formed around the extraosseous part of dental implants and contacted tightly with them.The radiographs showed more X-ray radiopaque shadow at the proximal endosseous part of dental implants,which hinted more new bone formed.All of these results indicated the potential osteogenic ability of this injectable tissue engineered bone.It could be applied to augmentation of alveolar bone and improve the lowered BD,BA under osteoporotic status. However,detailed and further studies were necessary to evaluate the overall effects of this kind of bone graft.
     ExperimentⅠCulture of rabbit bone marrow and peripheral blood derived mesenchymal stromal cells.
     Objective To investigate whether peripheral blood could act as a source of seed cells for bone tissue engineering like bone marrow.
     Methods Peripheral blood of lm old New Zealand rabbits was aspirated from abdominal aorta.Mononuclear cells were separated out using density centrifugalization and cultured in vitro.At the same time bone marrow in long bones was washed out and cultured.P_4 cells were used to perform identification of cell markers and differentiation experiments.RT-PCR was used to identify the cell markers.Oil Red o stain was performed to the observe the formation of lipid droplets when adipo-induced.Histological staining was performed to detect the expression of ALP,typeⅠcollagen and deposition of mineralized nodes.
     Result Cell colonies formed early in primary culture of bone marrow.Cells in the colonies were uniform fibroblast-like cells and positive of CD29,negtive of CD34.When adipo-induced,most of the cells differentiated to lipocytes.When osteo-induced,these cells became positive of ALP at lw,positive of typeⅠcollagen at 3w,and formed numerous bulk calcium nodes at 4w.However,Cell colonies formed relatively late in primary culture of peripheral blood.There were several different morphological cells and thus,forming different morphological cell colonies.These cells were positive of CD29 and weakly positive of CD34. When adipo-induced,part of the cells differentiated to lipocytes.When osteo-induced, they became positive of ALP at 2w,positive of typeⅠcollagen at 4w, and formed calcium nodes at 5w.Although no vascular inducer were added into the culture medium,tubule-like structures were seen.
     Conclusions Peripheral blood contains multipotent stem cells.When osteo-induced,they can differentiated to osteoblasts and form calcium nodes.
     Peripheral blood can act as a source of seed cells for bone tissue engineering.
     ExperimentⅡPreparation of a well eyto-eompatible hydrogel based on chitosan.
     Objective To prepare a novel injectable hydrogel based on chitosan with physiological osmolality and well-cytoactivity- preserving ability.
     Materials and methods Chitosan solutions were prepared with hydrochloric acid of different concentrations:group A,0.1M;group B,0.09M, group C,0.08M;group D,0.07M;group E,0.07M.Group A to D were prepared at room temperature and group E at 60℃.All the groups were stirred continuously for 6h and then autoclave sterilized.Aqueousβ-disodium glycerol phosphate was prepared in three concentrations(w/v):groupⅠ,11%;groupⅡ,25%;groupⅢ,50%.Chitosan based hydrogel were prepared by 4ml chitosan solution and 1 ml aqueousβ-disodium glycerol phosphate.PH of every hydrogel was detected and its gelatification time at 37 was recorded.Three groups of chitosan hydrogel (E+Ⅰ,D+Ⅱ,D+Ⅲ)were mixed with PB-MSCs.They were cultured in vitro for 3d.Live cells were detected by Formazan crystals formed by deoxidized MTT。
     Result Lower hydrochloric acid concentration resulted in less autoclaving-induced viscosity loss of chitosan solution and higher PH of chitosan based hydrogel which led the hydrogel to be gelable or to gel in a shorter time at 37℃.Most of the cells in E+Ⅰhydrogel were live while part of the cells were live in D+Ⅱhydrogel and few cells were live in D+Ⅲhydrogel.
     Conclusions E andⅠconstructed hydrogel contained 2.2%β-disodium glycerol phosphate which induced a physiological osmolality.It possessed a PH of 7.13,gelatification time of 20min and well-preserved viscosity.All of these properties it to be a suitable injectable hydrogel for cell-encapsulating.
     ovariectomy and the changes of mandibular alveolar bone.
     Objective To establish an osteoporotic rabbit model for the next study just by ovariectomy and observe the changes of mandibular alveolar bone.
