非线性色散方程、波方程的自相似解与低正则性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文分为两部分。第二、三、四、五章研究一些非线性发展方程的自相似解;第六、七章研究非线性Schr(?)dinger方程及Schr(?)dinger-Boussinesq方程的低正则问题。一般地,考虑偏微分方程这里,α=(α_0,……,α_n)为多重指标,假设方程(1.1)具有这样的代数对称性:存在实数α_i,b,对(?)λ∈(0,∞),若令则仍有对满足相似结构(1.3)的偏微分方程(1.1),我们考虑它的具有自相似结构的解,即(相似结构及其在方程中的应用可参见[4],[20])具体到非线性发展方程(令x_0=t),设u(x,t)是下列诸类非线性方程的Cauchy问题的解,则分别是Cauchy问题(1.4),(1.5)将初值函数u_0(x)换成λ~(2/α)u_0(λx)的解,是波动方程的Cauchy问题(1.6)将(u_)(x),u_1(x))换成(λ~(2/α)u_0(λx),λ~(1+2/α)u_1(λx))时的解,
     定义 0.1(ⅰ)称u(x,t)是Schr(?)dinger方程的Cauchy问题(1.4)或热传导方程的Cauchy问题(1.5)的自相似解,如果(ⅱ)称u(x,t)是波方程的Cauchy问题(1.6)的自相似解,如果研究自相似解的经典方法是通过求解椭圆型方程的解来实现的。例如,就热传导方程
    
    而言,设V(x)是椭圆方程
    △v+玉二.:v+里v+v3=0,
     ZZ
    第一章摘要
     (1 .10)
    的解,则试二,约=。一去v(t一告幻是(l .9)的自相似解.其中称v是。的波阵面.当。=1时,
    常微分方程(1 .10)相对来说容易研究;当n全2时,通过椭圆方程(例如(1.10))来求解自相
    似解是件困难的事.然而,借助于调和分析方法可以研究非线性发展方程的自相似解.事实
    上,设方程(19)的初始条件
     二(x,0)二。。(x),(1 .11)
    满足
     入。。(入x)==。。(x),
    且热方程(1.9)的Cauchy问题(1.n)在某个合适的Banach空间中适定,若记(1.9),(1.U)
    的解是。(x,t),则由唯一性可知。(x,约就是自相似解.
     自相似解的适定性问题能否在经典的适定性框架下加以解决?一般地,对抽象Cauchy
    问题
     “‘+A”=F(“),。(o)=必(二),价cX,(1 .12)
    适定性的研究是通过其积分方程
    ·(。)一,+芜‘一‘卜·,‘F(·)(·)、,,。X,
    (1 .13)
    来实现的.确定基本工作空间的原则是:。一tA在x中生成C0半群,即对v价。X,e一以价任
    C(I;X),I=R或R+.由Minlin一H6rmander乘子定理(见【3」),对Schr6dinger方程,波动
    方程而言,x=H‘(R勺,。cR;对热传导方程而言,X=H”,3〔R,1    到非线性问题时,已有的结果表明,当X是临界或次临界空间时,间题(1.12)或(1.13)在
    C(无X)中局部适定.对于Schr6dinger方程、热方程、波动方程而言,齐次临界空间满足
     }I。。(x)11分二。=11*荟。。(*x)11方:。,v*>o,
     11。。(x)11方。。.;=11入誉。。(*x)l!方二。.p,v入>o,vi<;     l}。。(x)11方:。=11*荟。。(入x)日户。。,v入>o,
    由此可得s。二晋一景,s。=登一号,8。=晋一孚当。>s。时,分别称H‘,HS)P,H‘为对应
    于三类方程的次临界空间,反之则为超临界空间.
     取自相似解初始条件的一个特例tL。(x)=}二}一荟,按照经典适定性研究的要求应有
    。。(x):方一,。。一要一兰,sohr6d,nger方程,
     ‘Q
    ”o(x)。H‘。,p,
     2二、_
    一一,热万程.
