黄连代谢及生理特性对增强UV-B的响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了阐明不同强度UV-B对黄连体内小檗碱合成代谢的初步调控机理及黄连对UV-B的生理响应。试验设置了CK(自然光)、UL(0.05 W·m-2)、UM(0.10 W-m-2)、UH (0.20 W-m-2)4个处理组,探讨长期(35d每天辐射3h) UV-B辐射下黄连初生代谢中光合特性、PPP途径和次生代谢中酪氨酸酶及黄连根、茎、叶中小檗碱含量的变化特性;同时探讨短期(1~9h) UV-B辐射对黄连SOD、SOD、CAT同工酶、逆境指标的变化特性,以及短时UV-B(0~30min)处理黄连叶片后,运用[γ-P32]ATP放射性同位素测定蛋白激酶活性变化特性。得到如下结果:
     1.蛋白激酶活性的激活具有瞬时性,通过液体闪烁计数器对γ-P32放射强度表明,UL、UM辐射强度处理黄连叶片1min后,蛋白激酶活性显著增强,且UL组蛋白激酶活性要大于UM组,UL强度辐射2min后,蛋白激酶活性开始下降,到30min降至最低,UM强度辐射1min后,蛋白激酶活性开始回落,5min后基本恢复到正常水平,而重度UV-B辐射下,黄连叶片内的蛋白激酶活性无明显变化。
     2.在UH辐射强度下,黄连叶片中光合色素、qN、Fo、ETR以及葡萄糖-6-磷酸脱氢酶活性、根中小檗碱含量均较其它组低。而处于UM辐射下的黄连,光合作用能力、葡萄糖-6-磷酸脱氢酶活性、酪氨酸酶活性以及根中小檗碱含量均高于对照组,且黄连会通过胁迫应激反应来抵御轻、中度UV-B辐射。
     3.UV-B辐射3h后,SOD1 (Rf=0.125)、SOD2 (Rf=0.312)、CAT1 (Rf=0.428). POD3 (Rf=0.290)、POD4 (Rf=0.636)谱带被先后诱导,随着UV-B辐射时间的增长,这些谱带开始丢失或减弱,尤其处于重度UV-B胁迫下,CAT1 (Rf=0.428)、POD3 (Rf=0.290)谱带会提前丢失;此外,UV-B辐射使得叶片中MDA、可溶性糖、脯氨酸含量显著高于对照组,但UV-B辐射7h后,除UL组脯氨酸上升外,各组MDA、可溶性糖、脯氨酸含量开始有所下降,可溶性蛋白谱带数增多。
     4.在本试验条件下,UL辐射强度处理35d最有利于黄连叶片中小檗碱含量的积累,处理21d有利于根中小檗碱的积累,增幅为46.9%;UM辐射强度处理黄连14d后,黄连叶中小檗碱含量的迅速积累,增幅达到72.9%,35d有利于根中小檗碱含量的积累;UH辐射强度处理黄连超过21d会导致根及叶中的小檗碱含量明显下降,但使得茎中小檗碱积累量增加。
     结论:UL(轻度)、UM(中度)辐射有利于诱导根和叶中小檗碱含量的积累,原因可能是黄连处于UL、UM辐射时,蛋白激酶活性升高,激活相关酶的活性及基因的表达,增强光合作用及PPP途径,以致提供较多的次生代谢物前体物及次生代谢物所必需的NADPH,进而小檗碱的含量也相应提高。且UL、UM组辐射强度会诱导黄连增加抗氧化酶同工酶的表达量及谱带数,积累可溶性糖、可溶性蛋白等抗性物质来提高自身抗性能力,虽然UH(重度)UV-B辐射会导致茎中小檗碱含量增加,但减少了根及叶中的小檗碱,这可能是重度UV-B辐射持续时间过长将使得黄连自身调节系统被破坏,代谢开始紊乱,小檗碱合成受阻。
In order to elucidate the regulation mechanism of different intensity of UV-B on the metabolism of the C. chinensis body berberine and C. chinensis physiological response to UV-B. The experimental set four treatment groups:CK (natural light), UL (0.05 W·m-2), UM (0.10 W·m-2), UH (0.20 W·m-2) to explore long-term (35d daily radiation 3h) UV-B radiation C. chinensis primary metabolism in the photosynthetic characteristics of PPP pathways and secondary metabolites in tyrosinase activity and C. chinensis root, stem, leaf content of berberine change characteristics; to explore short-term (1-9h) UV-B in characteristics of POD, SOD, CAT, isozyme, Stress Indexes of C. chinensis, as well as using UV-B (0-30min) to deal with C. chinensis leaves, the use of [y-P32] ATP isotope is to test activity characteristic of protein kinase. Results are as follows:
     1. Kinase activity activated transiently, the radiation intensity of y-P32 by liquid scintillation counter. UL, UM radiation processing C. chinensis leaves for I min, the kinase activity was significantly enhanced, and the UL group kinase activity is greater than the UM group, the kinase activity began to decline after the intensity of UL radiation for 2 min, and to a minimum level after 30 min, the UM intensity radiation 1min after the kinase activity began to fall, basically returned to normal levels after 5 min. However, kinase activity of C. chinensis leaves stay balance under severe UV-B radiation.
