粘弹性海底淤泥对自由表面水波衰减效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大量观测表明,海底淤泥能够有效地耗散波能,是自由表面浅水波衰减的重要因素之一。淤泥与波浪相互作用的研究具有重要的理论意义和广泛的应用价值,是海岸工程领域关心的重要问题。
     线性粘弹性模型是常见的一类淤泥模型,在波泥相互作用的理论研究中被广泛使用。然而这类研究多局限于线性简谐波。在有限的针对弱非线性水波和淤泥相互作用的理论研究中,Boussinesq型方程组已被证明是有力的工具。然而已有的Boussinesq型方程组只针对牛顿淤泥模型,不能描述某些真实淤泥的粘弹性效应。将Boussinesq型方程组拓展到线性粘弹性淤泥模型,并利用其描述线性粘弹性淤泥作用下的水波衰减问题,就是本文的主要目的。
     本文选取Maxwell模型和Kelvin-Voigt模型分别作为粘弹性流体淤泥模型和粘弹性固体淤泥模型的代表。在粘弹性淤泥和水层组成的双层流体模型的基础上,本论文利用摄动法、傅立叶展开和拉普拉斯变换建立起了相应淤泥模型的Boussinesq型方程组。当Maxwell模型和Kelvin-Voigt模型蜕化为牛顿流体时,其蜕化后的Boussinesq型方程组与文献中牛顿模型的Boussinesq型方程组一致。
     本文将Boussinesq型方程组应用于一维水波问题,得到了线性简谐波的衰减率和孤立波波幅随时间的演化方程。对于偏流体的Maxwell模型,其线性简谐波的衰减率受低阶模态的影响,会出现多个共振峰值。当孤立波经过后,Maxwell淤泥层中会出现沿竖直方向传播的剪应力波。而对于偏固体的Kelvin-Voigt模型,其线性简谐波的衰减率在一阶模态的主导下只有一个较为明显的共振峰值。当孤立波经过后,Kelvin-Voigt淤泥层中的水平速度剖面则逐渐趋向于一阶模态的速度剖面。造成上述现象的原因是:Maxwell模型的低阶模态同步衰减,而Kelvin-Voigt模型的一阶模态衰减得最慢,从而主导了淤泥层中的运动。
     此外,本文针对传统的整数阶粘弹性模型的局限性,引入了分数阶Maxwell模型。该分数阶Maxwell模型在拟合某些真实淤泥的数据时,相较于传统模型具有优势。本文还给出了分数阶Maxwell淤泥模型存在时线性单色波的衰减率,并初步探讨了模型参数对衰减率的影响。
It has been observed that seabed mud can dissipate the energy of surfacewater waves effectively. As an important mechanism of wave attenuation, thewave-mud interaction has been extensively studied by coastal engineers fordecades.
     Among varies models for mud rheology, linear viscoelastic models arecommonly used in analytical studies on wave-mud interaction. However, mostof these studies focus on linear sinusoidal waves. In the very limited studies onthe interaction between the weakly nonlinear waves and seabed mud, theBoussinesq-type equations are powerful tools. The limitation of currentBoussinesq-type equations is that the mud is modeled by Newtonian fluid,which cannot cover the complexity of mud rheology. Hence, it is necessary toextend the Boussinesq-type equations to linear viscoelastic models, which is thegoal of present work.
     In the present work, we choose the Maxwell model and the Kelvin-Voigtmodel as mud models, which are typical models for viscoelastic fluid andviscoelastic solid, respectively. Basing on a two-layer system composed ofinviscid water and viscoelastic mud, and combining the perturbation analysis,the Fourier expansion and the Laplace transformation, we set upBoussinesq-type equations for surface waves over the Maxwell model and theKelvin-Voigt model, respectively. When the Maxwell model and theKelvin-Voigt model degenerating to the Newtonian model, our Boussinesq-typeequations can degenerate to the existing Boussinesq-type equations in theliterature.