     Methods 20 New Zealand rabbits were equally divided into 2 groups randomly:operation group whose bilateral ovaries were ectomized and shame operation group as a control.OC and TRAP in serum,BMD of femur and lumbar vertebra were detected before,3m and 6m after operation.All the animals were sacrificed 6m after operation.Their demineralized mandibular alveolar bones were performed histological staining in 5μm slices to observe the change of bone near mental foramen.Thickness of medial osteoplaque beside mandibular incisor was measured.Bone percentage of medial side inferior mandibular incisor were measured on computer by photoshop7.01 after slices had been photographed.
     Result Operation group showed higher OC level than sham operation group 3m(7.39±0.63μg/L versus6.46±0.68μg/L,P<0.05),6m(7.22±0.58μg/L versus6.57±0.45μg/L,P<0.05)after operation.OD value of TRAP was also higher in operation group 3m(0.389±0.061 versus 0.332±0.039,P<0.01), 6m(0.371±0.051 versus0.308±0.029,P<0.01)after operation.BMD of femur and lumbar vertebra showed no statistical difference in these 2 groups 3m after operation.Femur BMD was lower in operation group(0.349±0.056g/cm~3)than sham operation group(0.481±0.086g/cm~3,P<0.01)6m after operation and lumbar vertebra had the same case(0.257±0.042g/cm~3 versus 0.360±0.042g/cm~3, P<0.01).Bone trabeculas of cancellous bone around mandibular incisor were thinner,less even vanished in operation group 6m after operation.Thickness of medial osteoplaque beside mandibular incisor in operation group(0.52±0.16mm) was thinner than that in sham operation group(0.85±0.14mm,P<0.01).Bone percentage of medial side inferior mandibular incisor in operation group(51.7±11.6%)was lower than that in sham operation group(82.6±9.2%,P<0.01).
     Conclusions Rabbit model of osteoporosis was successfully established. Mandibular alveolar bone showed typical osteoporotic changes.This indicated that special treatments must be considered to ensure the success of dental implants procedures under osteoporotic status.
     ExperimentⅣPreliminary application of the injectable tissue engineered bone to osteoporotic dental implants.
     Objective To apply an injectable tissue engineered bone safely,efficiently to dental implants procedures and observe its effect.
     Methods(1)9 healthy New Zealand rabbits were equally divided into 3 groups,lml chitosan hydrogel was applied to the implant site in different ways. MethodⅠ:chitosan hydrogel was injected into the implant site before preparing the implant hole.MethodⅡ:chitosan hydrogel was injected into the newly prepared implant hole,and the dental implant was placed immediately.MethodⅢ:coagulated chitosan hydrogel was placed into the prepared implant hole.The reaction of rabbits was observed in 2h.(2)Injectable tissue engineered bone was constructed by autologous peripheral blood mesenchymal stromal cells and well-cytoactivity -preserving chitosan hydrogel described in experimentⅡ.Dental implants used in this paper were BAM HA-coated,round,non-threaded dental implants.They were implanted into the lateral metaphysis of femurs.12 osteoporotic rabbits were equally divided into 3 groups.Blank control group: dental implants were implanted only.Control group:coagulated chitosan hydrogel was placed around the endosseous and extraosseous part of dental implants. Experimental group:coagulated injectable tissue engineered bone was placed around the endosseous and extraosseous part of dental implants.10w later,all the osteoporotic rabbits were sacrificed and the femurs were harvested The specimens were observed macroscopicly and radiographicly.
     Result(1)All the rabbits applied by methodⅠdied in 10~30min after the chitosan hydrogel was injected into the femurs.The rabbits applied by methodⅡor methodⅢseemed to be unaffected and stayed alive.(2)No new bone formed around the extraosseous part of dental implants in blank control and control groups while new bone formed around the extraosseous part of dental implants and contacted tightly with them in experimental group.The radiographs showed black radiolucent shadow at the proximal endosseous part of dental implants in blank control group,while nebulous X-ray radiopaque shadow in control group.In the radiographs of experimental group,more striated or alveolate X-ray radiopaque shadow located proximally to the dental implants,which hinted more new bone formed.
     Conclusions It was rather hazardous to inject an injectable hydrogel,which could coagulate spontaneously under physical status,into the closed bone circumstance.The injectable tissue engineered bone possessed potential osteogenic ability.It could be applied to augmentation of alveolar bone and improve the lowered BD,BA under osteoporotic status.However,detailed and further studies were to be performed in the future.
引文
1.刘洪臣.人工种植牙全身给药系统的设计.口腔颌面修复学杂志.2006;7(4):291-292
    2.冷斌,刘洪臣.植入型给药系统的分类与应用.中国医学装备.2007;4(5):5-8.
