环北京地区积层混合云降水个例的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
积层混合云降水是环北京地区降水的一种主要类型。观测显示,积层混合云有自己独特的动力热力结构,降水过程也有自己的特点。深入探讨环北京地区积层混合云降水发展的动力和微物理机制不仅有利于提高对该类型降水的预报预测水平,也能为人工影响天气工作提供理论支持。
     本文主要分四部分内容:第一部分系统地回顾了近些年来对积层混合云降水的研究,指出目前存在及待解决的问题;第二部分简要介绍WRF-ARW模式主体及其采用的积云参数化方案和云微物理参数化方案;第三部分结合实测资料对2007年9月28日发生在环北京地区的一次切变线天气系统造成的积层混合云降水过程进行了WRF-ARW实例模拟结果的分析和冰相微物理过程敏感性试验结果的分析,重点讨论了切变线积层混合云系发展的动力、热力条件和微物理结构特征;第四部分结合实测资料对2008年10月4日发生在环北京地区的一次低涡天气系统造成的积层混合云降水过程进行了WRF-ARW实例模拟结果的分析和冰相微物理过程敏感性试验结果的分析,重点讨论了低涡积层混合云系发展的动力、热力条件和微物理结构特征。
     通过对两个个例的分析发现,切变线和低涡形成积层混合云降水云系均在高空西风气流的引导下向东移动并减弱层化直至消散;WRF-ARW中尺度模式较好地模拟出来两个个例的降水过程;实例模拟结果说明,积层混合云降水分布不均匀,雨区中存在多个强降水中心,云系中微物理量在水平和垂直方向上分布都不均匀,层状云内的冰晶、雪、霰、云水含量相对较少;而对流云团中高层十公里左右存在冰晶大值区,云水含量也非常丰富,降水物理过程中,此次积层混合云不仅具有对流云和层状云形态混合的特征,还具有冷雨过程和暖雨过程共存的相态混合的特征;与暴雨过程中的积层混合云系不同,这两个个例研究的降水过程中,对流不稳定能量并不大,中层的大范围辐合和相应的较均匀上升气流场支撑着层状云,而在均匀上升气流场中的波动导致了对流云镶嵌其中,浮力与惯性力共同作用的中尺度条件对称不稳定可能是积层混合云系形成和维持的主要机制。
     通过比较分析采用暖雨过程微物理方案和冷雨微物理方案的模拟结果发现,当忽略冰相微物理过程时,虽然也能模拟出较接近实际的积层混合云的热力、动力特征及形态特点,但均匀上升气流场中的波动较小,对流云部分较弱,层状云部分云厚较大而水平范围较大。可能的原因是冰相微物理过程通过释放的冻结潜热以及播撒-供应机制使更多的过冷水凝结释放凝结潜热来为对流云的发展提供更多的能量,使对流云发展更旺盛,维持时间更长,产生更多降水,减缓层化过程,延长积层混合云的生命史。
The complex system of the stratiform and embedded convective percipitation is a main rainfall source over Beijing and adjacent regions one of the main weather systems over northeastern China. Observation shows that the complex system of stratiform and embedded convective percipitation has its own unique thermal and dynamic structure, the precipitation process has its own characteristics The studies of this type of cloud and precipitation are very useful to enhance the forecasting level, and also helpful to support the research and operation of weather modification.
     This paper conclude four parts: first part gives the review of The complex system of the stratiform clouds and embedded convective clouds, and point out the urgent issues to be solved. Then, the second part gives an introduce of the WRF-ARW model, especially the cumulus parameterization scheme and microphysics parameterization scheme. Basing on the issues mentioned in the first part, the third part shows a thermo-dynamic structure and microphysical characteristics study on one case of a complex system of the stratiform and embedded convective percipitation on September, 28, 2007, and forth part shows the other study on the case on October,4,2008. Both the two cases are analyzed by using encrypt ground-observing data, radar data, satellite data, and real simulation results from WRF-ARW, and sensitivity experiments about ice-phase microphysical processes are also applied to the two cases.
     The main results shows that, the clouds are weakened by the shear line, the formation of stratiform cloud development. It is also reveals that the complex of stratiform clouds and embedded convective clouds is not only the complex of clouds with different shapes, but also the complex of different microphysical processes. And the large-scale convergence on the middle level and the corresponding uniform updraft develop the stratiform clouds, while the dramatic fluctuations of updraft lead to embedded convective clouds, which may be conducted by conditional symmetric instability. The ice phase microphysical processes make the complex system of the stratiform and embedded convective precipitation a long life.
引文
1 Emmanouil N. Anagnostou,A convective stratiform precipitation classification algorithm for volume scanning weather radar observations,Meteorol. Appl. 11, 291–300,2004
    2黄美元,洪延超,吴玉霞,梅雨锋云系和降水的若干研究,大气科学,1987,11(1):23-30.