    (1 .14)
    (1 .15)
     一一
    几一P
     一
     以
     S
    下面仅验证(l .14)不成立.事实上由公。(劫二。圈卜“可知
     r凶rZ,+1
    11”。(x)11升一jR。l“I’‘“’}“。(“)I,“一_艺22‘。’关,l“。(“)l“‘一co·
     J=一。。一
    
    因此经典的结果不能用于形如二。(:)=}:}一景的cauchy间题(l .4),(l .5)的研究.为此需将
    Cauchy问题(1.4),(1.5),(1.6)适定性的概念推广,即推广连续依赖的概念,保留唯一性,以
    达到求解自相似解的目的。
     注意到Cazenave,tVeissler,Ribaud,YOussifi,Peeher等人关于Sehr6dinger方程,热方程,
    波动方程的工作113」,!141,{45」,【47],【49〕,我们在第二章中考虑了复Ginzberg一Landau(CGL)
    方程的Cauchy问题
    二:一:△二一乞△二+(a+乞乙)}。}。。=O,
     。(x,O)=。。(x).
    的衰减估计,给出解在空间
    (1 .16)
    通过建立s:(。)=。“‘△e“△
     xs,;={
    二任S‘(R几xR+
    SUP
    七>0
    t月(,,,)}}。(x。t)}}方。,,    中的存在唯一性,从而当初始函数。。(x)同时满足
     。。(二)=入号二。(*x),I}又(。)。。I!二。,,<<1,(217)
    时,cauchy问题在X,,;中有唯一的自相似解。
     定理住1设。任U,“任Ja,,任△,p=瑞石,则存在依赖于‘的常数拭的>0,使
    得当
     1}凡(t)二。{}x。,;<占(:),
    时,cGL在X、;中有唯一的解试t,x)满足,
     1{二(亡)日x,,;<2咨(。).
    这里U,Ja,△表示指标的范围
In this dissertation, we use the tool of harmonic analysis to study the problem of self-similar solution and low regularity of wave and dispersive wave equations.
    In Chapter 2, Chapter 3, we establish the generalized well-posedness of the Cauchy problem of complex Ginzberg-Landau(CGL) equation, which includes the self-similar solutions. Furthermore, we also prove the self-similar solutions to a group of CGL equations converge to the self-similar solution to the limiting equation under suitable conditions.
    In Chapter 4, we give the new nonlinear estimates in spaces of Besov type. Using the estimates, we prove the global well-posedness of Schr dinger equation with general nonlinear term. This extends the known well-poseness results.
    In Chapter 5, we study the self-similar solution of nonlinear wave equation. By using the nonlinear estimate in Chapter 4 together with the Strichartz estimates of linear wave equation, we prove the global well-posedness of the self-similar solution of the wave equation with general nonlinear term.
    In Chapter 6, the Cauchy problem of Schr(?)dinger equation with the initial data possessing infinite L2 norm is considered. Using the method introduced by Bourgain, we prove the Cauchy problem of Schr(?)dinger equation is global well-posed for a class of initial data as the above. Since the global well-posedness of Schr(?)dinger equation in Hs, s < 0 has never been obtained to our best knowledge, our result is an improvement in some sense.
    In Chapter 7, we consider the global well-posedness of two dimensional Schr(?)dinger-Boussinesq coupled system when the initial data belong to Hs, 0 < s < 1. We show the solution is globally wellposed when s > 8/(11), and is locally wellposed when s > -1/4.
引文
[1] M.J.Ablowitz, P.A.Clarkson, Solitions, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, 1991.
    [2] J.J.Benedetto, Harmonic Analysis and Applications, CRC Press, 1996.
    [3] J.Bergh, J.Lofstrom, Interpolation Spaces Berlin-Heidelberg New-York, 1976.
    [4] G. W. Bluman, J. D. Cole, Similarity Methods for Differential Equations, Springer-Verlag New-York Heidelberg Berlin, 1974.
    [5] J.Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I, Geom. Funct. Anal. 3, 1993, 107-156.
    [6] J.Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Ⅱ, Geom. Funct. Anal. 3, 1993, 209-262.
    [7] J.Bourgain, Refinements of Striartz's inequality and applications to 2D-NLS with critical non-linearity, Int. Math. Research Notices, 5(1998) , 253-283.
    [8] J.Bourgain, Global solutions of nonlinear Schrodinger equations, Amer Math Soci, Colloquium Publications, Volume 46.
    [9] J.Bourgain, J.Colliander, On tie well-posedness of the Zakharov system, Int. Math. Research Notics, 11(1996) , 515-546.