    3.Hwang D,Wang HL.Medical contraindications to implant therapy:Part Ⅱ:Relative contraindications.Implant Dent.2007;16(1):13-23.
    4.Ozawa S,Ogawa T,Iida K,et al.Ovariectomy hinders the early stage of bone-implant integration:histomorphometric,biomechanical,and molecular analyses.Bone.2002;30(1):137-143.
    5.Cho P,Schneider GB,Krizan K,et al.Examination of the bone-implant interface in experimentally induced osteoporotic bone.Implant Dent. 2004;13(1):79-87.
    6.Sakakura CE,Giro G,Goncalves D,et al.Radiographic assessment of bone density around integrated titanium implants after ovariectomy in rats.Clin Oral Implants Res.2006;17(2):134-138.
    7.Ejiri S,Tanaka M,Watanabe N,et al.Estrogen deficiency and its effect on the jaw bones.J Bone Miner Metab.2008;26(5):409-415.
    8.Erdoqan O,Shafer DM,Taxel P,et al.A review of the association between osteoporosis and alveolar ridge augmentation.Oral Surg Oral Med Oral Pathol Oral Radiol Endod.2007;104(6):738.e1-13.
    9.Tsolaki IN,Madianos PN,Vrotsos JA.Outcomes of Dental Implants in Osteoporotic Patients.A Literature Review.J Prosthodont.2009 Feb 2.
    10.Gutowska A,Jeong B,Jasionowski M.Injectable Gels for Tissue Engineering.Anat Rec.2001;263(4):342-349.
    11.Fedorovich NE,de Wrjn JR,Verbout AJ,et al.Three-Dimensional Fiber Deposition of Cell-Laden,Viable,Patterned Constructs for Bone Tissue Printing.Tissue Eng.2008;14(1):127-133.
    1.Schuetz YB,Gumy R,Jordan O.A novel thermoresponsive hydrogel based on chitosan.Eur J Pharm Biopharm.2008;68(1):19-25
    2.井波,王志强,贾淑敏,张志刚,孟昭英.高粘度温敏性几丁聚糖水凝胶的制备特性初步研究.中国修复重建外科杂志.2008;22(2):178-182
    3.Jarry C,Leroux JC,Haeck J,et al.Irradiating or autoclaving chitosan/polyol solutions:effect on thermogelling chitosan-beta-glycerophosphate systems.Chem Pharm Bull.2002;50(10):1335-1340
    4.井波,王志强.温敏型壳聚糖水凝胶研究进展.国际骨科学杂志.2006;27(2):115-1168
    5.George M,Abraham TE.Polyionic hydrocolloids for the intestinal delivery of protein drugs:alginate and chitosan--a review.J Control Release.2006;114(1):1-14
    6.聂莉,吴晓芳,伊萍,等.壳聚糖中脱乙酰度测定方法的探讨.中国卫生检验杂志.2005;15(3):328-329.
    7.蒋挺大 主编.壳聚糖(第二版).北京:化学工业出版社,2006
    8.朱爱萍,吴钧,张娜,等.壳聚糖:一种具有应用潜力的组织工程支架材料.化学通报.2002:65(3):1-5
    9.Kim IY,Seo S J,Moon HS,et al.Chitosan and its derivatives for tissue engineering applications.Biotechnology Advances.2008;26(1):1-21
    10.Ahmadi R,de Bruijn JD.Biocompatibility and gelation of chitosan-glycerol phosphate hydrogel.J Biomed Mater Res A.2008;86(3):824-832
    11.Austin K.Scaffold design:use of chitosan in cartilage tissue engineering.Basic Biotechnology.2007;3(1):62-66