     Applying the Boussinesq-type equations to one-dimensional waves, thedamping rate of linear sinusoidal waves and the evolution equation for theamplitude of a solitary wave are obtained. For the Maxwell model, the dampingrate of linear sinusoidal waves is dominated by low-order modes, and shearwave induced by solitary waves propagates along the vertical direction in themud layer. For the Kelvin-Voigt model, the first mode dominates the mud motion. Hence the damping rate of linear sinusoidal waves has only one obviouspeak and the velocity profile of the mud layer tends to that of the first modeafter the solitary wave crest. Modal analysis shows that for the Maxwell model,all the modes decay simultaneously, while for the Kelvin-Voigt model, the firstmode decays slowest and takes domination.
     We also introduce a Fractional-ordered Maxwell model, which can overcome thedefect of traditional viscoelastic models when fitting the experimental data of some realmud. Basing on this fractional-order Maxwell model, we obtain the damping rate of alinear sinusoidal wave. The influence of model parameters on the damping rate is alsodiscussed.
引文
[1]冯伍法,潘时祥,张朝阳,等.中国海岸带分布规律及其海部要素变化检测.测绘科学技术学报,2006,23(5):370-373.
    [2]朱伟林.中国近海油气勘探进展.中国工程科学,2010,12(5):18-24.
    [3]一苇.浅海石油开采.中国石化,2010(6):27-27.
    [4]李家春.海洋工程中极端环境事件的研究进展.第十三届中国海洋(岸)工程学术讨论会论文集,2007.
    [5] Smith A, Gordon A D. Large breakwater toe failures. Journal of Waterway, Port, Coastaland Ocean Engineering,1983.109(2):253-255.
    [6] Christian J, Taylor P, Yen J, et al. Large diameter underwater pipe line for nuclear powerplant designed against soil liquefaction. Offshore Technology Conference,1974.
    [7] van Kessel T, Kranenburg C. Wave-induced liquefaction and flow of subaqueous mudlayers. Coastal Engineering,1998.34(1-2):109-127.
    [8] Whiteside P, Ng K, Lee W. Management of contaminated mud in Hong Kong. Terra etAqua,1996,65:10-17.
    [9] Gade H G. Effects of a non-rigid, impermeable bottom on plane surface waves in shallowwater. Journal of Marine Research,1958,16(2):61-82.
    [10]王以谋,范顺庭.黄河口“烂泥”波浪特性的分析.海洋科学,1995,6:42-46.
    [11] Wells J, Kemp G. Interaction of surface waves and cohesive sediments: field observationsand geologic significance. Estuarine Cohesive Sediment Dynamics, Lecture Notes onCoastal and Estuarine Studies,1986,14:43-65.
    [12] Verreet G, Berlamont J. Rheology and non-Newtonian behavior of sea and estuarine mud//Cheremisinoff N P. Encyclopedia of Fluid Mechanics. Texas: Gulf Publishing Co,1988,VII:135-149.
    [13]交通部.港口工程技术规范.北京:人民交通出版社,1987.
    [14]曹祖德,杨树森,杨华.粉沙质海岸的界定及其泥沙运动特点.水运工程,2009(1):108-111.
    [15] Mehta A J, Lee S-C, Li Y. Fluid mud and water waves: a brief review of interactiveprocesses and simple modeling approaches. Report DPR-94-4, US Army Corps ofEngineers,1994.
    [16] McAnally W H, Friedrichs C, Hamilton D, et al. Management of Fluid Mud in Estuaries,Bays, and Lakes. I: Present State of Understanding on Character and Behavior. Journal ofHydraulic Engineering,2007,133(1):9-22.
    [17] Zabawa C F. Flocculation in the turbidity maximum of Northern Chesapeake Bay. UMIDissertation Services,1978:123-142.
    [18] Jain M, Mehta A J. Role of basic rheological models in determination of wave attenuationover muddy seabeds. Continent Shelf Research,2009,29(3):642-651.
    [19] Carrier W D. Goodbye, Hazen; hello, Kozeny-Carman. Journal of Geotechnical andGeoenvironmental Engineering,2003,129(11):1054-1056.
