A/O工艺生物除磷中试与生产性试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,水体富营养化现象日趋严重,降低出水含磷量已成为各污水厂运行的主要目标。在南方地区,由于城市生活污水浓度较低,影响了污水厂生物脱氮除磷的稳定性。所以,在污水厂尾水COD、SS、NH_3-N达标的基础上,稳定地提高生物除磷的效率很有必要。
     本研究根据佛山镇安污水处理厂一期工艺实际运行情况,在佛山水业集团新之源污水处理有限公司中试基地模拟了A/O工艺,开展了A/O工艺生物除磷反应过程中试研究,探讨了A/O工艺生物除磷的影响因素及工艺运行参数,初步建立了除磷动力学模型,可以为新建类似污水处理厂及旧厂改造提供参考。
     中试装置进水采用镇安一期污水厂沉砂池出水,通过调节工艺运行参数能够达到较好的除磷效果。研究结果表明,污泥浓度对总磷去除效果的影响较为明显。在三种污泥浓度(1500mg/L、2500mg/L、3500mg/L)情况下,总磷去除率分别为55.74%、66.30%、55.56%;污泥负荷并没有表现与总磷去除效果严格的相关性,在污泥负荷为0.5~0.6 kgCOD/(kgMLSS·d)的范围时,总磷去除效果较好,出水总磷基本保持在1mg/L以下;曝气池中污泥体积指数(SVI)值在60mL/g左右波动,污泥有较好的沉降性能。
     通过对中试装置和实际污水厂不同厌氧好氧停留时间比的分析得出,停留时间比为1:1时的除磷效果较停留时间比为1:3和2:3时更为稳定;在三种停留时间比下,出水COD和氨氮均达到了城镇污水处理厂污染物排放标准一级A标准(GB18918-2002)。厌氧池两点配水较一点进水时能达到更好的总磷去除率,可通过多点配水的方式提高污水厂除磷效果。
     通过开展A/O生物除磷工艺动力学分析,建立了厌氧释磷与好氧吸磷动力学模型,推导出工艺底物去除速率常数,并根据镇安污水厂一期工艺实际运行数据进行了模型验证。
With The growing phenomenon of eutrophication, reducing effluent phosphorus content become the main objective of wastewater treatment plant operation. Especially in the south of China, the stability of nitrogen and phosphorus removal of wastewater treatment plant was affected because of the lower concentration of municipal sewage.
     A/O pilot-plant process was analoged in XinZhiYuan wastewater treatment Co., Ltd Foshan Water Group.The A/O process’s operation parameters and its’influencing factors was studied combined with the practical operation of Foshan Zhen’an wastewater treatment plant.
     The grit chamber effluent of the first period Zhen’an wastewater treatment plant was used by pilot plant water, achieving good phosphorus removal by adjusting the operation of the system parameters. The results showed that the effect of sludge concentration on the impact of phosphorus removal is significant. In the three sludge concentration (1500mg / L, 2500mg / L, 3500mg / L) case, the TP removal rates were 5.74%、66.30%、55.56%; Sludge Loading did not show a strict positive and negative ratio with TP removal, the result of phosphorus removal is better when the sludge loading’s range is 0.5 ~ 0.6 kgCOD / (kgMLSS·d), the effluent TP concentration remained below 1mg / L; The sludge volume index (SVI) value in 60mL/g fluctuations around, sludge have good settling characteristics.
     Through the pilot plant and the actual wastewater treatment plant fed with different Hydraulic Retention Time(HRT) ratio of aerobic and anaerobic we conclude that the effect of phosphorus removal is more stable when is 1:1 than the HRT ratio are 1:3 and 2:3; in this three HRT ratios case, both effluent COD and ammonia nitrogen reached a municipal wastewater treatment plant emission standards Grade A standards(GB18918-2002). Better phosphorus removal was achieved when using two anaerobic distributary than one anaerobic distributary, phosphorus removal of wastewater treatment plant can be improved by multi-point distribution.