    3宫福久,周德平,陈宝君等,东北冷涡云物理及导变技术,气象出版社,2005。
    4 Getrone, Jasmine, Houze, et. al., Characteristics of oceanic tropical convection at Kwajalein (2004 - 26HURR), AMS Conference on Hurricanes and Tropical Meteorology, Vol. 26, 2004
    5 Houze,Robert A Jr; Churchill, Dean D,Mesoscale organization and cloud microphysics in a Bay of Bengal Depression,Journal of the Atmospheric Sciences, Boston. 1987,Vol. 44, no. 14, pp. 1845-1867.
    6 Parker MD, Johnson RH, Structures and Dynamics of Quasi-2D Mesoscale Convective Systems, Journal of the Atmospheric Sciences, Vol. 61, no. 5, pp. 545-567. Mar 2004
    7 Fuhrer O, Schaer C,Embedded Cellular Convection in Moist Flow past Topography,Journal of the Atmospheric Sciences. Vol. 62, no. 8, pp. 2810-2828. Aug 2005.
    8王昂生,徐乃璋,梁飞燕,北京1980—1983年季云和降水的分析研究,大气科学,1987,03:297-303
    9 Houze,Robert A Jr; Churchill, Dean D,Mesoscale organization and cloud microphysics in a Bay of Bengal depression,Journal of the Atmospheric Sciences, Boston. 1987,Vol. 44, no. 14, pp. 1845-1867.
    10 SANDRA E. YUTER, ROBERT A. HOUZE JR,et. al., Physical Characterization of Tropical Oceanic Convection Observed in KWAJEX,Journal of applied meteorology,2005,44(4):385-415.
    11 Fabry Frederic, Zawadzki Isztar; Cohn Stephen., The influence of stratiform precipitation on shallow convective rain: a case study ,Monthly Weather Review, Boston, MA. Vol. 121, no. 12, pp. 3312-3325. 1993.
    12黄美元,沈志来,洪延超,半个世纪的云雾、降水和人工影响天气研究进展,大气科学,2003,27(4):536-551.
    13丁一汇.《1991年江淮流域特大暴雨研究》,北京:气象出版社,1993,255pp
    14杜秉玉,梅雨锋中暴雨的回波特征,南京气象学院学报,1985,(3):306-315.
    15刘黎平,一次混合云暴雨过程风场中尺度结构的双多普勒雷达观测,大气科学,2004,vol.28,
    16崔莲,吉林省积层混合云宏微观特征研究,硕士论文,南京信息工程大学,2007
    17李子华等,强积层混合云降水回波特征,中国南方云物理和人工降水论文集,气象出版社
    18张锦红,一次典型积层混合云降水的综合探测分析,吉林气象,2004,第三期
    19邹倩.硕士学位论文.中国气象科学研究院研究生部,2004
    20 Fabry Frederic, Zawadzki Isztar; Cohn Stephen., The influence of stratiformprecipitation on shallow convective rain: a case study ,Monthly Weather Review, Boston, MA. Vol. 121, no. 12, pp. 3312-3325. 1993.
    21朱彤,汪秀清,朱蓉,纯积云降水与积层混合云降水加热剖面的差异,应用气象学报,1995,第02期:171-176
    22黄美元,洪延超,徐华英,周恒.层状云对积云发展和降水的影响——一种云与云直接影响的数值模拟.气象学报.1987,Vol.45:72-77
    23洪延超,积层混合云数值模拟研究(1)-模式及其微物理过程参数化,气象学报,1996,54(5):544-557.
    24洪延超,积层混合云数值模拟研究(2)-云相互作用及暴雨产生机制,气象学报,1996,54(6):661-674.
    25许习华,丁一汇,一种考虑云相互作用的积云对流参数化方案及其在降水预报中的应用,中国科学B辑,1990,Vol.9:998-1008
    26王维佳,陶遐龄,一维半地形积层混合云模式简介,四川气象,2006,Vol1:43-45
    27王维佳,陶遐龄,地形积层混合云模式数值试验研究,四川气象,2007,Vol10:39-32
    28陈宝君等,2002年7月沈阳一次降水过程的催化数值模拟研究,南京气象学院学报,2005,vol4
    29许焕斌,王思微,三维中-β尺度模式研究:一次气旋暖区锋生活动的中尺度结构的数值模拟试验,气象学报,1994,05167-171.
    30孔凡铀,黄美元,徐华英,冰相过程在积云发展中的作用的三维数值模拟研究,中国科学B辑1991,09: 1000-1007.
