从Rosochatius型可积系统到孤子方程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究连续与离散的Rosochatius型有限维可积系统的构造,拉直与求解,并揭示它们与孤子方程的关系.主要利用代数曲线的工具以及母函数的技术.
     对于连续情形,具体研究了Neumann-Rosochatius系统与Garnier-Rosochatius系统.大致思路和结果如下:首先,从变形的Lax矩阵出发,借助于母函数的技术,构造了相应的Rosochatius类型的Hamilton系统族.接着对这族Rosochatius型Hamilton系统进行“批处理”,通过引入代数曲线与Abel-Jacobi坐标,一举将整族Rosochatius流拉直,用准确无误的线性无关性证明了守恒积分的函数独立性.从而证明了整族Rosochatius系统的Liouville完全可积性.与此同时,也获得了该族系统的直接求积—获得了Rosochatius型可积系统在Jacobi簇上的线性形式解.最后,揭示了Rosochatius型可积系统与KdV方程的关系,即它们构成了KdV方程的一个新的可积分解.在此基础上,根据两个Rosochatius流的相容解,获得了KdV方程的拟周期解.
     对于离散情形,我们提出并研究了辛映射的Rosochatius变形.我们给出了一个构造辛映射的Rosochatius变形的方法.通过该方法,获得了Toda辛映射,Volterra辛映射,以及Ablowitz-Ladik辛映射的Rosochatius变形.并且找到了它们的Lax表示,进而用r-矩阵方法证明了它们的可积性.不仅如此,我们还以Rosochatius型Toda辛映射为例、研究了它们与离散的孤子方程—Toda方程的关系.通过构造特殊的亚纯函数并借助于Abel定理,我们成功拉直了Rosochatius型辛映射.最后,通过Jacobi反演与Riemannθ函数,我们获得了Toda方程的拟周期解.
In this thesis, the Rosochatius-type systems (both continuous and discrete) are inves-tigated by virtue of algebraic-geometric tools and generating function technique. These systems are straightened out in the Jacobi variety of the associated hyperelliptic curve. Also the relation between these systems and the soliton equations are revealed. As an ap-plication, the quasi-periodic solution of the KdV equation and Toda equation is obtained in the context of the Rosochatius hierarchy.
     In the continuous case, we first introduce a hierarchy of Hamiltonian systems re-lated to the Rosochatius-type system (Rosochatius hierarchy for short) based on the deformed Lax matrix. Then we establish the integrability of the Rosochatius hierarchy and straighten out these systems in the Abel-Jacobi coordinates of the associated hyper-elliptic curve. Next, we reveal the relation between these systems and the KdV equation, namely, the first two Rosochatius flows constitute a new integrable decomposition of KdV equation. At last, we calculate the quasi-periodic solution of the KdV equation by the Riemann-theta function and Jacobi inversion.
     In the discrete case, we propose a method of generating the integrable Rosochatius-type deformations for the integrable symplectic maps. Making use of the method, we obtain the integrable Rosochatius-type deformations of the Toda symplectic map, the Volterra symplectic map and the Ablowitz-Ladik symplectic map. We find their Lax rep-resentations and thus establish their integrabilities in the sense of Liouville with the aid of r-matrix method. Furthermore, we take the Rosochatius-type Toda symplectic map as an illustrative example to show the relation between the Rosochatius-type symplectic maps and the discrete soliton equations. We succeeded in straightening out the Rosochatius-type Toda symplectic map. Based on the new Rosochatius-type integrable decomposition of the Toda equation, we obtain the quasi-periodic solution of the Toda lattice equation.
引文
[1]J.S. Russell, Report on waves, Rept. Fourteenth Meeting of the British Association for the Advancement of Science, (1844) 311-390.
    [2]D.J. Korteweg, G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philosophical Magazine, 39 (1895) 422-443.
    [3]V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer, Berlin,1978.