    12.Pradel W,Mai R,Manolo Hagedom G,et al.The biomaterial influences the ossification after sinus floor elevation using tissue-engineered bone grains.Biomed Tech.2008;53(5):224-228
    13.Schimming R,Schmelzeisen R.Tissue-engineered bone for maxillary sinus augmentation.J Oral Maxillofac Surg.2004;62(6):724-729
    14.Strietzel FP.Tissue-engineered bone for lateral alveolar ridge augmentation:a case report.Int J Oral Maxillofac Implants.2006;21(1):131-135
    15.Beaumont C,Schmidt RJ,Tatakis DN,et al.Use of engineered bone for sinus augmentation.J Periodontol.2008;79(3):541-548
    16.Zizelmann C,Schoen R,Metzger MC,et al.Bone formation after sinus augmentation with engineered bone.Clin Oral implants Res.2007;18(1):69-73
    17.Shayesteh YS,Khojasteh A,Soleimani M,et al.Sinus augmentation using human mesenchymal stem cells loaded into a beta-tricalcium phosphate/hydroxyapatite scaffold.Oral Surg Oral Med Oral Pathol Oral Radiol Endod.2008;106(2):203-9
    18.Ueda M,Yamada Y,Ozawa R,et al.Clinical case reports of injectable tissue-engineered bone for alveolar augmentation with simultaneous implant placement.Int J Periodontics Restorative Dent.2005;25(2):129-137
    19.Ruel-Gari(?)py E,Chenite A,Chaput C,et al.Characterization of thermosensitive chitosan gels for the sustained delivery of drugs.Int J Pharm.2000;203(1-2):89-98
    20.Chenite A,Chaput C,Wang D,et al.Novel injectable neutral solutions of chitosan biodegradable gels in situ.Biomaterials.2000;21(21):2155-2161
    21.Van Tomme SR,Storm G,Hennink WE.In situ gelling hydrogel for pharmaceutical and biomedical applications.Int J Pharm.2008;355(1-2):1-18
    22.Gutowska A,Jeong B,Jasionowski M.Injectable Gels for Tissue Engineering.Anat Rec.2001;263(4):342-349
    23.曹强,毛天球,顾晓明,等氯化钙对成骨细胞增殖和分化的影响.中国临床康复.2003;7(8):1258-1259
    24.Hoemann CD,Chenite A,Sun J,et al.Cytocompatible gel formation of chitosan-glycerol phosphate solutions supplemented with hydroxyl ethyl cellulose is due to the presence of glyoxal.J Biomed Mater Res A.2007;118(2):521-529
    1.Marco F,Milena F,Gianluca G,et al.Peri-implant osteogenesis in health and osteoporosis.Micron.2005;36(7-8):630-644.
    2.Hwang D,Wang HL.Medical contraindications to implant therapy:Part Ⅱ:Relative contraindications.Implant Dent.2007;16(1):13-23
    3.周丽,邓伟民.去势雌性大鼠动物模型在绝经后骨质疏松症中的应用.中国组织工程研究与临床康复.2008;12(7):1323-1326
    4.李亚男,刘洪臣,倪紫砚,等.绵羊绝经后骨质疏松动物实验模型的建立.口腔颌面修复学杂志.2000;1(2):75-77
    5.程立明,丁铭,李子荣,等.羊骨质疏松模型在人类骨科研究中的作用.中国骨质疏松杂志.2008;14(6):441-447,380
    6.张堃,孟国林,刘建,等.去势加地塞米松肌肉注射法兔骨质疏松模型建立的实验研究.中国骨质疏松杂志.2008;14(2):69-72
    7.方忠,杨琴,李锋,等.去势法兔骨质疏松模型建立的探讨.中国骨质疏松杂志.2005;11(2):202-205,209
    8.廖二元,谭利华 主编.代谢性骨病学.北京:人民卫生出版社.2003年.