     2. Photosynthetic pigments in the C. chinensis leaves, qN, the Fo ETR and the glucose-6-phosphate dehydrogenase activity, root of berberine content is lower than other groups under UH radiation condition. However, photosynthetic capacity, glucose-6-phosphate dehydrogenase activity, tyrosinase activity and the content of berberine in roots were higher than the control groups under UM radiation condition, the phenomenon may be due to the fact that C. chinensis may produce stress response against the light and moderate UV-B radiation.
     3. UV-B radiation after 3h, the SOD1 (Rf=0.125), the SOD2 (Rf=0.312), CAT1 (Rf= 0.428), POD3 (Rf=0.290), POD4 (Rf=0.636) band was successively induced, with the time the growth of UV-B radiation, and these bands began to be lost or weakened, especially in severe UV-B stress, CAT1 (Rf=0.428), POD3 (Rf=0.290) bands will be lost in advance; In addition, UV-B radiation makes the leaves of MDA, soluble sugar, proline content was significantly higher than the control, UV-B radiation 7h, in addition to the UL group of proline increased in each group of MDA, soluble sugar, proline content began to decline in the number of soluble protein bands increased.
     4. Accumulation of Berberine in C. chinensis leaves happens under UL radiation processing 35d condition, moreover, handle 21 d is conducive to the accumulation of berberine in the root, with an increase of 46.9%; the UM radiation treatment C. chinensis 14d, Berberine Content of the leaves of C. chinensis with the rapid accumulation, increase comes up to 72.9%,35d there is conducive to the accumulation of the content of berberine in the root; UH radiation processing C. chinensis more than 21d will lead to decreased berberine content in the roots and leaves, but the content of berberine in the stem show the increase trend.
     Conclusion:UL (mild), UM (moderate) radiation are beneficial to induce the accumulation of berberine content in roots and leaves, probably due to C. chinensis in the UL, the UM radiation, the increased kinase activity, activation of the related enzyme activity and gene expression, enhanced photosynthesis and PPP pathway, resulting in more secondary metabolites precursors and secondary metabolites required NADPH, and then the content of berberine also increased accordingly. Furthermore, the radiation intensity induced C. chinensis increased antioxidant isoenzyme expression and the number of bands, resistance to the accumulation of soluble sugar, soluble protein substances to improve their resistance ability in UL, UM group. Although the UH (severe) of UV-B radiation can make the content of berberine accumulated in the stem, the content of berberine of the root and leaves of C. chinensis reduced, the reason probably is that severe UV-B radiation long duration will destroy its own regulate conditioning systems, furthermore, metabolism began to disorder, berberine synthesis blocked.
引文
[1]FEN G H N, AN L ZH, WAN G X L. Effect of enhanced UV-B radiation on protein metabolism of bean leaves[J]. Acta otanica S inica,1999,41 (8):833-836.