     Anaerobic phosphorus release and aerobic phosphorus uptake dynamics model were established and the substrate removal rate constant was derived by analyzing the A/O biological phosphorus removal process dynamics, which was validated by the datas of the First Period Zhen An Wastewater Treatment Plant.
引文
[1] Sundblad K, Tonderski A, Rulewski J. Nitrogen And Phosphorus in the Vistulariver, Poland-changes from Sourse to Mouth[J]. Water Sci Tech, 1994, 30(5): 177-186.
    [2] Shimura M, Tabucha T. The Effect of Livestock on the Concentration of Nitrogen in Stream Water[J]. Water Sci Tech, 1994,30(7): 167-170.
    [3]徐亚同,黄民生.废水生物处理的运行管理与异常对策[M].北京:化学工业出版社, 2003.
    [4]徐亚同.废水中氮磷的去除[M].北京:华东师范大学出版社, 1994.
    [5]金相灿.中国湖泊富营养化[M].北京:中国环境科学出版社, 1990.
    [6]蔡少练.污染物对海洋生态环境的影响[J].中国水产, 2005, 2: 22~24.
    [7]况其军,马沛明,胡征宇等.湖泊富营养化的藻类生物学评价与治理研究进展[J].安全与环境学报, 2005, 5(2): 87~90.
    [8]付春平,钟成华,邓春光.水体富营养化成因分析[J].重庆建筑大学学报, 2005, 27(1): 127~130.
    [9] Chorus L, Bartram J. Toxie Cyanobacteria in Water E&FN Spon[M], London and NewYork, 1999.
    [10] Mc Dermott C.M, Fela R, Plude J. Detection of cyanobacterial toxins(microsystems) in water of Northeastern Wisconsin by a new immunoassay technique[J], Toxicon,1995,33(12): 1430~1444.
    [11]陈晓东,林萍,吕永生等.饮用水源藻类及其毒素污染与消化系统肿瘤的关系[J].中国公共卫生, 2003, 19(5): 548~551.
    [12] Tanik A, Beler Baykal Band Gonene E. Effect and control of pollution in environment search of The Lake Sapaneal[J]. Environ Manage, 1998, 22(3): 4072~4141.
    [13]祝贵兵,彭永臻译.生物除磷设计与运行手册[M].北京:中国建筑工业出版社, 2005.
    [14]季晓,曹志刚.生化制药过程中含磷废水的治理[J].环境工程, 2004, 22(6): 28~29.
    [15]冯昭华.高浓度含磷废水的治理[J].污染防治技术, 1999, 4: 244~245.
    [16]唐建国.化学除磷的设计计算[J].给水排水, 2000, 26(9): 17~21.
    [17]夏云红,陈蓉,年耀萍.搅拌条件对两种染料混凝气浮去除效果的影响研究[J].环境科学导刊, 2010, 29(1): 8~10.
    [18]羊寿生.物化除磷工程方案比较[J].给水排水, 2001, 27(3): 8~11.
    [19]许保玖,龙腾锐.当代给水与废水处理原理[M].北京:高等教育出版社, 2003.
    [20] Mino T, Van Loosdrecht MCM, Heijnen JJ. Microbiology and biochemistry of the enhanced biological phosphate removal process[J]. Water Research, 1998, 32(11): 3193~3207.
    [21] J. S. Cech, P. Hartman. Competition between polyphosphate and polysaccharide accumulating bacterial in enhanced biologycial phosphate removal systems[J]. Water Research, 1993, (27): 1219~1225.
    [22] A. M. Maszenan, R. J. Seviour, B. K. C. Patel, etal. The hunt for the G bacterial in activated sludge biomass[J]. Water Sci Technol, 1998, 37(4~5): 65~69.
    [23]吕亚云.污水化学除磷技术[J].河南化工, 2010, 27(4): 45.
    [24]唐受印,戴友芝.废水处理工程[M].北京:化学工业出版社, 2004.
