二氧化碳腐蚀体系缓蚀剂的缓蚀机理及缓蚀协同效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CO_2腐蚀是油气田生产过程中最为常见的一种腐蚀形式,它严重的威胁了石油化工行业的安全生产,往往会造成巨大的经济损失,甚至危及到人身安全。有鉴于此,如何有效的抑制CO_2腐蚀一直是研究热点。在诸多抑制CO_2腐蚀的措施中,添加缓蚀剂是一种简单有效,成本低廉的手段,被广泛的应用于各大油气田实际生产中。然而,目前有关缓蚀剂的机理研究相对较少,特别是缓蚀协同效应机理的研究相当匮乏。为了对缓蚀剂的缓蚀机理进行深入的研究,本论文合成了一系列缓蚀剂,利用红外光谱对它们的结构进行了表征。利用失重法、极化曲线、电化学阻抗谱(EIS)、零电荷电位测试等电化学技术,配合X射线光电子能谱(XPS)、量子化学计算等手段,对缓蚀剂的缓蚀机理及缓蚀协同效应机理进行了深入的研究。主要工作如下:
     1、利用极化曲线和EIS电化学测试技术,系统的研究了CO_2腐蚀体系中咪唑啉衍生物(OIMQ)、硫脲(TU)和两者复配使用的复配缓蚀剂的电化学行为。结果表明:OIMQ和TU之间具有良好的缓蚀协同效应,当使用浓度为10mg/L时,两者的最佳配比为5mg/L+5mg/L。分析两者的电化学行为可以发现,OIMQ是一种抑制阳极为主的混合型缓蚀剂,通过对阳极过程的负催化作用而起到缓蚀作用;TU是一种混合型缓蚀剂,作用机理为几何覆盖效应;当两者复配使用后,缓蚀剂表现出的作用机理为几何覆盖效应,极化曲线上出现了吸附/脱附平台区;EIS图谱上出现了Warburg阻抗,表明在碳钢表面形成了一种双层缓蚀剂的膜层结构,验证了之前的XPS试验结果。即硫脲分子主要存在于缓蚀剂膜的底部,而咪唑啉主要存在于缓蚀剂膜的上部。
     2、研究发现在CO_2体系中,咪唑啉类缓蚀剂(OIMA)和苯甲酸钠(SB)之间存在协同效应,此结论在国内外均未见相关报道。应用静态失重法、动电位极化曲线和EIS电化学测试技术研究了二者之间的缓蚀协同效应机理,并提出了吸附模型。结果表明,OIMA能够有效地抑制Q235钢在CO_2饱和盐水溶液中的腐蚀,而SB基本上对Q235钢在CO_2饱和盐水溶液中的腐蚀没有缓蚀作用。但是当两者复配使用时,有明显的缓蚀协同作用。通过EIS和零电荷电位测试技术,辅以XPS测试,推测OIMA与SB的缓蚀协同效应机理如下:首先,在CO_2饱和盐水溶液中,OIMA会被质子化,质子化的OIMA分子能够通过物理吸附的方式吸附在金属表面的阴极区,由此使得零电荷电位向正的方向移动,除了物理吸附,OIMA还将通过化学吸附方式吸附在金属表面。当SB添加到溶液中后,将会发生水解反应,形成苯甲酸根离子(phCOO-),由于静电引力吸附到Q235钢表面,使得缓蚀剂的膜层更加的致密,从而对Q235钢起到更好地保护作用,两者表现出良好的缓蚀协同效应。即这两种缓蚀剂在金属表面上的吸附是分步进行的,在本试验条件下,首先发生咪唑啉分子吸附,大约20min后SB分子才开始吸附在Q235钢表面。
     3、合成了一种新型多吸附中心的抗CO_2腐蚀的缓蚀剂——聚酰胺聚脲(MPA)。动态失重法结果表明它能够有效地抑制CO_2腐蚀;且随着使用浓度增大,缓蚀率提高。动电位极化曲线测试结果表明它是一种抑制阳极过程为主的混合型缓蚀剂。通过计算MPA分子单体的Fukui指数,发现它在金属表面吸附的最主要的活性点为S原子,S原子既可以向金属提供孤对电子,与Fe形成共价键;也可以通过得到Fe的电子形成反馈键,从而牢固的吸附在金属的表面;N33、N34两个杂原子可以通过获得Fe的电子形成反馈键,使MPA分子更加牢固的吸附在金属的表面,有效的阻断了腐蚀介质与金属表面接触,起到保护金属的作用。
     4、研究了咪唑啉分子中苯环的数量以及位置对其缓蚀性能的影响。合成了三种含苯环的咪唑啉类缓蚀剂,即2-氨乙基-1-苯基咪唑啉(PIMA)、2-苯甲酰氨乙基-1-苯基-咪唑啉(PIMAA)、2-氨乙基苯亚甲基-1-苯基咪唑啉季铵盐(PIMQ),并通过静态失重法研究了它们的缓蚀性能。结果表明:三种缓蚀剂都能够有效地抑制Q235钢在CO_2饱和盐水溶液中的腐蚀,其中PIMQ效果最好,PIMAA的缓蚀效果次之,PIMA的缓蚀效果在三种缓蚀剂之中最差。极化曲线测试结果表明三种缓蚀剂都是抑制阳极过程为主的阳极型缓蚀剂。通过热力学计算,发现三种缓蚀剂在Q235钢表面的吸附服从Langmuir等温吸附方程;吸附过程为自发过程,吸附类型属于化学吸附;吸附过程是吸热过程,升高温度有利于缓蚀剂的吸附;吸附过程是一个熵增过程。量子化学计算发现PIMQ的ΔE最小,表明在三种缓蚀剂之间,PIMQ最易于吸附于金属表面,从而具有最高的缓蚀效率,这主要是由EHOMO的差异所引起的,表明相比于其他两种缓蚀剂,PIMQ更易于提供电子给Fe原子的d空轨道,形成牢固的配位键。
     5、利用EIS和旋转圆盘电极,系统的研究了两种具有不同亲水基的咪唑啉类缓蚀剂,即2-氨乙基-1-十七烯基咪唑啉(OIMA)和2-羟乙基-1-十七烯基咪唑啉(OIMO)在不同转速和不同浓度下对Q235钢的缓蚀性能。结果表明,两种缓蚀剂都能够有效地抑制Q235钢在流动条件下的CO_2腐蚀,且OIMA具有更好地缓蚀性能。当电极旋转时,在低频段出现Warburg阻抗,表明电极过程由活化控制转为浓差控制;高频段出现了另一个时间常数(除了较低转速下,低浓度OIMO时),表明缓蚀剂膜层更加厚实。从EIS图谱的拟合结果可以发现电荷转移电阻随着转速的增加先增大后减小,表现出流速对于缓蚀剂缓蚀性能影响的两面性。量子化学计算结果表明,OIMA的ΔE更小,表明其在金属表面的吸附强度更大,因此表现出比OIMO更好地缓蚀性能。在流动条件下将PIMA与TU、SP和OP复配后发现,PIMA和TU具有良好的缓蚀协同效应,和SP和OP之间表现出拮抗效应。最后,构建了一个4-9-1的BP神经网络,较为准确的预测咪唑啉类缓蚀剂在流动条件下的缓蚀率,具有良好的外延性,误差很小,能够满足实际应用的要求。
Carbon dioxide (CO_2) is a naturally occurring constituent in oil andgas production and is found in amounts varying from trace levels to asmuch as50%. Dissolved CO_2in the produced brine is very corrosive tocarbon steel pipelines. Therefore CO_2corrosion has a very importanteconomic impact in this industry. The problem has caused theapplication of many corrosion control methods and research around theworld. One of the most cost-effective methods is the injection of organicinhibitors into oil wells, gas wells and pipelines. However, there are fewstudied about the corrosion inhibition mechanism, especially for thesynergistic mechanism of corrosion inhibitors in sweet system. In orderto make deeper studies on the corrosion inhibition mechanism andsynergistic inhibition effect, several inhibitors were synthesized andcharacterized by infrared spectroscopy in the paper. Their inhibitionperformance was investigated by weight-loss method andelectrochemical techniques. Based on these results, as well as X-rayphotoelectron spectroscopy analysis and quantum chemical calculationsresults, the inhibition mechanism and synergistic mechanism were proposed to explain the inhibition behavior of the inhibitors in sweetsystem.