    [20] Putnam J A. Loss of wave energy due to perculation in a permeable sea bottom.Transactions of American Geophysics Union,1949,30:349-356.
    [21] Liu P L-F. Damping of water waves over porous bed. Journal of the Hydraulics Division,1973,99(12):2263-2271.
    [22] Liu P L-F, Park Y S, Lara J L. Long-wave-induced flows in an unsaturated permeableseabed. Journal of Fluid Mechanics,2007,586:323-345.
    [23] Jeng D. Wave-induced sea floor dynamics. Applied Mechanics Reviews,2003,56:407-429.
    [24] Yamamoto T, Koning H L, Sellmeijer H, et al. On the response of a poro-elastic bed towater waves. Journal of Fluid Mechanics,1978,87:193-206.
    [25] Song C. Dynamic response of poroelastic bed to water waves. Journal of HydraulicEngineering,1993,119(9):1003-1020.
    [26] Chen T, Song C. Dynamic response of poroelastic bed to nonlinear water waves. Journal ofEngineering Mechanics,1997,123(10):1041-1049.
    [27] Sekiguchi H, Kita K, Okamoto O. Response of poro-elastoplastic beds to standing waves.Soils and Foundations,1995,35(3):31-42.
    [28] Dore B. A double boundary-layer model of mass transport in progressive interfacial waves.Journal of Engineering Mathematics,1978,12(4):289-301.
    [29] Dalrymple R A, Liu P L-F. Waves over soft muds: a two-layer fluid model. Journal ofPhysical Oceanography,1978,8(6):1121-1131.
    [30] Liu P L-F, Chan I C. On long-wave propagation over a fluid-mud seabed. Journal of FluidMechanics,2007,579:467-480.
    [31] Wen J, Liu P L-F. Mass transport of interfacial waves in a two-layer fluid system. Journalof Fluid Mechanics,1995,297:231-254.
    [32] Chiu-On N. Water waves over a muddy bed: a two-layer Stokes' boundary layer model.Coastal Engineering,2000,40(3):221-242.
    [33] O'Brien J S. Laboratory analysis of mudflow properties. Journal of Hydraulic Engineering,1988,114(8):877-887.
    [34] Ng C, Mei C C. Roll waves on a shallow layer of mud modelled as a power-law fluid.Journal of Fluid Mechanics,1994,263:151-184.
    [35] Ng C. Mass transport in a layer of power-law fluid forced by periodic surface pressure.Wave Motion,2004,39(3):241-259.
    [36] Faas R W. Rheological characteristics of rappahannock estuary muds, southeasternVirginia, U.S.A.//Nio S-D, Shüttenhelm R T E, van Weering, T C E. Holocene MarineSedimentation in the North Sea Basin. Oxford, U.K.: Blackwell Publishing Ltd.,2009,505-515.
    [37] Mei C, Liu K. A Bingham-plastic model for a muddy seabed under long waves. Journal ofGeophysical Research,1987,92(C13):14581-14594.
    [38] Chan I C, Liu P L-F. Responses of Bingham-plastic muddy seabed to a surface solitarywave. Journal of Fluid Mechanics,2009,618:155-180.
    [39] Mei C C, Liu K F, Yuhi M. Mud flow—slow and fast. Geomorphological Fluid Mechanics,2001,582:548-577.
    [40] Wan Z. Bed material movement in hyperconcentrated flow. Journal of HydraulicEngineering,1985,111(6):987-1002.
    [41] Huang X, Garcia M H. A Herschel–Bulkley model for mud flow down a slope. Journal ofFluid Mechanics,1998,374:305-333.
    [42] Xia Y-Z, Zhu K-Q. A study of wave attenuation over a Maxwell model of a muddy bottom.Wave Motion,2010,47(8):601-615.
    [43] Maa J, Mehta A. Soft mud properties: Voigt model. Journal of Waterway, Port, Coastal andOcean Engineering,1988,114(6):765-770.
    [44] MacPherson H. The attenuation of water waves over a non-rigid bed. Journal of FluidMechanics,1980,97:721-742.