    [2]董新纯,赵世杰,郭珊珊,等.增强UV-B条件下类黄酮与苦荞逆境伤害和抗氧化酶的关系[J].山东农业大学学报(自然科学版),2006,37(2):157-162.
    [3]孙静,王宪泽.盐胁迫对小麦过氧化物酶同工酶基因表达的影响[J].麦类作物学报,2006,26(1):42-44.
    [4]李娟,宋廷杰,肖忠,等.水分胁迫下白术过氧化物酶同工酶的变化分析[J].中国现代中药,2007,9(4):11-13.
    [5]邓志瑞,罗琳.镉离子胁迫下4种辣椒超氧化物歧化酶同工酶酶谱及酶活性分析[J].上海大学学报,2009,15(2):216-220.
    [6]赵会贤,汪沛洪,郭蔼光.水分胁迫对小麦幼苗保护酶体系的影响及其与抗旱性的关系.西北农业学报,1992,1(1):28-32.
    [7]莫饶,郑成木.水分胁迫下水稻幼苗酯酶等同工酶的分析[J].热带作物学报,1999,20(4):32-36.
    [8]Toyomasu T, Zennyozi A. On the application of isoenzyme electrophoresis to identification of strains inLeurinus edodes[J]. Mushroom Sci,1981,11:675-684.
    [9]杨景宏,陈拓,王勋陵.增强紫外线B辐射对小麦叶绿素膜组分和膜流动性的影响[J].植物生态学报,2000,24(1):102-105.
    [10]陈海燕,陈建军,何永等.连续两年UV2B辐射增强对割手密叶绿素含量的影响[J].武汉植物学研究,2006,24(3):277-280.
    [11]林文雄,吴杏春,梁义元,等.UV2B辐射胁迫对水稻叶绿素荧光动力学的影响[J].中国生态农业学报,2002,10(1):8212.
    [12]杨志敏,颜景义,郑有飞.紫外光辐射对不同条件下小麦叶片叶绿素降解的研究[J].西北植物学报,1995,15(4):248-293.
    [13]李元,岳明.紫外辐射生态学[M].北京:中国环境科学出版社,2000.48-53,64,71-74,85.
    [14]兰春剑,江洪,黄梅玲,等.UV-B辐射胁迫对杨桐幼苗生长及光合生理的影响[J].生态学报,2011,31(24):7516-7525.
    [15]李惠梅,师生波.长期增强UV-B辐射对高寒矮嵩草草甸植物光合作用的影响[J].西北植物学报,2010,30(6):1186-1196.
    [16]师生波,贲桂英,赵新全,等.增强UV-B辐射对高山植物麻花艽净光合速率的影响[J].植物生态学报,2001,25(5):520-524.
    [17]师生波,尚艳霞,朱鹏锦,等.增补UV-B辐射对高山植物美丽风毛菊光合作用和光合色素的影响[J].草地学报,2010,18(5):607-614.
    [18]Teramura A H, Ziska LH, Sztein AE. Changes in growth and photosynthetic capacity of rice with increased UV-B radiation [J]. Physiol Plant,1991(83):373-380.
    [19]杨景宏,陈拓,王勋陵.增强UV-B辐射对小麦叶片内源ABA和游离脯氨酸的影响[J].生态学报,2000,20(1):39-42.
    [20]An Lizhe, Wang J H, Liu Y H, et al. The effects of enhanced UV-B radiation on growth, stomata, flavonoid and ABA content in cucumber leaves[J]. Proceedings of SPIE-The International Society for Optical Engineering,2002,48(96):223-231.
    [21]Nogues S, Allen D J, Morison J I, Baker N R.Characterization of stomatal closure caused by ultraviolet-B radiation [J]. Physiol Plant,1999,121 (2):489-496.
    [22]杨志敏,颜景义,郑有飞.紫外线辐射增加对大豆光合作用和生长的影响[J].生态学报,1996,16(2):154-159.
    [23]Murali, N. S., Teramura., A. H. Insensitivity of soy-bean photosynthesis to ultraviolet-B radiation under phos-phorus deficiency [J]. Journal of Plant Nutrition,1987 (10):501-515.