     1. The electrochemical behavior of imidazoline derivates (OIMQ)and/or thiourea (TU) was studied by using polarization curves and EIS.The results indicated that a synergistic effect existed between TU andOIMQ. The optimum proportion of them was1:1(wt%) when the totalusing concentration was10mg/L. OIMQ was an anodic-type inhibitorand caused by negative catalytic effect; while TU was a mixed-typeinhibitor and caused by geometrical blocking effect. For TU+OIMQcombination, it was also a mixed-type inhibitor and caused bygeometrical blocking effect, and the inhibitor molecules could desorbfrom the metal surface when the potential applied on the metal was overthe adsorption potential. EIS results showed that the Warburg impedanceemerged on the Nyquist plots, which can be attributed to formation of abi-layer inhibitor film on the metal surface. This result was inaccordance with the XPS result reported by previous studies, that TUmolecules mainly exist on the bottom of the inhibitor film; however,OIMQ molecules mainly exist on the top of the inhibitor film.
     2. The synergistic inhibition effect of OIMA and SB inCO~2-saturated solution was found by weight-loss method, polarizationcurves and EIS, which was not reported before. The results showed thatOIMA could prevent the mild steel from CO~2corrosion to some extent and its inhibition can be strengthened by the combination use of SB. Thesynergistic inhibition effect of OIMA and SB is obvious. Based on theEIS, XPS and PZC measurement results, an adsorption model wasproposed to elucidate the synergistic effect between OIMA and SB.When10mg/L OIMA and10mg/L SB were added into theCO_2-saturated solution, N3atom in OIMA ring was combined withhydrogen ion to form an ammonium ion and the positive charged OIMAmolecules physically adsorbed onto the negative charged surface of theelectrode in the test solution. The chemical adsorption might take placesimultaneously which involving the charge sharing or transfer fromOIMA to the metal surface. Consequently, parts of the negative chargeson the metal surface were neutralized and the metal surface had extrapositive charge. And then, SB, mainly in the form of phCOO~-, will bemoved toward to the metal surface by coulomb force and then adsorb onit and make the inhibitor film more compact and thicker. EISmeasurements showed that OIMA adsorbed first on the metal surfaceand followed by the adsorption of SB after20min later when OIMA andSB were added into solution.
     3. A new inhibitor for CO_2corrosion-modified polyamide (MPA)was synthesized and its structure was characterized by IR spectra.Weight-loss measurement and polarization curves were used toinvestigate its inhibition. The results showed that MPA belongs to a mixed-type inhibitor and controls anodic process principally, whichcould inhibit N80steel from CO_2corrosion efficiently and the inhibitionefficiency improved with the increase of MPA concentration. In viewthat the MPA had many active centers in molecules, Fukui function wascalculated by quantum chemical calculation to find the effectiveadsorption centers of MPA. The results showed that S atoms of MPAcould donated electrons to form chemical bonds with iron atoms on themetal surface and also accepted the negative charge from the metalsurface to form back-donation bonds. N33and N34could formback-donation bonds too. As a result, MPA could adsorb on the metalsurface firmly and protect metal efficiently.