    [45] Hsiao S, Shemdin O. Interaction of ocean waves with a soft bottom. Journal of PhysicalOceanography,1980,10:605-610.
    [46] Maa J, Mehta A. Soft mud response to water waves. Journal of Waterway, Port, Coastaland Ocean Engineering,1990,116(5):634-650.
    [47] Piedra-Cueva I. On the response of a muddy bottom to surface water waves. Journal ofHydraulic Research,1993,31(5):681-696.
    [48] Ng C, Zhang X. Mass transport in water waves over a thin layer of soft viscoelastic mud.Journal of Fluid Mechanics,2007,573:105-130.
    [49] Williams D, Williams P. Laboratory experiments on cohesive soil bed fluidization by waterwaves, part II, in situ rheometry for determining the dynamic response of bed. ReportUFL/COEL-92,1992.
    [50] Jiang F, Mehta A J. Mudbanks of the Southwest Coast of India IV: Mud ViscoelasticProperties. Journal of Coastal Research,1995,11(3):918-926.
    [51] Mehta A J, Jiang F. Some observations on water wave attenuation over nearshoreunderwater mudbanks and mudberms. Technical Report of Coastal and OceanographicalEngineering Department, UFL/COEL/MP-93/01,1993.
    [52] Jiang, F. Bottom mud transport due to water waves [Ph. D. thesis]. Gainesville: Universityof Florida,1993.
    [53] Huhe O, Huang Z. An experimental study of fluid mud rheology: mud properties inHangchow Bay navigation channel, part ii. Institute of Mechanics Report, ChineseAcademy of Sciences, Beijing,1994,34–56.
    [54] Malvern L E. Introduction to the Mechanics of a Continuous Medium. New Jersey:1969.
    [55] Krotov M. Water waves over a muddy seabed [M. S. Thesis]. Boston: MassachusettsInstitute of Technology,2008.
    [56] Mei C C, Krotov M, Huang Z, et al. Short and long waves over a muddy seabed. Journal ofFluid Mechanics,2010,643:33-58.
    [57] Nguyen A N,柴山知也,佐藤慎司, et al.底泥の粘弾性特性の計測と数値モデルへの応用.海岸工学论文集,1991,38:471-475.
    [58]赵子丹,张庆和.规则波与淤泥质底床的相互作用——波浪衰减.水利学报,1997,4:26-34.
    [59] Toorman E A. Modelling the thixotropic behaviour of dense cohesive sedimentsuspensions. Rheologica Acta,1997,36(1):56-65.
    [60] Moore F. The rheology of ceramic slips and bodies. Transactions of the British CeramicSociety,1959,58:470-494.
    [61] Craik A D D. The origins of water wave theory. Annual Review of Fluid Mechanics,2004,36:1-28.
    [62] Stokes G. On the theory of oscillatory waves. Transactions of the Cambridge PhilosophicalSociety,1847,8(441):197–229.
    [63] Boussinesq J. Théorie des ondes et des remous qui se propagent le long d’un canalrectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitessessensiblement pareilles de la surface au fond. J. Math. Pures Appl,1872,17(2):55-108.
    [64] Airy G B. Tides and waves//Al E. Encyclopedia metropolitana (1817--1845). London,1841.
    [65] Russell J S. Report on waves. Meeting of the British Association for the Advancement ofScience, Liverpool,1837,417-496.
    [66] Earnshaw S. The mathematical theory of the two great solitary waves of the first order.Transactions of the Cambridge Philosophical Society,1846,8:326-341.
    [67] Lamb H. Hydrodynamics. Cambridge Univ Press,1997.
    [68] Stoker J J. Water waves. New York Interscience,1957.
    [69] Peregrine D H. Long waves on a beach. Journal of Fluid Mechanics,1967,27:815-827.
    [70] Nachbin A, S lna K. Apparent diffusion due to topographic microstructure in shallowwaters. Physics of Fluids,2003,15:66-77.