    [4]V.I. Arnold, S.P. Novikov, Dynamical Systems Ⅳ, Springer-Verlag, World Publishing Crop,1985.
    [5]C.W. Cao, A cubic system which generates Bargmann potential and N-gap potential, Chinese Quart. J. Math.,3 (1988) 90-96.
    [6]C. W. Cao, X. G. Geng, Classical integrable systems generated through nonlineariza-tion of eigenvalue problems. Nonlinear Physics (Research Reports in Physics) Springer-Vertag, Berlin, (1990) 68-78.
    [7]C.W. Cao, Nonlinearization of the Lax system for AKNS hierarchy, Sci. Chin. A,33:5 (1990) 528-536.
    [8]C.W. Cao, X.G. Geng, C Neumann and Bargmann systems associated with the cou-pled KdV soliton hierarchy, J. Phys. A,23:18 (1990) 4117-4125.
    [9]X.G. Geng, Finite-dimensional discrete systems and integrable systems through non-linearization of the discrete eigenvalue problem, J. Math. Phys.,34 (1993) 805-817.
    [10]W.X. Ma, W. Strammp, An explicit symmetry constraint for the Lax pairs and the adjoint Lax pairs of AKNS systems, Phys. Lett. A,185 (1994) 277-286.
    [11]R.G. Zhou, Finite-dimensional integrable Hamiltonian systems related to the nonlin-ear schrodinger equation, Studies Appl. Math.,123 (2009) 311-335.
    [12]B.Q. Xia, R.G. Zhou, An integrable decomposition of defocusing nonlinear Schrodinger equation, Commun. Theor. Phys.,52 (2009) 203-205.
    [13]B.Q. Xia, R.G. Zhou, An integrable decomposition of a model of dynamics of spinor Bose-Einstein condensates, Phys. Letts. A,373 (2009) 1121-1129.
    [14]M. Bruschi, O. Ragnisco, P.M. Santini, G.Z. Tu, Integrable symplectic maps, Physca D,49 (1991) 273-294.
    [15]J. Moser, A.P. Veselov, Discrete versions of some classical integrable systems and factorization of matrix polynomials, Commun. Math. Phys.,139 (1991) 217-243.
    [16]O. Ragnisco, Proc. Conf. on Solitons and Chaos, (Brussels,1990), Research Reports in Physics, Springer, Berlin,1991, pp.227.
    [17]O. Ragnisco, A discrete Neumann system, Phys. Lett. A,167 (1992) 165-171.
    [18]O. Ragnisco, C.W. Cao, Y.T. Wu, On the relation of the stationary Toda equation and the symplectic maps, J. Phys. A:Math. Gen.,28 (1995) 573-588.
    [19]O. Ragnisco, S. Wojciechowski, Integrable maps for the Garnier and for the Neumann system, J. Phys. A:Math. Gen.,29 (1996) 1115-1124.
    [20]O. Ragnisco, Dynamical r-matrices for integrable maps, Phys. Lett. A,198 (1995) 295-305.
    [21]Y.B. Zeng, S. Wojciechowski, Continuous limits for the Kac-Van Moerbeke hierarchy and for their restricted flows, J. Phys. A:Math. Gen.,28 (1995) 3825-3840.
    [22]C.S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura, Phys. Rev. Lett.,19 (1967) 1095-1097.
    [23]M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur, The inverse scattering transform-Fourier analysis for nolinear problems, Stud. Appl. Math.,53 (1974) 249-315.
    [24]M.J. Ablowitz, P.A. Clarkson, Solitons,nonlinear evolution equations and Inverse Scattering, Cambridge University Press, Cambridge,1991.
    [25]P.D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure Appl. Math.,21 (1968) 467-490.
    [26]谷超豪,胡和生,周子翔,孤立子理论中的达布变换及其几何应用(第2版),上海科学技术出版社,上海,2005.
    [27]C. Rogers, W.K. Schief, Backlund and Darboux Transformations Geometry and Mod-ern Applcations in soliton theory, Cambridge University Press, Cambridge,2002.