     4. In order to study the effect of benzene ring number and locationon the inhibition efficiency of imidazoline, three kinds of imidazolinewith benzene ring(s) were synthesized and characterized by IR spectra.Weight loss method and potentiodynamic polarization method werecarried out to evaluate their inhibition. The results showed that the threeimidazoline derivates can inhibit CO_2corrosion effectively and PIMQprovides the highest inhibition efficiency among them. They mainlyrestrain the anodic dissolution and belong to a kind of anodic-typeinhibitors. By thermodynamic calculations, we found that the adsorptionof these derivates on the mild steel surface accords with Langmuiradsorption isothermal equation and belongs to chemical adsorption; the adsorption process is endothermic process, increasing temperature is ofbenefit of improving corrosion inhibition; the adsorption process is anentropy increasing process. Quantum-chemical calculation found thatthe energy gap of PIMQ was lowest. The difference of inhibitionefficiency among the three inhibitors was mainly caused by differencesin EHOMO.
     5. EIS and RDE were employed to study the inhibition efficiency oftwo imidazolines with different hydrophilic group, OIMA and OIMO,under flow conditions. The results showed that OIMA and OIMO caninhibit Q235steel from CO_2corrosion efficiently under flow conditionsand OIMA had better performance. Under flow condition, Warburgimpedance emerges in Nyquist plots, indicating that the electrodeprocess is controlled by concentration diffusion. And another phaseangle maximum at high frequency region appears in Bode plots underflow conditions (except low concentration of OIMO at low rotationspeed). R_ctincreases with the increasing of rotation speed, and thendecreases. Quantum chemistry calculation results showed that the energygap of OIMA was lower than OIMO. The corrosion inhibition of PIMAwith TU, SP and OP was studied respectively, the results showed that thesynergistic inhibition effect of PIMA and TU is obvious, but PIMA+OPand PIMA+SP have antagonistic effect. A neuronic network with4-9-1structure was established, by which the inhibition efficiency of imidazoline and its derivates under flow condition can be predictedaccurately.
引文
[1]陈丹江.打破“石油魔咒”须转变方式[N].中国化工报.2011.8.19(1)
    [2]李天星.破解“石油魔咒”之法[J].中国石油企业,2011,9:62-65
    [3]张学元,邸超,雷良才.二氧化碳腐蚀与控制[M].北京:化学工业出版社,2000:15-16
    [4]张学元,王凤平,于海燕,等.二氧化碳腐蚀防护对策研究[J].腐蚀与防腐,1997,18(5):5-9
    [5] Guo XP, Tomoe Y. The effect of corrosion product layers on the anodic and cathodicreactions of carbon steel in CO2-saturated mdea solutions at100oC[J]. Corrosion Science,1999,41(7):1391-1402
    [6] Heuer JK, Stubbins JF. An XPS characterization of FeCO3films from CO2corrosion[J].Corrosion Science,1999,41(7):1231-1243
    [7] Villarreal J, Laverde D, Fuentes C. Carbon-steel corrosion in multiphase slug flow andCO2[J]. Corrosion Science,2006,48(9):2363-2379
    [8] Zhang GA, Cheng YF. Electrochemical characterization and computational fluid dynamicssimulation of flow-accelerated corrosion of X65steel in a CO2-saturated oilfield formationwater[J]. Corrosion Science,2010,52(8):2716-2724
    [9]孙丽,徐庆磊,方炯,等. CO2腐蚀与防护研究[J].焊管,2009,32(3):23-26
    [10]张学元,王凤平.二氧化碳腐蚀机理及影响因素[J].材料开发与应用,1998,13(5):34-35
    [11]吴荫顺,郑家燊.电化学保护和缓蚀剂应用技术[M].北京:化学工业出版社,2006:472
    [12]吴荫顺,郑家燊.电化学保护和缓蚀剂应用技术[M].北京:化学工业出版社,2006:474
    [13] Badr GE. The role of some thiosemicarbazide derivatives as corrosion inhibitors forC-steel in acidic media[J]. Corrosion Science,2009,51(11):2529-2536
    [14] Negm NA, Elkholy YM, Zahran MK, et al. Corrosion inhibition efficiency and surfaceactivity of benzothiazol-3-ium cationic Schiff base derivatives in hydrochloric acid[J].Corrosion Science,2010,52(10):3523-3536
    [15]魏宝明.金属腐蚀理论及应用[M].北京:化学工业出版社,2004.6
    [16] Mohammed AA, Sayed SAE, Essam EFE, et al. Polyacrylic acid as a corrosion inhibitorfor aluminium in weakly alkaline solutions. Part I: Weight loss, polarization, impedanceEFM and EDX studies[J]. Corrosion Science,2009,51(3):658-667
    [17] Mu GN, Li XH. Inhibition of cold rolled steel corrosion by Tween-20in sulfuric acid:Weight loss, electrochemical and AFM approaches[J]. Journal of Colloid and InterfaceScience,2005,289(1):184-192
    [18]宋诗哲.腐蚀电化学研究方法[M].北京:化学工业出版社,1988.10-13
    [19]吴荫顺,郑家燊.电化学保护和缓蚀剂应用技术[M].北京:化学工业出版社,2006:516-517