    [24]Jansen, M. A. K., van-den-Noort, R. E. Ultraviolet-B radiation induces complex alterations in stomatal behavior[J]. Physiol. Plant,2000(110):189-194.
    [25]Allen, D. J., McKee, I. F., Farage, P. K., et al. Analysis of limitations to CO2 assimilation on exposure of leaves of two Brassica napus cultivars to UV-B[J]. Plant Cell Environ, 1997(20):633-640.
    [26]徐华,贺军民,黄辰,等.UV-B辐射对蚕豆叶片气孔运动的间接效应与NO和H202有关[J].西北植物学报,2006,26(1):78-85.
    [27]杨广东,朱祝军,计玉姝.不同强光和缺镁胁迫对黄瓜叶片叶绿素荧光特性和活性氧产生的影响[J].植物营养与肥料学报,2002,8(1):115-118.
    [28]李延,刘星辉.缺镁对龙眼叶片衰老的影响)[J].应用生态学报,2002,13(3):311-314.
    [29]陈屏昭,陈顺方,刘忠荣,等.缺磷胁迫对温州蜜柑叶片光合作用的影响[J].云南农业大学学报,2003,18(2):158-162.
    [30]张卫华,梁海永,张方秋.温度对北海道黄杨叶片光系统II功能的影响[J].河北农业大学学报,27(6):48-51.
    [31]杨志敏,颜景义,郑有匕,等.紫外辐射对不同条件下低小麦叶片叶绿素降解作用的研究[J].西北植物学报,1995,15(4):288-293.
    [32]孙谷畴,赵平,曾小平,等.补增UV-B辐射对香蕉叶片光合作用叶氮在光合碳循环组分中分配的影响[J].植物学通报,2000,17(5):450-456.
    [33]林文雄,吴杏春,梁义元,等.UV-B辐射胁迫对水稻叶绿素荧光动力学的影响[J].中国 生态农业学报,2002,10(1):8-12.
    [34]马红群.增强UV-B辐射对胡椒薄荷光合生理及次生代谢产物的影响[D].重庆:西南大学,2009.
    [35]M. M. Caldwell, J. F. Bornman, C. L. Ballare,. Kulandaivelu, Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors, Photochem. Photobiol. Sci.2007(6),252-266.
    [36]D. Treutter, Significance of flavonoids in plant resistance and enhancement of their biosynthesis, Plant Biol.2005(7):581-591.
    [37]K.E.Gerhardt, M.A.Lampi, B.M.Greenberg. The effects of far-red light on plantgrowth and flavonoid accumulation in Brassica napus in the presence of ultraviolet B radiation, Photochem. Photobiol.2008(84):1445-1454.
    [38]R. Kartusch, B. Mittendorfer, Ultraviolet radiation increases nicotine production in Nicotiana callus cabrus[J]. J. Plant Physiol,1990(139):110-114.
    [39]李亚敏,岳明,林小英.补充UV-B辐射对浙贝母生长、生理及生物碱的影响[J].华西药学杂志,2008,23(1):077-080.
    [40]陈拓,安黎哲,冯虎元,等.UV-B辐射对蚕豆膜脂过氧化的影响及其机制[J].生态学报,2001,21(4):579-583.
    [41]BRA UN J, TEVINI M. Regulation of UV-protective pigment synt hesis in t he epidermal layer of rye seedlings [J]. Photochem. Photobi2 ol.,1993 (57):318-323.
    [42]J.C. Luis, R. Martin Perez, F. Valdes Gonzalez, UV-B radiation effects on foliar concentrations of rosmarinic and carnosic acids in rosemary plants. [J] Food Chem.2007 (101) 1211-1215.
    [43]ZEPPR G, CALLAGHAN T V, ERICKSON D J. Effect s of increased solar ult raviolet radiation on biogeochemical cycles [J]. A mbio.,1995(24):181-187.
    [44]黄勇,周冀衡,郑明,等.紫外对烟草生长发育及次生代谢的影响,2009,17(1):140-144.
    [45]林元震.甜杨葡萄糖-6-磷酸脱氢酶的基因克隆及结构分析与功能鉴定[D].北京:北京林业大学,2006.