    [10] P.Brenner, on scattering and everywhere defined scattering operators for nonlinear Klein-Gordon equations, J. Diff. Equa. 56, 310-344, 1985
    [11] M. Cannone,Ondelettes, paraproduits et Navier-Stoke, Diderrot Editeur, Paris, 1995.
    [12] T.Cazenave, F.B.Weissler, Tie Cauciy problem for tie critical nonlinear Schrodinger equation in H3, Nonlinear Anal. T. M. A. 14: 807-836, 1990.
    [13] T.Cazenave, F.B.Weissler, Asymptotic self-similar global solutions of the nonlinear Schrodinger and heat equations Mathe. Zeit 228(1998) , 83-120.
    [14] T.Cazenave, F.B.Weissler, More self-similar solutions of the nonlinear Schrodinger equation, Nonlinear differ, equ. appl. 5 (1998) 355-365.
    [15] J.E.Colliander, J.-M. Delort, C.E.Kenig, & G.Staffilani, Bilinear estimates and applications to 2D NLS. Trans Amer Math Soci. 353, 8, 3307-3325, 2001.
    [16] J.E.Colliander, M.Keel, G.Staffilani, H.Takaoka, T.Tao, Global well-posedness for Schrodinger equations with derivative, arXiv:math.Ap/010263, 31, 2001.
    [17] J.E.Colliander, M.Keel, G.Staffilani, H.Takaoka, T.Tao, A refined global well-posedness result for Schrodinger equations with derivative, axXiv:math.Ap/0110026, 27, 2002.
    [18] J.E.Colliander, M.Keel, G.Staffilani, H.Takaoka, T.Tao, Almost conservation laws and global rough solutions to a nonlinear Schrodinger equations, preprint.
    [19] J.M.-Delort, D.Fang, Almost global existence for solutions of semilinear Klein-Gordon equations with small weakly decaying Cauciy data, Commun. In Partial Differential Equations, 25(11&12) , 2119-2169(2000) .
    [20] L.Dresner, Similarity solutions of nonlinear partial differential equations, Pitman Publishing Pty Ltd, 1983.
    [21] G.B.Folland,Introduction to tie partial differential equations, Princeton University Press,1976.
    [22] G. Furioli, F. Planchon, E. Terraneo, Unconditional well-Posedness for semilinear Schrodinger
    
    and wave equations in Hs, to appear in Contem Math.
    [23] J.Ginibre, Y.Tsutsumi, G.Velo, On the Cauchy Problem for the Zakharov System, J. Funct. Analy. 151, 384-436 (1997) .
    [24] J.Ginibre, G.Velo, On the class of nonliear Schrodinger equation, J. Funct. Anal, 32, 1-21(1979) .
    [25] J.Ginibre, G.Velo, Scattering theory in the energy space for a class of nonlinear Schrodinger equations, J. Math. Pures. Appl. 64(1985) , 363-401.
    [26] J.Ginibre, G.Velo, The global Cauchy problem for the NLS equation revisited, Ann. IHP, An.non-lineaire, 2: 309-327, 1985.
    [27] J.Ginibre, G.Velo,The global Cauchy problem for nonlinear Schrodinger equations,Ⅱ, Ann. Inst. Henri. Poincare Phys. Theorique, 43(1985) , 399-422.
    [28] L.Glangetas, F.Merle, Existence of self-similar blow-up solution for Zakharov equation in dimension two, Comm. Math. Phys. 160, 1994, 173-215.
    [29] L.Glangetas, F.Merle, Concentration properties of blow-up soutions and instability results for Zakharov equation in dimension two, Part Ⅱ, Comm. Math. Phys. 160, 1994,349-389.
    [30] Boling Guo, The global solution of the system of equations for complex Schrodinger field coupled with Boussinesq type self-consistent field, Acta Math Sinica 26(3) , 295-306, 1983.
    [31] 郭柏灵等译, 非线性边值问题的一些解法,中山大学出版社.
    [32] M.G.Grillakis, On nonlinear Schrodinger equations, Comm. Par. Diff. Equa. 25, 1827-1844, 2000.
    [33] Yongqian Han, Well-posedness and Wow-up for Cauchy problem of nonlinear Schrodinger-Boussinesq equations, dotoral disertation.