    [20] Chen Y, Hong T, Gopal M, et al. EIS studies of a corrosion inhibitor behavior undermultiphase flow conditions[J]. Corrosion Science,2000,42(6):979-990
    [21] Popova A, Christov M, Vasilev A. Inhibitive properties of quaternary ammonium bromidesof N-containing heterocycles on acid mild steel corrosion. Part II: EIS results[J]. CorrosionScience,2007,49(8):3290-3302
    [22]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2004:1-24
    [23] Saliyan VR, Adhikari AV. Quinolin–5–ylmethylene–3-{[8-(trifluoromethyl)quinolin–4-yl]thio} propanohydrazide as an effective inhibitor of mild steel corrosion in HClsolution[J]. Corrosion Science,2008,50(1):55-61
    [24]吴荫顺,郑家燊.电化学保护和缓蚀剂应用技术[M].北京:化学工业出版社,2006:483-499
    [25] Obot IB, Obi-Egbedi NO, Umoren SA. Antifungal drugs as corrosion inhibitors foraluminium in0.1M HCl[J]. Corrosion Science,2000,51(8),1868–1875
    [26] Dhar HP. Conway BE, Joshi KM. On the form of adsorption isotherms for substitutionaladsorption of molecules of different sizes[J]. Electrochimica Acta,1973,18(11),789-798
    [27] Donahue FM, Nobe K. Theory of organic corrosion inhibitors. Adsorption and linear freeenergy relations[J]. Journal of the Electrochemical Society,1965,112(9),886-891
    [28] Liu FG, Du M, Zhang J, et al. Electrochemical behavior of Q235steel in saltwatersaturated with carbon dioxide based on new imidazoline derivative inhibitor[J]. CorrosionScience,2009,51:102-109
    [29] Okafor PC, Liu X, Zheng YG. Corrosion inhibition of mild steel by ethylaminoimidazoline derivative in CO2-saturated solution[J]. Corrosion Science,2009,51:761-768
    [30] Khodyrev YP, ES Batyeva ES, Badeeva EK, et al. The inhibition action of ammonium saltsof O,O′-dialkyldithiophosphoric acid on carbon dioxide corrosion of mild steel[J].Corrosion Science,2011,53:976-983
    [31] Jiang X, Zheng YG, Ke W. Effect of flow velocity and entrained sand on inhibitionperformances of two inhibitors for CO2corrosion of N80steel in3%NaCl solution[J].Corrosion Science,2005,47:2636-2658
    [32]张林,邓春光.水溶性缓蚀剂HS-2000的研究开发[J].石油化工腐蚀与防护,2001,18(3):30-35
    [33]李和平,裴丽英,廖建国.水溶性咪唑啉酮类缓蚀剂的合成及性能研究[J].长沙电力学院学报,2000,15(2):74-75
    [34]吴宇峰,周坤坪,梁劲翌.咪唑啉季铵盐水溶性缓蚀剂NH-1的合成及其性能研究[J].精细石油化工,2001,5:39-42
    [35]吴荫顺,郑家燊.电化学保护和缓蚀剂应用技术[M].北京:化学工业出版社,2006:502-506
    [36] Bouklah M, Hammouti B, Aouniti A, et al. Synergisticeffect of iodideions on thecorrosioninhibition of steel in0.5M H2SO4by new chalcone derivatives[J]. AppliedSurface Science,2006,252(18):6236–6242
    [37] alι kan N, Bilgi S. Effect of iodide ions on the synergistic inhibition of the corrosion ofmanganese-14steel in acidic media[J]. Applied Surface Science,2000,15(2-3):128-133
    [38]赵景茂,刘鹤霞,狄伟,等.咪唑啉衍生物与硫脲之间的缓蚀协同效应研究[J].电化学,2004,10(4):440-445
    [39]马涛,张贵才,葛际江,等.改性咪唑啉与烷基磷酸酯用作缓蚀剂的协同效应[J].石油学报,2007,23(5):61-65
    [40]郭光范,郭书菊.咪唑啉型复配缓蚀剂的缓蚀性能[J].精细石油化工进展,2011,12(3):53-56
    [41]艾俊哲,姬鄂豫,祖荣,等.咪唑啉硫脲衍生物对电偶腐蚀的抑制作用[J].石油与天然气化,2004,33(5):357-361
    [42]李明齐,何晓英,蔡铎昌,等.缓蚀剂降低CO2对N80碳钢腐蚀速率的电化学研究[J].吉林化工学院学报,2001,18(2):21-23
    [43]闫杰,李茜璐,杨洪烈,等.油田用咪唑啉季按盐缓蚀剂的合成及性能评价[J].精细石油化工进展,2009,10(10):9-12
    [44]邢占忠,李永剑.水溶性咪唑啉类缓蚀剂的合成及性能研究[J].应用化工,2011,40(12):2156-2159
    [45] Okafor PC, Liu CB, Liu X, et al. Corrosion inhibition and adsorption behavior ofimidazoline salt on N80carbon steel in CO2-saturated solutions and its synergism withthiourea[J]. J Solid State Electrochem,2010,14:1367-1376
    [46] Ai JZ, Guo XP, Qu JE, et al. Adsorption behavior and synergistic mechanism of a cationicinhibitor and KI on the galvanic electrode[J]. Colloids and Surfaces, A: Physicochemicaland Engineering Aspects,2006,281:147-155
    [47] Ju H, Kai ZP, Li Y. Aminic nitrogen-bearing polydentate Schiff base compounds ascorrosion inhibitors for iron in acidic media: A quantum chemical calculation[J]. CorrosionScience,50(3):865-871
    [48] G khan G. The use of quantum chemical methods in corrosion inhibitor studies[J].Corrosion Science,50(11):2981-2992
    [49] Costa JM, Lluch JM. The use of quantum mechanics calculations for the study ofcorrosion inhibitors[J]. Corrosion Science,24(11-12):929-933
    [50] Sastri VS, Perumareddi JR. Molecular orbital theoretical studies of some organic corrosioninhibitors[J]. Corrosion Science,1997,53(8):617-622
    [51] Lukovits I, Kálmán E, Zucchi F. Corrosion inhibitors-correlation between electronicstructure and efficiency[J].Corrosion,2001,57(1):3-8