    9.Drozdzowska B,PluskiewiczW,Tamawske B,et al.Panoramic-based mandibular indices in relation to mandibular bone mineral density and skeletal status assessed by dual energy X-ray absorptiometry and quantitative ultrasound.Dent maxillofacial Radiol.2002;31(5):361-367
    10.李亚男,刘洪臣,倪紫砚,等.骨质疏松状态下牙种植体骨整合改变的实验研究.口腔颌面修复学杂志.2000;1(1):29-31
    11.Sakakura CE,Giro G,Goncalves D,et al.Radiographic assessment of bone density around integrated titanium implants after ovariectomy in rats.Clin Oral Implants Res.2006;17(2):134-138
    1.Marco F,Milena F,Gianluca G,et al.Peri-implant osteogenesis in health and osteoporosis.Micron.2005;36(7-8):630-644
    2.Wang Z,Goh J,Das De S,et al.Efficacy of bone marrow-derived stem cells in strengthening osteoporotic bone in a rabbit model.Tissue Eng.2006;12(7):1753-1761
    3.Fedorovich NE,de Wijn JR,Verbout AJ,et al.Three-Dimensional Fiber Deposition of Cell-Laden,Viable,Patterned Constructs for Bone Tissue Printing.Tissue Eng.2008;14(1):127-133
    4.Ueda M,Yamada Y,Kagami H,et al.Injectable Bone Applied for Ridge Augmentation and Dental Implant Placement:Human Progress Study.Implant Dent.2008;17(1):82-90
    5.Schimming R,Schmelzeisen R.Tissue-engineered bone for maxillary sinus augmentation.J Oral Maxillofac Surg.2004;62(6):724-729
    6.Beaumont C,Schmidt RJ,Tatakis DN,et al.Use of engineered bone for sinus augmentation.J Periodontol.2008;79(3):541-548
    7.Strietzel FP.Tissue-engineered bone for lateral alveolar ridge augmentation:a case report.Int J Oral Maxillofac Implants.2006;21(1):131-135
    8.Filho-Cerruti H,Kerkis I,Kerkis A,et al.Allogenous bone grafts improved by bone marrow stem cells and platelet growth factors:clinical case reports.Artif Organs.2007;31(4):268-273
    9.Ejiri S,Tanaka M,Watanabe N,et al.Estrogen deficiency and its effect on the jaw bones.J Bone Miner Metab.2008;26(5):409-415
    10.Jeffcoat M.The association between osteoporosis and oral bone loss.J Periodontal.2005;76(S1):2125-2132
    11.Erdoqan 0,Shafer DM,Taxel P,et al.A review of the association between osteoporosis and alveolar ridge augmentation.Oral Surg Oral Med Oral Pathol Oral Radiol Endod.2007;104(6):738.e1-13
    12.Roberts W-E,Simmons KE,Garetto LP,et al.Bone physiology and metabolism in dental implantology:risk factors for osteoporosis and other metabolic bone diseases.Implant Dent.1992;1(1):11-21
    13.Jilka RL.Biology of the basic multicellular unit and the pathophysiology of osteoporosis.Med Pediatr Oncol.2003;41(3):182-185
    14.Raisz LG.Pathogenesis of osteoporosis:concepts,conflicts,and prospects.J Clin Invest.2005;115:3318-3325
    15.Rosen CJ,Bouxsein ML.Mechanisms of disease:is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol.2006;2(1):35-43
    16.Sakakura CE,Giro G,Goncalves D,et al.Radiographic assessment of bone density around integrated titanium implants after ovariectomy in rats.Clin Oral Implants Res.2006;17(2):134-138
    1:Marco F,Milena F,Gianluca G,et al.Peri-implant osteogenesis in health and osteoporosis.Micron.2005;36(7-8):630-644
    2.廖二元,谭利华,主编.代谢性骨病学.人民卫生出版社.北京,2003
    3.Ejiri S,Tanaka M,Watanabe N,et al.Estrogen deficiency and its effect on the jaw bones.J Bone Miner Metab.2008;26(5):409-415
    4.周永胜,周书敏,李国珍.颌骨骨密度的测量及研究应用.中华口腔医学杂志.2000;35(4):303-305
    5.Hohlweg-Majert B,Schmelzeisen R,Pfeiffer BM,et al.Significance of osteoporosis in craniomaxillofacial surgery:a review of the literature.Osteoporos Int.2006;17(2):167-179
    6.Jeffcoat M.The association between osteoporosis and oral bone loss.J Periodontol.2005;76(S1):2125-2132
    7.Sidiropoulou-Chatzigiannis S,Kourtidou M,Tsalikis L.The effect of osteoporosis on periodontal status,alveolar bone and orthodontic tooth movement.A literature review.J Int Acad Periodontol.2007;9(3):77-84