    [71] Craig W, Guyenne P, Sulem C. Water waves over a random bottom. Journal of FluidMechanics,2009,640:79-107.
    [72] Craig W, Sulem C. Asymptotics of surface waves over random bathymetry. Quarterly ofApplied Mathematics,2010,68:91-112.
    [73] Jonsson I G. Wave boundary layers and friction factors. Proceedings of Tenth Conferenceon Coastal Engineering,1966.
    [74] Hasselmann K, Barnett T P, Bouws E, et al. Measurements of wind-wave growth and swelldecay during the Joint North Sea Wave Project (JONSWAP). Ergnzungsheft zur DeutschenHydrographischen Zeitschrift Reihe,1973.8(12):1-95.
    [75] Sleath J F A. Wave-induced pressures in beds of sand. Journal of the Hydraulics Division,1970,96(2):367-378.
    [76] Mallard W, Dalrymple R. Water waves propagating over a deformable bottom. OffshoreTechnology Conference,1977.
    [77] Sheremet A, Stone G. Observations of nearshore wave dissipation over muddy sea beds.Journal of Geophysical Research,2003,108(C11):3357-3367.
    [78] MacPherson H, Kurup P. Wave damping at the Kerala mud banks. Indian Journal ofMarine Sciences,1981,10:154-160.
    [79] Jiang L, Zhao Z. Viscous damping of solitary waves over fluid-mud seabeds. Journal ofWaterway, Port, Coastal, and Ocean Engineering,1989,115(3):345-362.
    [80] Jiang L, Kioka W, Ishida A. Viscous damping of cnoidal waves over fluid-mud seabed.Journal of Waterway Port Coastal and Ocean Engineering,1990,116(4):470-491.
    [81]赵子丹,张庆河.不规则波在淤泥质底床上的传播.水利学报,1997,4:35-41.
    [82] Madsen P A, Agnon Y. Accuracy and convergence of velocity formulations for waterwaves in the framework of Boussinesq theory. Journal of Fluid Mechanics,2003,477:285-319.
    [83] Gobbi M F, Kirby J T, Wei G. A fully nonlinear Boussinesq model for surface waves. Part2. Extension to O(kh)4. Journal of Fluid Mechanics,2000,405:181-210.
    [84] Zou Z L, Fang K Z. Alternative forms of the higher-order Boussinesq equations:derivations and validations. Coastal Engineering,2008,55(6):506-521.
    [85] Fang K Z, Zou Z L. Boussinesq-type equations for nonlinear evolution of wave trains.Wave Motion,2010,47(1):12-32.
    [86] Park Y S, Liu P L-F, Clark S J. Viscous flows in a muddy seabed induced by a solitarywave. Journal of Fluid Mechanics,2008,598:383-392.
    [87]牛小静.波浪与泥质海床的相互作用[博士学位论文].北京:清华大学土木水利学院,2008.
    [88] Booij N, Ris R, Holthuijsen L. A third-generation wave model for coastal regions:1.Model description and validation. Journal of Geophysical Research,1999,104(C4):7649-7666.
    [89] Zijlema M, van der Westhuysen A J. On convergence behaviour and numerical accuracy instationary SWAN simulations of nearshore wind wave spectra. Coastal Engineering,2005.52(3):237-256.
    [90] Winterwerp J C, Graaff R F, Groeneweg J, et al. Modelling of wave damping at Guyanamud coast. Coastal Engineering,2007.54(3):249-261.
    [91] Dore B. Double boundary layers in standing interfacial waves. Journal of Fluid Mechanics,1976,76:819-828.
    [92] Dore B. Double boundary layers in standing surface waves. Pure and Applied Geophysics,1976,114(4):629-637.
    [93] Dore B. On mass transport velocity due to progressive waves. The Quarterly Journal ofMechanics and Applied Mathematics,1977,30(2):157-173.
    [94] Blair G W S. The role of psychophysics in rheology. Journal of Colloid Science,1947,2(1):21-32.
    [95] Hilfer R. Fractional Calculus in Physics. Singapore: World Scientific,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700