    [52] Luz María Rodríguez-Valdez, Villamisar W, Casales M, et al. Computational simulationsof the molecular structure and corrosion properties of amidoethyl, aminoethyl andhydroxyethyl imidazolines inhibitors[J]. Corrosion Science,2006,48(12):4053-4064
    [53] Zhang J, Liu JX, Yu WZ, et al. Molecular modeling of the inhibition m echanism of1-(2-aminoethyl)-2-alkyl-imidazoline[J]. Corrosion Science,52(6):2059-2065
    [54] Lee C, Yang W, Parr R.G. Local softness and chemical reactivity in the molecules CO,SCN and H2CO[J]. Journal of Molecular Structure: THEOCHEM,1988,163,305-313
    [55]胡松青,胡建春,郁金华,等.抗CO2腐蚀咪唑啉衍生物缓蚀性能的密度泛函理论[J].中国石油大学学报(自然科学版),2009,33(6):128-131
    [56]胡松青,胡建春,范成成,等.新型咪唑啉化合物在H2S/CO2共存条件下对Q235钢的缓蚀性能[J].物理化学学报,2010,26(8):2163-2170
    [57]胡松青,胡建春,石鑫,等.咪唑啉衍生物缓蚀剂的定量构效关系及分子设计[J].物理化学学报,2009,25(12):2524-2530
    [58] Zhang J, Qiao GM, Hu SQ, et al. Theoretical evaluation of corrosion inhibitionperformance of imidazoline compounds with different hydrophilic groups[J]. CorrosionScience,2011,53:147-152
    [59] Rodriguez-Valdez LM, Villamisar W, Casales M, et al. Computational simulations of themolecular structure and corrosion properties of amidoethyl, aminoethyl and hydroxyethylimidazolines inhibitors[J]. Corrosion Science,2006,48:4053-4064
    [60]刘瑕,郑玉贵.咪唑啉型缓蚀剂中疏水基团对N80钢在CO2饱和的3%NaC1溶液中的缓蚀性能影响[J].中国腐蚀与防护学报,2009,29(5):333-338
    [61]刘瑕,郑玉贵.流动条件下两种不同亲水基团咪唑啉型缓蚀剂的缓蚀性能[J].物理化学学报,2009,25(4):713-718
    [62]蒋秀,郑玉贵,祝英剑,等.流动条件下炔氧甲基季胺盐的缓蚀性能研究[J].中国腐蚀与防护学报,2004,24(4):234-239
    [63] Hong T, Jepson WP. Corrosion inhibitor studies in large flow loop at high temperature andhigh pressure[J]. Corrosion Science,2001,43:1839-1849
    [64] Chen Y, Hong T, Gopal M, EIS studies of a corrosion inhibitor behavior under multiphaseflow conditions[J]. Corrosion Science,2000,42:979-990
    [65] Chen Y, Jepson WP. EIS measurement for corrosion monitoring under multiphase flowconditions[J]. Electrochimica Acta,1999,44:4453-4464
    [66] Hong T, Sun YH, Jepson WP. Study on corrosion inhibitor in large pipelines undermultiphase flow using EIS[J]. Corrosion Science,2002,44:101-112
    [67]胡芳,石鲜明,屈定荣,等.苯胺及其衍生物缓蚀性与结构参数关系的神经网络研究[J].中国腐蚀与防护学报,1999,19(1):33-38
    [68]齐连惠,张继群.基于神经网络的酸洗缓蚀剂构效关系研究[J].腐蚀科学与防护技术,2001,13(1):24-28
    [69]胡芳,屈定荣,石鲜明,等.用神经网络研究异喹啉类缓蚀剂结构与性能的关系[J].中国腐蚀与防护学报,1998,18(4):283-288
    [1]魏宝明.金属腐蚀理论及应用[M].北京:化学工业出版社,2004.6
    [2]吴荫顺,郑家燊.电化学保护和缓蚀剂应用技术[M].北京:化学工业出版社,2006,473
    [3]吴荫顺,郑家燊.电化学保护和缓蚀剂应用技术[M].北京:化学工业出版社,2006,517
    [4] Saliyan VR, Adhikari AV. Quinolin–5–ylmethylene–3-{[8-(trifluoromethyl)quinolin–4-yl]thio} propanohydrazide as an effective inhibitor of mild steel corrosion in HClsolution[J]. Corrosion Science,2008,50(1):55-61
    [5] Gouzman I, Dubey M, Carolus MD, et al. Monolayer vs. multilayer self-assembledalkylphosphonate films: X-ray photoelectron spectroscopy studies[J]. Surface Science,2006,600(4):773-781
    [6]赵景茂,刘鹤霞,狄伟,等.咪唑啉衍生物与硫脲之间的缓蚀协同效应研究[J].电化学,2004,10(4):440-445
    [7]丁艳梅,许淳淳.复合气相缓蚀剂对铁质文物缓蚀机理的研究[J].腐蚀科学与防护技术,2006,18(4):241-245
    [1] Zhao L, Teng HK, Yang YS, et al. Corrosion inhibition approach of oil production systemsin offshore oilfields[J]. Materials and Corrosion,2004,55(9):684-688
    [2]张光华,李俊国,郭炎,等.三苯环咪唑啉季铵盐的合成与缓蚀性能[J].腐蚀科学与防护技术,2002,14(2):95-97
    [3]鲁崇贤,杜洪光.有机化学[M].北京:科学出版社,2009.154-170
    [1]吕战鹏,郑家燊,彭芳明.利用缓蚀协同效应降低二氧化碳缓蚀剂使用浓度[J].腐蚀与防护,1999,20(9),395-397
    [2]赵景茂,刘鹤霞,狄伟,等.咪唑啉衍生物与硫脲之间的缓蚀协同效应研究[J].电化学,2004,10(4),440-445
    [3] Okafor PC, Liu CB, Liu X, et al. Corrosion inhibition and adsorption behavior ofimidazoline salt on N80carbon steel in CO2-saturated solutions and its synergism withthiourea[J]. J Solid State Electrochem,2010,14:1367-1376
    [4]王佳,陈家坚,曹殿珍,等.二丙炔氧甲基烷基胺类缓蚀剂的电化学行为[J].中国腐蚀与防护学报,1991,11(3),279-284
    [5]杨怀玉,曹殿珍,陈家坚,等. CO2饱和溶液中缓蚀剂的电化学行为及缓蚀性能[J].腐蚀科学与防护技术,2000,12(4),211-214
    [6]张万友,王冰,廖强强,等. BTA系列Cu缓蚀剂的电化学行为[J].腐蚀科学与防护技术,2001,13(5),263-266
    [7]曹楚南.腐蚀电化学[M].北京:化学工业出版社,1994,129-130
    [8]曹楚南.腐蚀电化学[M].北京:化学工业出版社,1994,132-134
    [9] Benedetti AV, Sumodjo PTA, Nobe K, et al. Electrochemical studies of copper,copper-aluminum and copper-aluminum-silver alloys: impedance results in0.5M NaCl[J].Electrochimica Acta,1995,40(16),2657-2668
    [10] Hassan HH. Inhibition of mild steel corrosion in hydrochloric acid solution by triazolederivatives. Part II. Time and temperature effects and thermodynamic treatments[J].Electrochimica Acta,2007,53(4),1722-1730