    8.付宏宇,王晓敏.骨质疏松症对颌骨影响的研究进展.中国骨质疏松杂志.2007;13(8):604-606
    9.Li ZN,Shi PK,Dong FS.Influencing factors of mandible osteoporosis.Chinese Journal of Clinical Rehabilitation,2006;24(6):190-193
    10.郑瑶,周秀青.口腔骨丢失与骨质疏松症关系的研究进展.现代中西医结合杂志.2006;1(5):676-678
    11.Erdoqan O,Shafer DM,Taxel P,et al.A review of the association between osteoporosis and alveolar ridge augmentation.Oral Surg Oral Med Oral Pathol Oral Radiol Endod.2007;104(6):738.e1-13
    12.Blomqvist JE,Alberius P,Isaksson S,et al.Factors in implant integration failure after bone grafting:an osteometric and endocrinologic matched analysis.Int J Oral Maxillofac Surg.1996;25(1):63-68
    13.Hwang D,Wang HL.Medical contraindications to implant therapy:Part Ⅱ:Relative contraindications.Implant Dent.2007;16(1):13-23
    14.陈守平,周正炎,陆卫青.骨质疏松症对骨内种植体影响的实验研究.口腔颌面外科杂志.2001;6(4):280-282
    15.Duarte PM,Cesar-Neto JB,Goncalves PF,et al.Estrogen deficiency affects bone healing around titanium implants:a histometric study in rats.Implant Dent.2003;12(4):340-346
    16.Duarte PM,Cesar-Neto JB,Sallum AW.Effect of estrogen and calcitonin therapies on bone density in a lateral area adjacent to implants placed in the tibiae of ovariectomized rats.J Periodontol.2003;74(11):1618-1624
    17.Ozawa S,Ogawa T,Iida K,et al.Ovariectomy hinders the early stage of bone-implant integration:histomorphometric,biomechanical,and molecular analyses.Bone.2002;30(1):137-143
    18.Fujimoto T,Niimi A,Sawai T,et al.Effects of steroid-induced osteoporosis on osseointegration of titanium implants.Int J Oral Maxillofac Implants.1998;13(2):183-189
    19.Motohashi M,Shirota T,Tokugawa Y,et al.Bone reactions around hydroxyapatite coated implants in ovariectomized rats.Oral Surg Oral Med Oral Pathol Oral Radiol Endod.1999;87(2):145-152
    20.Moil H,Manabe M,Kurachi Y,et al.Osseointegration of dental implants in rabbit bone with low mineral density.J Oral Maxillofac Surg.1997;55(4):351-361
    21.Cho P,Schneider GB,Krizan K,et al.Examination of the bone-implant interface in experimentally induced osteoporotic bone.Implant Dent.2004;13(1):79-87
    22.Sakakura CE,Giro G,Goncalves D,et al.Radiographic assessment of bone density around integrated titanium implants after ovariectomy in rats.Clin Oral Implants Res.2006;17(2):134-138
    23.李亚男,刘洪臣,倪紫砚.骨质疏松状态下牙种植体骨整合及生长改变的实验研究.解放军医学杂志.2001;26(7):512-514
    24.李亚男,刘洪臣,倪紫砚.骨质疏松状态下牙种植体骨整合改变的实验研究.口腔颌面修复学杂志.2000;1(1):17-19
    25.Yamazaki M,Shirota T,Tokugawa Y,et al.Bone reactions to titanium screw implants in ovariectomized animals.Oral Surg Oral Med Oral Pathol Oral Radiol Endod.1999;87(4):411-418
    26.张斌,李莹,李晓刚.骨挤压技术对去势大鼠种植后骨整合的影响.现代口腔医学杂志.2005;19(5):297-299
    27.Nociti FH,Sallum AW,Sallum EA,et al.Effect of estrogen replacement and calcitonin therapies on bone around titanium implants placed in ovariectomized rats:a histometric study.Int J Oral Maxillofac Implants.2002;17(6):786-792
    28.Duarte PM,Cesar-Neto JB,Sallum AW,et al.Effect of estrogen and calcitonin therapies on bone density in a lateral area adjacent to implants placed in tibiae of ovariectomized rats.J Periodontol.2003;74(11):1618-1624
    29.Qi MC,Zhou XQ,Hu J,et al.Oestrogen replacement therapy promotes bone healing around dental implants in osteoporotic rats.Int J Oral Maxillofac Surg.2004;33(3):279-285
    30.Gabet Y,Muller R,Levy J,et al.Parathyroid hormone 1-34 enhances titanium implant anchorage in low-density trabecular bone:a correlative microcomp-uted tomographic and biomechanical analysis.Bone.2006;39(2):276-282
    31.Shirota T,Tashiro M,Ohno K,et al.Effect of intermittent parathyroid hormone(1-34)treatment on the bone response after placement of titanium implants into the tibia of ovariectomized rats.J Oral Maxillofac Surg.2003;61(4):471-480