    31 Xue, M., K. K. Droegemeier, and V. Wong, et al., 2001: The Advanced Regional Prediction System(ARPS) - A multi-scale nonhydrostatic atmospheric simulation and prediction tool. PartⅡ: Model physics and applications. Meteorol. Atmos. Phys., 76, 143~16
    32 Lin, Y. L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065~1092.
    33 Tao, W. K., and J. Simpson, 1993: Goddard cumulus ensemble model. Part I: Model description. Terres Atmos. Ocean Sci., 4, 35~72.
    34胡志晋,严采,层状云微物理过程的数值模拟——微物理模式,气象科学研究院院刊,1986,Vol.1,No.1:37-52
    35胡志晋,何观芳,积雨云微物理过程的数值模拟(微物理模式),气象学报,1987,Vol.45,No.4:468-484
    36刘公波、胡志晋、游来光,混合相层状云系模式和中尺度低涡云系的实例模拟.气象学报,52,77-88,1994.
    37周秀骥,暖云降水微物理机制的研究.北京:科学出版社,1964.
    38胡志晋,层状暖云降雨及其催化的数值模拟.气象学报,41,79-88,1983.
    39周淑贞,气象学与气候学(第三版).北京:高等教育出版社,1997.
    40黄美元、徐华英等,云和降水物理.北京:科学出版社,1999.
    41盛裴轩、毛节泰、李建国等,大气物理学.北京:北京大学出版社,2003.
    42顾震潮,云雾降水物理基础.北京:科学出版社,1980.
    43游来光、马培民、胡志晋,北方层状云人工降水试验研究.气象科技,30(增),19-56,2002.
    44 Begeron, T. The problem of artificial control of rainfall on the globe.Ⅱ.The coastal orographic maxima of precipitation in autumn and winter,Tellus,1949,15~32.
    45 Grant, L. O., and R. D. Elliott, The cloud seeding temperature window. J.Appl.Meteor., 1974, 355~363.
    46 Hobbs, P. V. and L. R. Radke, The nature of winter clouds and precipitation in Cascade Mountains and their modification by artificial seeding. PartⅡ: Techniques for the physical evaluation of seeding, J. Appl. Meteor., 1975, 805~818.
    47 Super, A. B., Further Exploratory analysis of the Bridger Range winter cloud seeding experiment, J.Climate Appl.Meteor.,1986,1926~1933.
    48 Reynalds, D. W. and A .S. Dennis, A review of the Sierra Cooperative Pilot Project,Bull.Amer.Meteor.,Soc.,1986,512~523.
    49 Hill, G, E., Evaluation of the Utah operational weather modification program. Final Rep.to the National Oceanic and Atmospheric Administration, Utah State University, Atmospheric Water Resources Series UURL/A-82102, 1982, 291pp.
    50 Long, A. B. and A.W. Huggins, Australian Winter Storms Experiment(AWSE)Ⅰ:Super cooled liquid water and precipitation-enhancement opportunities, J.Appl.Metcor., 1992,1041~1055.
    51 Colle B.A., and Y. Zeng, Bulk microphysical sensitivities within the MM5 for orographic precipitation. Part I: The Sierra 1986 event. Mon. Wea. Rev.,2004, 2780~2801.
    52 Colle B.A., and Y. Zeng, Bulk microphysical sensitivities within the MM5 for orographic precipitation. PartⅡ: Impact of Barrier Width and Freezing Level.Mon.Wea.Rev., 2004, 2802~2815
    53 Meyers M. P., P. J. DeMott, and W. R .Cotton, 1995: A comparison of seeded and nonseeded orographic cloud simulations with an explicit cloud model. J. Appl. Meteor, 1995, 834~846.
    54 Buzzi A., N. Tartaglione, and P. Malguzzi, Numerical simulations of the 1994 Piedmont flood: Role of orography and moist processes. Mon. Wea. Rev.,1998, 2369~2383.
    55 Chiao, S., YL Lin, and M.L. Kaplan, Numerical study of orographic forcing of heavy Orographic precipitation during MAP-IOP-2B. Mon. Wea. Rev.,2004, 2184~2203.
    56 Tripoli G. J., and W. R. Cotton, The Colorado State University three-dimensional cloud/mesoscale model-1982,partⅠ:General theoretical framework and senstivity experiments, J, Rech, Atmos, , 1982, 185~220
    57 Cotton W.R., Stephens M.A., Nehrkorn T., et al. Colorado State University three-dimensional cloud/mesoscale model-1982, Part II, Ice phase parameterization. J.de Rech.Atmos., 1982, 295-320.
    58李淑日,胡志晋,王广河.CAMS三维对流云催化模式的改进及个例模拟.应用气象学报,2003,14 (增刊):78~91

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700