    [25] D. Harper. Eutrophication of Freshwater, Principles, Problems and Restoration[J]. Chapman & Hall, 1992, (5): 894~900.
    [26] C. D. M. Filipe, G. T. Daigger, C. P. L. Grady. Effects of pH on the rates of aerobic metabolism of phosphate accumulating and glycogen accumulating organisms[J]. Water Environ Res, 2001, 73(2): 213~222.
    [27]胡家骏,周群英.环境工程微生物学[M].北京:高等教育出版社, 1998.
    [28]龚云华.污水生物脱氮除磷技术的现状与发展[J].环境保护, 2000, (7): 12~14.
    [29]杨焱明,刘树元,郑显鹏等.污水除磷技术现状及发展趋势[J].济南大学学报, 2008, 22(2): 166~169.
    [30]林燕,杨永哲,袁林江.生物除磷脱氮技术的研究动向[J].中国给水排水, 2002, (7): 12~14.
    [31]杨庆娟,王淑莹,彭永臻.生活污水生物除磷研究及工艺发展进程[J].给水排水, 2008, (34): 20~23.
    [32] Schuler, Andrew J, Xiao Yao. Predicted distributed state effects on enhanced biological phosphorus removal in a 5-stage Bardenpho wastewater treatment configuration[J]. Water Environment Res, 2008, 80(5): 454~463.
    [33] Vaiopoulou E, Melidis P, Aivasidis A. An activated sludge treatment plant for integrated removal of carbon, nitrogen and phosphorus[J]. Desalination, 2007, 211(1~3): 192~199.
    [34]葛士建,彭永臻,张亮等.改良UCT分段进水脱氮除磷工艺性能及物料平衡[J].化工学报, 2010, 61(4): 1009~1017.
    [35] Su KZ, Yu HQ. Formation and characterization of aerobic granules in a sequencing batch reactor treating soybean-processing wastewater[J]. Environment Sci.&Tec. ,2005, 39(8): 2818~2827.
    [36]国家环保总局等.水和废水监测分析方法[M].北京:中国环境科学出版社, 2002.
    [37] Xin Gang, Goug HL, Stensel H. Effect of Anoxic Selector Configuration on Sludge Volume Index Control and Bacterial Population Fingerprinting[J]. Water Environment Res, 2008, 80(12): 2228~2240.
    [38]张自杰.排水工程(下册)[M].北京:中国建筑工业出版社, 2000.
    [39] Zhang Zhen-Peng, Show Kuan-Yeow, Tay Joo-Hwa. Effect of hydraulic retention time on biohydrogen production and anaerobic microbial community[J]. Process Biochemistry, 2006, 41(10): 2118~2123.
    [40] Pan S, Tay JH, He YX, Tay STL. The effect of hydraulic retention time on the stability of aerobically grown microbial granules.[J]. Letters in Applied Microbiology, 2004, 38(2): 158~163.
    [41]高廷耀.城市污水脱氮除磷工艺评述[J].环境科学, 1999, (1): 13~15.
    [42]李捷,熊必永,张树德等.亚硝酸盐对聚磷菌吸磷效果的影响[J].环境科学学报,2006, 27(4): 701~703.
    [43]姜安玺,郑朔方,时双喜等.厌氧-好氧活性污泥法除磷机理及动力学探讨[J].哈尔滨建筑大学学报, 1997, 30(2): 64~69.
    [44]姜体胜,杨琦,尚海涛.温度和pH值对活性污泥法脱氮除磷的影响[J].环境工程学报, 2007, 1(9): 10~14.
    [45]郭琇,孟昭辉,董晶颢.厌氧池中pH值对生物除磷的影响[J].哈尔滨商业大学学报, 2005, 21(3): 292~294.
    [46]豆俊峰,罗固源,刘翔.生物除磷过程厌氧释磷的代谢机理及其动力学分析[J].环境科学学报, 2005, 25(9): 1164~1169.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700