    32.Ohkawa Y,Tokunaga K,Endo N.Intermittent administration of human parathyroid hormone(1-34)increases new bone formation on the interface of hydroxyapatitecoated titanium rods implanted into ovariectomized rat femora.J Orthop Sci.2008;13(6):533-542
    33.Tokugawa Y,Shirota T,Ohno K,et al.Effects of bisphosphonate on bone reaction after placement of titanium implants in tibiae of ovariectomized rats.In J Oral Maxillofac Implants.2003;18(1):66-74
    34.Duarte PM,de Vasconcelos Gurgel BC,Sallum AW,et al.Alendronate therapy may be effective in the prevention of bone loss around titanium implants inserted in estrogen-deficient rats.J Periodontol.2005;76(1):107-114
    35.Narai S,Nagahata S.Effects of alendronate on the removal torque of implants in rats with induced osteoporosis.Int J Oral Maxillofac Implants.2003;18(2):218-223
    36.Stadelmann VA,Gauthier O,Terrier A,et al.Implants delivering bisphosphonate locally increase periprosthetic bone density in an osteoporotic sheep model.A pilot study.Eur Cell Mater.2008;16(1):10-16
    37.Blazsek J,Dob(?)Nagy C,Blazsek I,et al.Aminobisphosphonate Stimulates Bone Regeneration and Enforces Consolidation of Titanium Implant into a New Rat Caudal Vertebrae Model.Pathol Oncol Res.2009 Mar 7
    38.Du Z,Chen J,Yan F,Xiao Y.Effects of Simvastatin on bone healing around titanium implants in osteoporotic rats.Clin Oral Implants Res.2009;20(2):145-150
    39.Tresguerres IF,Clemente C,Donado M,et al.Local administration of growth hormone enhances periimplant bone reaction in an osteoporotic rabbit model.Clin Oral Implants Res.2002;13(6):631-636
    40.Sachse A,Wagner A,Keller M,et al.Osteointegration of hydroxyapatitetitanium implants coated with nonglycosylated recombinant human bone morphogenetic protein-2(BMP-2)in aged sheep.Bone.2005;37(5):699-710
    41.Stadlinger B,Pilling E,Huhle M,et al.Evaluation of osseointegration of dental implants coated with collagen,chondroitin sulphate and BMP-4:an animal study.Int J Oral Maxillofac Surg.2008;37(1):54-59
    42.Liu Y,Enggist L,Kuffer AF,et al.The influence of BMP-2 and its mode of delivery on the osteoconductivity of implant surfaces during the early phase of osseointegration.Biomaterials.2007;28(16):2677-2686
    43.陆卫青,陈守平,季振威.降钙素对骨质疏松性骨内种植体影响的实验研究.上海医学.2003;18(S1):67-69
    44.Baxter JC,Fattore L.Osteoporosis and osseointegration of implants.J Prosthodont.1993;2(2):120-125
    45.Dao TT,Anderson JD,Zarb GA.Is osteoporosis a risk factor for osseointegration of dental implants? Int J Oral Maxillofac Implants.1993;8(2):137-144
    46.Tsolaki IN,Madianos PN,Vrotsos JA.Outcomes of Dental Implants in Osteoporotic Patients.A Literature Review.J Prosthodont.2009 Feb 2
    47.Holahan CM,Koka S,Kennel KA,et al.Effect of osteoporotic status on the survival of titanium dental implants.Int J Oral Maxillofac Implants.2008;23(5):905-910
    48.Alsaadi G,Quirynen M,Komarek A,et al.Impact of local and systemic factors on the incidence of late oral implant loss.Clin Oral Implants Res.2008;19(7):670-676
    49.Alsaadi G,Quirynen M,Michiles K,et al.Impact of local and systemic factors on the incidence of failures up to abutment connection with modified surface oral implants.J Clin Periodontal.2008;35(1):51-57
    50.Fujimoto T,Niimi A,Nakai H,et al.Osseointegrated implants in a patient with osteoporosis:a case report.Int J Oral Maxillofac Implants.1996;11(4):539-542
    51.Friberg B.Treatment with dental implants in patients with severe osteoporosis:a case report.Int J Periodontics Restorative Dent.1994;14(4):348-53
    52.de Melo L,Piattelli A,Lezzi G,et al.Human histologic evaluation of a six-year-old threaded implant retrieved from a subject with osteoporosis.J Contemp Dent Pract.2008;9(3):99-105