    [28]R. Hirota, The Direct Method in Soliton Theory, Cambridge Univ. Press,2004.
    [29]R. Hirota, Soliton of the KdV equation for multiple collusions of solitons, Phys. Rev. Lett.,27(8) (1971),1192-1194.
    [30]X.B. Hu, Nonliear superposition formulate for the differential-difference analogue of the KdV equation and two-dimensional Toda equation, J. Phys. A:Math. Gen.,27 (1994) 201.
    [31]R. Hirota, X.B. Hu, X.Y. Tang, A vector potential KdV equation and vector Ito equation:soliton solutions, bilinear Backlund transformations and Lax pairs, J. Math. Anal. Appl.,288 (2003) 326-348.
    [32]X.B. Hu, J.X. Zhao, Commutativity of Pfaffianization and Backlund transformations: the KP equation, Inverse Problems,21 (2005) 1461.
    [33]A.R. Its, V.B. Matveev, A class of solutions of the Korteweg-de Vries equation, Problem Mat. Fiz.(in Russian),8 (1976) 70-92.
    [34]H.P. McKean, E.Trubowitz, Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points, Comm. Pur. Appl. Math.,29 (1976) 143-226.
    [35]S.P. Novikov, S.V. Manakov, L.P. Pitaevskii, V.E. Zakharov, Theory of Solitons. The Inverse Scattering Method, Nauka, Moscow,1980.
    [36]E.D. Belokolos, A.I. Bobenko, V.Z. Enolskii, A.R. Its, V.B. Matveev, Algebraic-Geometric Approach to Nonlinear Integrable Equations, Springer, Berlin,1994.
    [37]O. Babelon, M. Talon, Separation of variables for the classical and quantum Neumann model, Nucl. Phys. B,379 (1992) 321-339.
    [38]M. Adler, P. van Moerbeke, Completely Integrable Systems, Euclidean Lie Algebras, and Curves. Adv. Math.,38 (1980) 267-317;linearization of Hamiltonian Systems, Jacobi Varieties and Representation Theory,38 (1980) 318-379.
    [39]E.K. Sklyanin, Separation of Variables in the Classical Integrable SL(3) Magnetic Chain, Commun. Math. Phys.,150 (1992) 181-191.
    [40]J. Harnad, P. Winternitz, Classical and Quantum Integrable Systems in gl(2)+* and Separation of Variables, Commun. Math. Phys.,172 (1995) 263-285.
    [41]P.J. Olver, Applications of Lie groups to differential equations, World Publishing Corp,1999.
    [42]田畴,李群及其在微分方程中的应用,科学出版社,2001.
    [43]W.B. George, K. Sukeyuki, Symmetrices and differential equations, Springer-Vertag, World Publishing Corp,1989.
    [44]C. Chevalley, Theory of Lie groups, Princeton Univ. Press:Princeton,1946.
    [45]C. Jacobi, Vorlesumgem uber Dynamik,Gesammelte, Werke, Supphementbasand, Berlin,1884.
    [46]S. Kovalevski, Sur le probleme de la rotation d'un corps solide autour d'un point fixe, Acta. Math.,12 (1889) 177-232.
    [47]J.L. Burchnall, T.W. Chaundy, Commutative ordinary differential operators, Proc. Lond. Math. Soc. Ser.2,21 (1922) 420-440.
    [48]J.L. Burchnall, T.W. Chaundy, Commutative ordinary differential operators, Proc. Roy. Soc. Lond., Ser. A.,118 (1928) 557-583.
    [49]H.F. Baker, Note on the foregoing paper, Proc. Roy. Soc. Lond., Ser. A.,118 (1928) 584-593.
    [50]I.M. Krichever, An algebraic-geometrical construction of the Zakharov-Shabat equa-tions and their periodic solutions, Dokl. Akad. Nauk SSSR,227 (1976) 291-294.