    [11]Taylor SR, Gileadi E. Physical interpretation of the Warburg impedance[J]. Corrosion,1995,51(9):664-671
    [12] Desimone MP, Grundmeier G, Gordillo G, et al. Amphiphilic amido-amine as an effectivecorrosion inhibitor for mild steel exposed to CO2saturated solution: Polarization, EIS andPM-IRRAS studies[J]. Electrochimica Acta,2011,56(8):2990-2998
    [13] Zhang GA, Chen CF, Lu MX, et al. Evaluation of inhibition efficiency of an imidazolinederivative in CO2-containing aqueous solution[J]. Materials Chemistry and Physics,2007,105(2-3):331-340
    [14] Lopez DA, Simison SN, de Sanchez SR. Inhibitors performance in CO2corrosion[J].Corrosion Science,2005,47(3):735-755
    [15] Zhang GA, Chen CF, LuMX, et al. Evaluation of inhibition efficiency of an imidazolinederivative in CO2-containing aqueous solution. Materials Chemistry and Physics[J].2007,105(2-3),331–340
    [1]吴荫顺,郑家燊.电化学保护和缓蚀剂应用技术[M].北京:化学工业出版社,2006,502
    [2]马涛,张贵才,葛际江,等.改性咪唑啉与烷基磷酸酯用作缓蚀剂的协同效应[J].石油学报,2007,23(5):61-65
    [3]郭光范,郭书菊.咪唑啉型复配缓蚀剂的缓蚀性能[J].精细石油化工进展,2011,12(3):55-56
    [4] Okafor PC, Liu CB, Liu X, et al. Corrosion inhibition and adsorption behavior ofimidazoline salt on N80carbon steel in CO2-saturated solutions and its synergism withthiourea[J]. J Solid State Electrochem,2010,14():1367-1376
    [5] Bouklah M, Hammouti B, Aouniti A, et al. Synergisticeffect of iodideions on thecorrosioninhibition of steel in0.5M H2SO4by new chalcone derivatives[J]. AppliedSurface Science,2006,252(18):6236–6242
    [6] alι kan N, Bilgi S. Effect of iodide ions on the synergistic inhibition of the corrosion ofmanganese-14steel in acidic media[J]. Applied Surface Science,2000,15(2-3):128-133
    [7]吕向阳.3.5%NaCl溶液中铝及其合金缓蚀剂的电化学研究[D].重庆:西南大学,2009
    [8]李凌杰,姚志明,雷惊雷,等.苯甲酸钠对AZ31镁合金的缓蚀作用[J].材料保护,2009,42(11):24-26
    [9]曹楚南.腐蚀电化学[M].北京:化学工业出版社,1994,129-130
    [10] Lopez DA, Simison SN, de Sanchez, SR. The influence of steel microstructure on CO2corrosion. EIS studies on the inhibition efficiency of benzimidazole[J]. ElectrochimicaActa,2003,48(7),845-854
    [11] Hong T, Sun YH, Jepson W P, Study on corrosion inhibitor in large pipelines undermultiphase flow using EIS[J]. Corrosion Science,2001,2002,44(1),101-112
    [12] Feng YQ; Teo WK; Siow KS, et al. Corrosion protection of copper by a self-assembledmonolayer of alkanethiol[J]. Journal of the Electrochemical Society,1997,144(1),55-64
    [13] Quan Z, Wu X, Chen S, et al. Self-assembled monolayers of Schiff bases on coppersurfaces[J]. Corrosion,2001,57(3),195-201Benedetti AV, Sumodjo PTA, Nobe K, et al. Electrochemical studies of copper,
    [14]copper-aluminum and copper-aluminum-silver alloys: impedance results in0.5M NaCl[J].Electrochimica Acta,1995,40(16),2657-2668Hassan HH. Inhibition of mild steel corrosion in hydrochloric acid solution by triazole
    [15]derivatives. Part II. Time and temperature effects and thermodynamic treatments[J].Electrochimica Acta,2007,53(4),1722-1730
    [16] Bastos AC, Ferreira MG, Simoes AM, Corrosion inhibition by chromate and phosphateextracts for iron substrates studied by EIS and SVET[J]. Corrosion Science,2006,48(6),1500-1512
    [17] Bommersbach P, Alemany-Dumont C, Millet JP, et al. Formation and behaviour study ofan environmentally-friendly corrosion inhibitor by electrochemical methods[J].Electrochimica Acta,2005,51(6),1076-1084
    [18] Sastri VS, Elboujdaini M, Brown JR, et al. Surface analysis of inhibitor films formed inhydrogen sulfide medium[J]. Corrosion,1996,52(6),447-452
    [19] Heuer JK, Stubbins JF. An XPS characterization of FeCO3films from CO2corrosion[J].Corrosion Science,1999,41(7),1231-1243
    [20] F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-Ray PhotoelectronSpectroscopy, J. Chastain (Ed.), Perkin-Elmer Corp., Minnesota, USA1992
    [21] Hamdy HH, Essam A, Mohammed AA, Inhibition of mild steel corrosion in hydrochloricacid solution by triazole derivatives: Part I. Polarization and EIS studies[J]. ElectrochimicaActa,2007,52(22),6359-6366
    [22] Solmaz R, Kardas G, Yazici B, et al. Adsorption and corrosion inhibitive properties of2-amino-5-mercapto-1,3,4-thiadiazole on mild steel in hydrochloric acid media[J].Colloids and Surfaces, A: Physicochemical and Engineering Aspects,2008,312(1),7-17
    [23] Obot IB, Obi-Egbedi NO, Umoren SA. Antifungal drugs as corrosion inhibitors foraluminium in0.1M HCl[J]. Corrosion Science,2000,51(8),1868-1875