    53.Amorim MA,Takayama L,Jorgetti V,et al.Comparative study of axial and femoral bone mineral density and parameters of mandibular bone quality in patients receiving dental implants.Osteoporos Int.2007;18(5):703-709
    54.Shibli JA,Aguiar KC,Melo L,et al.Histological comparison between implants retrieved from patients with and without osteoporosis.Int J Oral Maxillofac Surg.2008;37(4):321-327
    55.Minsk L,Poison AM.Dental implant outcomes in postmenopausal women undergoing hormone replacement.Compend Contin Educ Dent. 1998;19(9):859-862,864
    56.Zuffetti F,Bianchi F,Volpi R,et al.Clinical application of bisphosphonates in implant dentistry:histomorphometric evaluation.Int J Periodontics Restorative Dent.2009;29(1):31-39
    57.Starck WJ,Epker BN.Failure of osseointegrated dental implants after diphosphonate therapy for osteoporosis:a case report.Int J Oral Maxillofac Implants.1995;10(1):74-78
    58.Wang HL,Weber D,McCauley LK,et al.Effect of long-term oral bisphosphonates on implant wound healing:literature review and a case report.J-Periodontol.2007;78(3):584-594
    59.Janet MO,Wen HB,Galen B,et al.Tissue engineering strategies for the future generation of dental implants.Periodontology 2000.2006;41(1):157-176
    60.陈宁 主编.口腔种植技术.江苏科学技术出版社南京:2007
    61.Wang Z,Goh J,Das De S,et al.Efficacy ofbone marrow-derived stem cells in strengthening osteoporotic bone in a rabbit model.Tissue Eng.2006;12(7):1753-1761
    1.Crane GM,Mikos AG,Mikos AG.Bone Tissue Engineening.Nature Medicine.1995;1(12):1322-1324
    2.Meijer GJ,de Bruijn JD,Koole R,et al.Cell-Based Bone Tissue Engineering.PLoS Med.2008;4(2):269-264
    3.宁江海,刘洪臣.人工植骨材料的研究进展.口腔颌面修复学杂志.2008;9(4):285-287
    4.Matsumoto T,Kuroda R,Mifune Y,et al.Circulating endothelial/skeletal progenitor cells for bone regeneration and healing.Bone.2008;43(3):434-439
    5.Filho-Cerruti H,Kerkis I,Kerkis A,et al.Allogenous bone grafts improved by bone marrow stem cells and platelet growth factors:clinical case reports.Artif Organs.2007;31(4):268-273
    6.Pradel W,Mai R,Manolo Hagedom G,et al.The biomaterial influences the ossification after sinus floor elevation using tissue-engineered bone grafts. Biomed Tech.2008;53(5):224-228
    7.Schimming R,Schmelzeisen R.Tissue-engineered bone for maxillary sinus augmentation.J Oral Maxillofac Surg.2004;62(6):724-729
    8.Strietzel FP.Tissue-engineered bone for lateral alveolar ridge augmentation:a case report.Int J Oral Maxillofac Implants.2006;21(1):131-135
    9.Beaumont C,Schmidt RJ,Tatakis DN,et al.Use of engineered bone for sinus augmentation.J Periodontol.2008;79(3):541-548
    10.Zizelmann C,Schoen R,Metzger MC,et al.Bone formation after sinus augmentation with engineered bone.Clin Oral implants Res.2007;18(1):69-73
    11:Shayesteh YS,Khojasteh A,Soleimani M,et al.Sinus augmentation using human mesenchymal stem cells loaded into a beta-tricalcium phosphate/hydroxyapatite scaffold.Oral Surg Oral Med Oral Pathol Oral Radiol Endod.2008;106(2):203-209
    12.Ueda M,Yamada Y,Ozawa R,et al.Clinical case reports of injectable tissue-engineered bone for alveolar augmentation with simultaneous implant placement.Int J Periodontics Restorative Dent.2005;25(2):129-137
    13.Ueda M,Yamada Y,Kagami H,et al.Injectable Bone Applied for Ridge Augmentation and Dental Implant Placement:Human Progress Study.Implant Dent.2008;17(1):82-90
    14.Yamada Y,Nakamura S,Ito K,et al.Injectable tissue-engineered bone using autogenous bone marrow-derived stromal cells for maxillary sinus augmentation:clinical application report from a 2-6-year follow-up.Tissue Eng Part A.2008;14(10):1699-1707
    15.Gutowska A,Jeong B,Jasionowski M.Injectable Gels for Tissue Engineering.Anat Rec.2001;263(4):342-349
    16.曹强,毛天球,顾晓明,等 氯化钙对成骨细胞增殖和分化的影响.中国临床康复.2003;7(8):1258-1259

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700