    [34] M.Keel, T.Tao, Endpoint Strichartz estimates, Amer. J. Math. 120(5) : 955-980, 1998.
    [35] C.E.Kenig, G.Ponce, L.Vega, The Cauchy problem for the Korteveg-De Vries equation in Sobolev spaces of negative indices, Duke Math J. 71(1) , 1993, 1-21.
    [36] C.E.Kenig, G.Ponce, L.Vega, A bilinear estimate with applications to the KdV equation, J. Amer Math Soci. 9(2) , 1996, 573-603.
    [37] C.E.Kenig, G.Ponce, L.Vega, Quadratic forms for the 1-D semilinear Schrodinger equation, Trans Amer Math Soci. 348, 8, 1996.
    [38] S.Klainerman, Global existence for nonlinear wave equations, Comm. Pure. Appl. Math, 33, 43-101(1980) .
    [39] C.X.Miao,调和分析及其在偏微分方程中的应用,科学出版社, 1999
    [40] C.X. Miao, Time-space estimates of solutions to general semilinear parabolic equations. Tokyo J. Math. 24, No 1 (June 2001) , 245-276.
    [41] C.X.Miao, Global well-posedness of the Cauchy problem for nonlinear equation of the Schrodinger type, submitted.
    [42] A.Pazy,Semigroups of Linear Operator and Applications to Partial Differential Equations, Springer-Verlag, 1983.
    [43] H.Pecher, Self-similar and asymptotically self-similar solutions of nonlinear wave equations, Preprint.
    [44] H.Pecher, Globle solutions of the Klein-Gordon-Schrodinger system with rough data, preprint.
    [45] F.Planchon, On the Cauchy problem in Besov space for a nonlinear Schrodinger equation, preprint.
    [46] F.Planchon, Self-similar solutions and and semi-linear wave equations in Besov spaces. J. Math.
    
    Pures. Appl. 79(8) , 2000, 809-820.
    [47] F.Planchon, On Self-similar solutions, well-posedness and the conformal wave equation, preprint.
    [48] F.Ribaud, A.Youssifi, Regular and self-similar solutions of nonlinear Schrodinger equations J. Math. Pures. Appl. 77 (1998) , 1065-1079
    [49] F.Ribaud, A. Youssifi, Global solutions and self-similar solutions of semilinear wave equation, Math. Z. 219 (2002) , 231-262.
    [50] F.Ribaud, A.Youssifi, Self-similar solutions of nonliear wave equation, Preprint.
    [51] E.M. Stein, Singular Integral and Differential Property of Functions, Princeton University Press, 1970.
    [52] E.M. Stein, Harnonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Inte-grals, Princeton University Press, 1986.
    [53] R.Strichartz, Rstrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations Duke. Math. J. 44, 705-714, 1977.
    [54] M.Struwe.Semilinear wave equations, Bull. Amer. Math. Soci, 26(1) , 53-85, 1992.
    [55] C.Sulem, P-L.Sulem, The nonlinear Schrodinger equation-self-focusing and wave collapse, Springer-Verlag, 1999.
    [56] H.Takaoka, Global well-posedness for Schrodinger equations with derivative in a nonlinear term and data in low-order Sobolev spaces, Ele. J. Diff. Equa. 1-23, 2001(42) .
    [57] T.Tao, Global well-posedness for Schrodinger equations with derivative, SIAM. J. Math. Anal, 33, 3, 649-669(2003) .
    [58] T.Tao, Low-regularity global solutions to nonlinear dispersive equations, preprint.
    [59] T.Tao, Multilinear weighted convolution of L2 functions, and applications to nonlinear disper-sive equations, preprint.
    [60] H.Triebel, Theory of Function Spaces, Birkhauser Verlag, 1983.
    [61] Y.Tsutsumi, The scattering problem for nonlinear Schrodinger equations , Ann. Inst. H. Poincare Phys. Theorique, 43(1985) .
    [62] A.Vargas, L.Vega, Global wellposedness for 1D nonlinear Schrodinger equation for data with an infinite L2 norm, J. Math. Pures. Appl. 80, 10(2001) , 1029-1044.
    [63] B.Wang, The limit behavior of solutions for the cauchy problem of the complex Ginzberg-Landau equations, Comm. Pure. Appl. Math Lv(2002) , 481-508.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700