    [24] Dhar HP. Conway BE, Joshi KM. On the form of adsorption isotherms for substitutionaladsorption of molecules of different sizes[J]. Electrochimica Acta,1973,18(11),789-798
    [25] Donahue FM, Nobe K. Theory of organic corrosion inhibitors. Adsorption and linear freeenergy relations[J]. Journal of the Electrochemical Society,1965,112(9),886-891
    [26] Wang B, Du M, Zhang J, et al. Electrochemical and surface analysis studies on corrosioninhibition of Q235steel by imidazoline derivative against CO2corrosion[J]. CorrosionScience,2011,53(1),355-361
    [27] Bockris JO'M, Swinkels DAJ. Adsorption of n-decylamine on solid metal electrodes[J].Journal of the Electrochemical Society,1964,111(6),736-743
    [1] Jovancicevic V, Ramachandran S, Prince P. Inhibition of carbon dioxide corrosion of mildsteel by imidazolines and their precursors[J]. Corrosion,1999,55(5):449-455
    [2] Edwards A, Osborne C, Webster S, et al. Mechanistic studies of the corrosion inhibitoroleic imidazoline[J]. Corrosion Science,1994,36(2):316-25
    [3] Wang DX, Li SY; Ying Y, et al. Theoretical and experimental studies of structure andinhibition efficiency of imidazoline derivatives[J]. Corrosion Science,1999,41(10):1911-1919
    [4] Szyprowski AJ. Hydrogen sulfide corrosion of steel-mechanism of action of imidazolineinhibitors[C].8th European Symposium on Corrosion Inhibitors,1995,2,1229-1238.
    [5] Liu X, Okafor PC, Zheng YG. The inhibition of CO2corrosion of N80mild steel in singleliquid phase and liquid/particle two-phase flow by aminoethyl imidazoline derivatives[J].Corrosion Science,2009,51(4):744-751
    [6]曹楚南.腐蚀电化学[M].北京:化学工业出版社,1994,129-130
    [7] Abd El Rehim SS, Sayyah SM, El-Deeb MM, et al. Poly(o-phenylenediamine) as aninhibitor of mild steel corrosion in HCl solution[J]. Materials Chemistry and Physics,2010,123(1):20-27
    [8] Issaadi S, Douadi T, Zouaoui A, et al. Novel thiophene symmetrical Schiff basecompounds as corrosion inhibitor for mild steel in acidic media[J]. Corrosion Science,2011,53(4):1484-1488
    [9] Obot IB, Obi-Egbedi NO, Umoren SA. Antifungal drugs as corrosion inhibitors foraluminum in0.1M HCl[J]. Corrosion Science,2009,51(8):1868-1875
    [10] Tang LB, Mu GN; Liu GH. The effect of Neutral Red on the corrosion inhibition of coldrolled steel in1.0M hydrochloric acid[J]. Corrosion Science,2003,45(10):2251-2262
    [11] Yurt A, Ulutas S, Dal H. Electrochemical and theoretical investigation on the corrosion ofaluminium in acidic solution containing some Schiff bases[J]. Applied Surface Science,2006,253(2):919-925
    [12] Obi-Egbedi NO, Obot IB, El-Khaiary MI. Quantum chemical investigation and statisticalanalysis of the relationship between corrosion inhibition efficiency and molecular structureof xanthene and its derivatives on mild steel in sulphuric acid[J]. Journal of MolecularStructure,2011,1002(1-3):86-96
    [13] Khaled KF, Fadl-Allah SA, Hammouti B. Some benzotriazole derivatives as corrosioninhibitors for copper in acidic medium: Experimental and quantum chemical moleculardynamics approach[J]. Materials Chemistry and Physics,2009,117(1):148-155Zhang DQ, An ZX, Pan QY, et al. Comparative study of bis-piperidinylmethyl-urea and
    [14]mono-piperidinylmethyl-urea as volatile corrosion inhibitors for mild steel[J]. CorrosionScience,2006,48(6):1437-1448
    [1] YldrmA, etinM. Synthesis and evaluation of new long alkyl side chain acetamide,isoxazolidine and isoxazoline derivatives as corrosion inhibitors[J]. Corrosion Science,2008,50(1):155-165
    [2] Wang HL, Liu RB, Xin J. Inhibiting effects of some mercapto-triazole derivatives on thecorrosion of mild steel in1.0M HCl medium[J]. Corrosion Science,46(10):2455-2466
    [3]韩恩山,胡建修,常亮.聚酰胺聚脲的合成及其性能[J].华东理工大学学报(自然科学版),2006,32(6),714-717
    [4]曹楚南.腐蚀电化学[M].北京:化学工业出版社,1994,129-130
    [5] Ju H, Kai ZP, Li Y. Aminic nitrogen-bearing polydentate Schiff base compounds ascorrosion inhibitors for iron in acidic media: A quantum chemical calculation[J]. CorrosionScience,50(3):865-871
    [6] G khan G. The use of quantum chemical methods in corrosion inhibitor studies[J].Corrosion Science,50(11):2981-2992
    [7] Costa JM, Lluch JM. The use of quantum mechanics calculations for the study ofcorrosion inhibitors[J]. Corrosion Science,24(11-12):929-933
    [8]闫莹.新型杂环化合物碳钢酸洗缓蚀剂的合成、评价及机理研究[D].青岛:中国科学院海洋研究所,2007