    [46]彭克勤,夏石头,李阳生,等.涝害对早中稻生理特性及产量的影响[J].湖南农业大学学报(自然科学版),2001,27(3):173.
    [47]Lin S. Z., Zhang Z. Y., Liu W. F, et al. Role of glucose-6-phosphate dehydrogenase infreezing- induced freezing resistance of Populus suaveolens[J] Plant Physiol. Mol. Biol, 2005,31(1):34.
    [48]杨万年,林志福,任国领,等.暗诱导油菜子叶衰老过程G6PDH和乙醇脱氢酶活性的变化[J].中国油菜作物学报,2003,25(3):42-45.
    [49]罗磊.甜杨PPP途径关键酶调控酶G6PDH的理化特性和抗冻机制[D].北京:北京林业大学,2007.
    [50]裴钢,夏国宏.蛋白激酶和蛋白磷酸脂酶的抑制剂[J].生命科学,1995,7(3):33-39.
    [51]Ray S, Agarwal P, Arora R, et al. Mol Genet Genomics,2007,278:493-505.
    [52]Wan B, Lin Y, Mou T. FEBS Letters,2007,581:1179-1189.
    [53]郁松林,黄卫东.高温胁迫下葡萄叶片蛋白激酶的诱导形成与活性变化[J].植物生理与分子生物学学报,2004,30(3):277-283.
    [54]郁松林,黄卫东.热胁迫对葡萄叶片中蛋白激酶活性的影响[J].中国农业科学,2005,38(1):128-134.
    [55]李利红,邢晓丽,陈红,等.水杨酸对高温强光胁迫下小麦叶片蛋白激酶和磷酸酯酶活性的调节作用[J].河南农业科学,2011,40(4):45-48.
    [56]吴能表,吴峻岩,朱利泉.低温对甘蓝逆境生理指标和蛋白质磷酸化的影响[J].园艺学报,2003,30(5):530-534.
    [57]吴能表,朱利泉,王小佳.温度胁迫对甘蓝蛋白质磷酸化的影响[J].西南农业大学学报,2004,26(2):198-200.
    [58]吴能表.甘蓝自交不亲和性引起的蛋白质磷酸化及其相关特性的研究[D].重庆:西南大学,2003.10.
    [59]Sato F, Hashi moto T, Hachiya A, etal. Metabolic engineering of plant alkaloid biosynthesis [J]. Proc. Natl. Acad. Sci,2001,98 (1):367-372.
    [60]陈馥馨,高晓山.含黄连方剂及黄连配伍的文献统计[J].中成药,1997,19(8):40-41.
    [61]孙玉芳.温度胁迫对黄连生理生化特性影响研究[D].重庆:西南大学,2006.
    [62]田桂香.干旱、盐碱和温光胁迫对黄连生理作用的影响[D].重庆:西南大学,2006.
    [63]张浩,陈炜,晁若冰,等.不同理化因子对黄连愈伤组织生长和生物碱合成的影响[J].生物工程学报,1996,12(增刊):304-307.
    [64]孙冯翼.神农本草经:清·孙星衍[M].北京:人民出版社.1982:26.
    [65]李佳川,孟宪丽,范昕建等.黄连改善胰岛素抵抗药效物质基础研究[J].中国中药杂志,2010,35(14):1855.
    [66]Paul W. Intraspecific variation in sensitivity to UV-B radiation in rice[J]. Crop Sci,1993, 33:1041-1046.
    [67]周青,黄晓华.生存胁迫-紫外辐射增强对植物的生态生理效应[J].自然杂志,2001,23(4):199-203.
    [68]Surney SJ, Tschapliski TJ, Edwards NT. Biological responses of two soybean cultivars exposed to enhanced UV2B radiation[J]. Envi ron Ex p Bot,1993 (33):347-350.
    M. A. K. Jansen, V. Gaba, B. M. Greenberg, Higher plants and UV-B radiation:
    balancing damage, repair and acclimation[J]. Trends Plant Sci,1998 (3):131-135.