    [51]I.M. Krichever, Integration of nonlinear equations by methods of algebraic geometry, Funkts. Anal. Prilozh.Ⅱ, No.1 (1977) 15-31.
    [52]R.G. Zhou, The finite-band solution of the Jaulent-Miodek equation, J. Math. Phys., 38 (1997) 2535-2546.
    [53]周汝光,一个求孤子方程有限带势解的方法,数学物理学报,18(1998)228-234.
    [54]Z.J. Qiao, r-matrix and algebraic-geometric solution for integrable symplectic map, Chinese Sci. Bull.,44 (1999) 114-118.
    [55]C.W. Cao, Y.T. Wu, X.G. Geng, Relation between the Kadomtsev-Petviashvili equartion and the confocal involutive system, J. Math. Phys.,40 (1999) 3948-3970.
    [56]C.W. Cao, X.G. Geng, Y.T. Wu, From the special 2+1 Toda lattice to the Kadomt-sev-Petviashvili equation, J. Phys. A:Math. Gen.,32 (1999) 8059-8078.
    [57]X.G. Geng, H.H. Dai, J.Y. Zhu, Decomposition of the Discrete Ablowitz-Ladik Hierarchy, Studies Appl. Math.,118 (2007) 281-312.
    [58]C.W. Cao, X. Yang, A (2+1)-dimensional derivative Toda equation in the context of the Kaup-Newell spectral problem, J. Phys. A:Math. Theor.,41 (2008) 025203.
    [59]C.W. Cao, X. Yang, Algebraic-geometric solution to (2+1)-dimensional Sawada-Kotera equation. Commun. Theor. Phys.,49 (2008) 31-36.
    [60]C.W. Cao, J.L. Cao, An integrable (2+1)-dimensional Toda equation with two dis-crete variables, Phys. Lett. A,365 (2007) 301-308.
    [61]C.W. Cao, J.L. Cao, On an integrable (2+1)-dimensional Korteweg-de Vries equation with a discrete variable, Nuovo Cimento,121 (2006) 675-687.
    [62]E. Rosochatius, Uber die Bewegung eines Punktes, Inaugural, Dissertation, Univer-sity of Gotingen,1877.
    [63]C. Neumann, De problemate quodam mechanico quod ad primam integralium ultra-ellipticorum revocatur, J. Reine Angew. Math.,56 (1859) 46-50.
    [64]J. Moser, Geometry of Quadrics and Spectral Theory. The Chern Symposium 1979, Proc. International Symposium, Berkley, California,1979. New York:Springer, (1980) 147-188.
    [65]T. Ratiu, The Lie algebraic interpretation of the complete integrability of the Rosochatiu system, in Mathematical Methods in Hydrodynamics and Integrability in Dynamical System, Am. Inst. of Phys., (1982) 108-115.
    [66]H. Flaschka, Towards an algebro-geometric interpretation of the Neumann system, Tohoku Math. J. (2),36 (1984) 407-426.
    [67]C. Bartocci. G. Falqui and M. Pedroni, A geometric approach to the separability of the Neumann-Rosochatius system, Diff. Geom. Appl.,21 (2004) 349-360.
    [68]S. Wojciechowski, Integrability of one particle in a perturbed central quartic poten-tial, Physica Scripta,31 (1985) 433-438.
    [69]G. Tondo, On the integrability of stationary and restricted flows of the KdV hierarchy, J. Phys. A,28 (1995) 5097-5115.
    [70]H. Knorrer, Geodesies on quadrics and a mechanical problem of C. Neumann, J. rein angew. Math.,334 (1982) 69-78.
    [71]R. Kubo, W. Ogura, T. Saito, Y. Yasui, The Guass-Knorrer map for the Rosochatius dynamical system, Phys. Letts. A,251 (1999) 6-12.
    [72]G. Arutyunov, J. Russo and A. A. Tseytlin, Spinning Strings in AdS5 x S5:New integrable systems relations. Phys. Rev. D,69 (2004) 086009-086026.