    [9] Zhang J, Liu JX, Yu WZ, et al. Molecular modeling of the inhibition m echanism of1-(2-aminoethyl)-2-alkyl-imidazoline[J]. Corrosion Science,52(6):2059-2065
    [10] V. Jovancicevic, S. Ramachandran, P. Prince, Inhibition of carbon dioxide corrosion ofmild steel by imidazolines and their precursors, Corrosion55(1999)449-455
    [11] M.A. Quraishi, D. Jamal, R.N. Singh, Inhibition of mild steel corrosion in the presence offatty acid thiosemicarbazides, Corrosion58(2002)201–207
    [12] E. Stupnisek-Lisae, D. Kasunic, J. Vorkapic-Furac, Imidazole derivatives as corrosioninhibitors for zinc in hydrochloric acid, Corrosion51(1995)767-772
    [13] Lee C, Yang W, Parr R.G. Local softness and chemical reactivity in the molecules CO,SCN and H2CO[J]. Journal of Molecular Structure: THEOCHEM,1988,163,305-313
    [1]杜敏,王彬,张静,等.温度对新型咪唑啉抑制CO2腐蚀的影响[J].材料保护,2010,43(9):20-23
    [2]赵维,夏明珠,雷武,等.有机磷缓蚀剂分子结构与缓蚀性能的量子化学研究[J].中国腐蚀与防护学报,2002,22(4):217-220
    [3]鲁照玲,邱于兵,郭兴蓬. pH值对十二胺在碳钢表面的吸附行为及缓蚀机理的影响[J].物理化学学报,2008,24(2):243-249
    [4]蒋秀,郑玉贵,祝英剑,等.流动条件下炔氧甲基季胺盐的缓蚀性能研究[J].中国腐蚀与防护学报,2004,24(4):234-239
    [5]刘瑕,郑玉贵.流动条件下两种不同亲水基团咪唑啉型缓蚀剂的缓蚀性能[J].物理化学学报,2009,25(4):713-718
    [6] Scendo M, Hepel M. Inhibiting properties of benzimidazole films for Cu(II)/Cu(I)reduction in chloride media studied by RDE and EQCN techniques[J]. Corrosion Science,2007,49(8):3381-3407
    [7] Wang DH, Gan FX, Zou JY. New electrochemical oscillations induced by theadsorption–desorption of organic corrosion inhibitor on Fe in H2SO4solutions[J].Electrochimica Acta,1998,43(14–15):2241-2244
    [8] Heitz E, Kreysa G, Loss C. Investigation of hydrodynamic test systems for the selection ofhigh flow rate resistant materials[J]. Journal of Applied Electrochemistry,1979,9(2):243-53
    [9] Dean SW. Velocity-accelerated corrosion testing and predictions[J]. MaterialsPerformance,1990,29(9):61-67
    [10] Gerretsen JH, Visser A. Inhibitor performance under liquid droplet impingementconditions in CO2-containing environment[J]. Corrosion Science,1993,34(8):1299-1307
    [11] Saad G, Sasha O. The effect of electrolyte flow on the performance of12-aminododecanoicacid as a carbon steel corrosion inhibitor in CO2-saturated hydrochloric acid[J]. CorrosionScience,2011,53(11):3805-3812
    [12] Hong T, Jepson WP. Corrosion inhibitor studies in large flow loop at high temperature andhigh pressure[J]. Corrosion Science,2001,43(10):1839-1849
    [13] Chen Y, Hong T, Gopal M. et al. EIS studies of a corrosion inhibitor behavior undermultiphase flow conditions[J]. Corrosion Science,2000,42(6):979-990
    [14] Juettner K. Electrochemical impedance spectroscopy (EIS) of corrosion processes oninhomogeneous surfaces[J]. Electrochimica Acta,1990,35(10):1501-1508
    [15]于世才.旋转圆盘电极[J].材料开发与应用,1986,2:38-44
    [16] Chen Y, Jepson WP. EIS measurement for corrosion monitoring under multiphase flowconditions[J]. Electrochimica Acta,1999,44(24):4453-4464
    [17] Desimone MP, Grundmeier G, Gordillo G, et al. Amphiphilic amido-amine as an effectivecorrosion inhibitor for mild steel exposed to CO2saturated solution: Polarization, EIS andPM-IRRAS studies[J]. Electrochimica Acta,2011,56(8):2990-2998
    [18] Olivares-Xometl O, Likhanova NV, Dominguez-Aguilar MA, et al. Surface analysis ofinhibitor films formed by imidazolines and amides on mild steel in an acidicenvironment[J]. Applied Surface Science,2006,252(6):2139-2152
    [19] Jiang X, Zheng YG, Ke W. Effect of flow velocity and entrained sand on inhibitionperformances of two inhibitors for CO2corrosion of N80steel in3%NaCl solution[J].Corrosion Science,2005,47(11):2636-2658
    [20] Ashassi-Sorkhabi H, Asghari E. Effect of hydrodynamic conditions on the inhibitionperformance of L-methionine as a "green" inhibitor[J]. Electrochimica Acta,2008,54(2):162-167
    [21] Ashassi-Sorkhabi H, Asghari E. Influence of flow on the corrosion inhibition of St52-3type steel by potassium hydrogen-phosphate[J]. Corrosion Science,2009,51(8):1828-1835
    [22]吴荫顺,郑家燊.电化学保护和缓蚀剂应用技术[M].北京:化学工业出版社,2006,502
    [23]马涛,张贵才,葛际江,等.改性咪唑啉与烷基磷酸酯用作缓蚀剂的协同效应[J].石油学报,2007,23(5):61-65
    [24]郭光范,郭书菊.咪唑啉型复配缓蚀剂的缓蚀性能[J].精细石油化工进展,2011,12(3):53-56
    [25]齐连惠,张继群.基于神经网络的酸洗缓蚀剂构效关系研究[J].腐蚀科学与防护技术,2001,13(1):24-28
    [26]胡芳,石鲜明,屈定荣,等.苯胺及其衍生物缓蚀性与结构参数关系的神经网络研究[J].中国腐蚀与防护学报,1999,19(1):33-38
    [27]飞思科技产品研发中心.神经网络理论与MATLAB7实现[M].北京:电子工业出版社,2005,99-108

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700