    [69]Xue H J, YueM I. Effects of enhanced UV-B radiati on on terres2trial p lant secondary metabolite [J]. Acta Bot Boreal-OccidentSin,2004,24 (6):1131-1137.
    [70]J. M. Olmedo, J. A. Yiannias, E. B. Windgassen, et al. Scurvy:a disease almost forgotten[J]. Int. J. Dermatol,2006(45):909-913.
    [71]郑有飞,杨志敏.作物对太阳紫外线招射增加的生物效应及其评估[J].应用生态学报,1996,7(1):107-109.
    [72]李元,王勋陵.紫外辐射增加对春小麦生理,产量和品质的影响[J].环境科学学报.1998,18(5):504-509.
    [73]陈拓,王勋陵.UV-B辐射对小麦叶片H2O2代谢的影响[J].西北植物学报,1999,20(2):284-289.
    [74]Tesuba T T, WatanableT, Growth protection of tomato and radish plants by solar UV-B-radiation reaching the earth surface[J]. J Photo-chem Photobiol,1983(19):61-66.
    [75]李亚敏,岳明.补充UV-B辐射对浙贝母生长、生理及生物碱的影响[J].华西药学杂志,2008,23(1):077-080.
    [76]马红群.增强UV-B辐射对胡椒薄荷光合生理及次生代谢产物的影响[D].重庆:西南大学,2008.
    [77]S. M. A. Zobayed, F. Afreen, T. Kozai. Temperature stress can alter the photosynthetic efficiency and secondary metabolite concentration in St. John's wort[J]. Plant Physiol. Biochem.2005(43):977-984.
    [78]F. Afreen, S. M. A. Zobayed, T. Kozai, Spectral quality and UV-B stressstimulateglycyrrhizin concentration of Glycyrrhiza uralensis in hydroponic and pot system[J]. Plant Physiol. Biochem,2005(43):1074-1081.
    [79]兰文智,余龙江,吴元喜.磷酸戊糖途径的调节对红豆杉细胞生长及紫杉醇合成的影响[J].植物研究,22(2):201-204.
    [80]高相彬,赵凤霞,沈向,等.肉桂酸对平邑甜茶幼苗根系呼吸速率及相关酶活性的影响[J].中国农业科学,2009,42(12):4308-4314.
    [81]林元震,张志毅,郭海.甜杨PsG6PDH基因超表达对提高烟草抗寒冻性的影响[J].西北农林科技大学学报,2010,38(3):125-131.
    [82]吴能表.甘蓝自交不亲和性引起的蛋白质磷酸化及其相关特性的研究[D].重庆:西南农业大学,2003.10.
    [83]余叔文,汤章城.植物生理与分子生物学[M].2版.北京:科学出版社,1998.
    [84]沈允钢.地球上最重要的化学反应——光合作用[M].2版.北京:清华大学出版社,2000.
    [85]张志刚,尚庆茂.低温、弱光及盐胁迫下辣椒叶片的光合特性[J].中国农业科学,2010, 43(1):123-131.
    [86]眭晓蕾,蒋健箴,王志源,等.弱光对甜椒不同品种光合特性的影响[J].园艺学报,1999,26(5):314-318.
    [87]林文雄,吴杏春,梁义元,等.UV2B辐射胁迫对水稻叶绿素荧光动力学的影响[J].中国生态农业学报,2002,10(1):8212.
    [88]师生波,尚艳霞,朱鹏锦,等.增补UV-B辐射对高山植物美丽风毛菊光合作用和光合色素的影响[J].草地学报,2010,18(5):607-614.
    [89]张来群,李芳,孙大业.细胞外钙调素对烟草悬浮培养细胞蛋白质磷酸化作用的影响[J].植物生理学报,2001,27(3):201-206.
    [90]陈超.G6PD在诱导合成紫杉醇中的作用及其抗氧化机理研究[D].武汉:华中科技大学,2004.
    [91]吴能表,马红群,胡丽涛,等.增强UV-B辐射对胡椒薄荷叶片光合机构和光合特性的影响[J].中国中药杂志,2009,34(23):2995-2998.