    [73]H. Dimov, R. Rashkov, A note on spin chain/string duality, Int. J. Mod. Phys. A, 20 (2005) 4337-4353.
    [74]P. Bozhilov, Neumann-Rosochatius integrable systems from membranes on AdS4×S7, J. High Energy Phys.,8 (2007) 073.
    [75]N.A. Kostov, Quasi-Periodic solutions of the integrable dynamical systems related to Hill's equation, Lett. Math. Phys.,17 (1989) 95-108.
    [76]P.L. Christiansen, J.C. Eilbeck, V.Z. Enolskii, N.A. Kostov,Quasi-periodic and pe-riodic solutions for coupled nonlinear Schrodinger equations of Manakov type, Proc. R. Soc. Lond. A,456 (2000) 2263-2281.
    [77]R.G. Zhou, Integrable Rosochatius deformations of the restricted soliton flows, J. Math. Phys.,48 (2007) 103510.
    [78]J.L. Dai, R.G. Zhou, Integrable Rosochatius deformations of the restricted cKdV flows, Chin. Phys. Lett.,25 (2008) 3095-3098.
    [79]Y.Q. Yao, Y.B. Zeng, Integrable Rosochatius deformations of higher-order con-strained flows and the soliton hierarchy with self-consistent sources, J. Phys. A:Math. Theor.,41 (2008) 295205-295220.
    [80]Y.Q. Yao, Y.B. Zeng, The bi-Hamiltonian structure and new solutions of KdV6 equation, Lett. Math. Phys.,86 (2008) 193-208.
    [81]B.Q. Xia, R.G. Zhou, Integrable deformations of integrable symplectic maps, Phys. Letts. A,373 (2009) 4360-4367.
    [82]C.W. Cao, B.Q. Xia, From the Rosochatius System to the KdV Equation, Commun. Theor. Phys., to be appear.
    [83]P. Griffiths, J. Harris, Principles of Algebraic Geometry, New York:Wiley,1978.
    [84]P.格列菲斯,代数曲线,北京大学出版社,1982.
    [85]H. Farkas, I. Kra, Riemann Surfaces,2nd Ed. New York:Springer,1992.
    [86]X.G. Geng, Discrete Bargmann and Neumann systems and finite-dimensional inte-grable systems, Physica A,212 (1994) 132-142.
    [87]Z.J. Qiao, R.G. Zhou, Discrete and continuous integrable systems possessing the same non-dynamical r-matrix, Phys. Lett. A,235 (1997) 35-40.
    [88]R.G. Zhou, W.X. Ma, Classical r-matrix structures of integrable mappings related to the Volterra lattice, Phys. Lett. A,269 (2000) 103-111.
    [89]X.G. Geng, H.H. Dai, Nonlinearization of the Lax pairs for discrete Ablowitz-Ladik hierarchy, J. Math. Anal. Appl.,327 (2007) 829-853.
    [90]M. Toda, Theory of nonlinear lattices, Springer. Berlin,1981.
    [91]V. Volterra, Lecons sur la theorie Mathematique da la Lutte pour la Vie, Gauthier-Villars, Paris,1931.
    [92]M.J. Ablowitz, P.A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, London Math. Soc. Lecture Note Ser.,149, Cambridge University Press, Cambridge,1991.
    [93]W.X. Ma, B. Fuchssteiner, Algebraic structure of discrete zero curvature equations and master symmetries of discrete evolution equations, J. Math. Phys.,40 (1999) 2400-2418.
    [94]O. Babelon, C.M. Viallet, Hamiltonian structures and Lax equations, Phys. Lett. B, 237 (1990) 411-416.
    [95]钟玉泉,复变函数论(第2版),高等教育出版社,1988.
    [96]A.M. Perelomov, Integrable systems of classical mechanics and Lie algebras, Volume
    I, Berlin,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700