    [92]Krause G H, Weis E. Chlorophll fluorescence and photosynthesis of the basics [J]. Annu Rev Plant Physiol Mol Biol,1991(45):633.
    [93]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444.
    [94]Maxwell K, Johnson G N. Chlorophyll fluorescencea practical guide [J]. J Exp Bot,2000, 51 (345):659.
    [95]Ihle C. Degradation and release from the thylakoid membrane of photosystems II. Subunits after UV-B irradation of the liver wort Conoenphalum conicum [J]. Photosyn Res.1997,54(1):73.
    [96]任安芝,高玉葆,陈悦.干旱胁迫下内生真菌感染对黑麦草叶内几种同工酶的影响[J].生态学报,2004,24(7):13-29.
    [97]TIAN Jiang, LIAO Hong, WANG Xiu-Rong. Phosphorus Starvation-induced Expression of Leaf Acid Phosphatase Isoforms in Soybean[J]. Acta Botanica Sinica,2003,45(9):1037-1042.
    [98]李晓明,陈劲枫,逯明辉,等.低温下钙对黄瓜幼苗抗氧化酶活性及POD同工酶谱的影响[J].西北植物学报,2006,26(2):241-246.
    [99]宋兴舜,任静,刘雪梅,等.光合菌对黄瓜光合及抗氧化同工酶的影响[J].植物学报,2009,44(5):587-593.
    [100]Toyomasu T, Zennyozi A. On the application of isoenzyme electrophoresis to identification of strains inLeurinus edodes[J]. Mushroom Sci,1981(11):675-684.
    [101]王学奎.植物生理生化实验原理和技术[M].北京:高等教育出版社,2006.252.
    [102]刘祖祺,张石城.植物抗性生理学[M].北京:中国农业出版社,1994.376-377.
    [103]汪家政,范明.蛋白质技术手册[M].北京:科学出版社,2002:119.
    [104]中国科学院上海植物生理研究所.现代植物生理学实验指南[M].北京:科学出版社, 1999.200-201.
    [105]张殿忠,汪沛洪,赵会贤.测定小麦叶片游离脯氨酸的方法[J].植物生理学通讯,1990,26(4):62-65.
    [106]丽琼,陈宗瑜,周平,等.低纬高原地区UV-B辐射对报春花丙二醛、蛋白质含量的影响[J].广西植物,2008,28(1):130-135.
    [107]李惠梅,师生波.增强UV-B辐射对麻花艽叶片的抗氧化酶的影响[J].西北植物学报,2005,25(3):519-524.
    [108]杨薇.UV-B辐射对不同温度下小麦幼苗生长和抗氧化系统的影响[D].西安:陕西师范大学,2010.
    [109]晏斌,戴秋杰.紫外线-B对水稻叶组织中活性氧代谢及膜系统的影响[J].植物生理学报,1996,22(4):373-375.
    [110]冯虎元,安黎哲,徐世健,等.UV-B辐射增强对大豆生长、发育、色素和产量的影响[J].作物学报,2001,27(3):319-323.
    [111]国家药典委员会.中华人民共和国药典.第一版[S].北京:化学化工出版社,2005:233.
    [112]杨继祥.药用植物栽培[M].北京:农业出版社,1991,229-210.
    [113]李英明,王立群,邓芬,等.黄连药材不同部位、不同生长年限和不同海拔高度红外光谱法整体分析与评价[J].中国医学科学院学报,2004,26(6):614-617.
    [114]沈建斌.黄连资源的利用与研究进展[J].现代医药卫生,2006,22(7):1038-1039.
    [115]Gerhardt K E, Lampi M A, Greenberg B M. The effects of far-red light on plantgrowth and flavonoid accumulation in Brassica napus in the presence of ultraviolet B radiation [J]. Photochem Photobiol,2008(84):1445-1454.
    [116]苟琳,姚倩,傅泱.氯化钠对马铃薯酪氨酸酶的抑制作用[J].食品科技.2010,35(5): 32.
    [117]韩晶.黄连的指纹图谱研究[D].重庆:西南大学,2008.
    [118]Tang Z H, Yang L, Liang S N, Zu Y G. Effects of different water conditions on life cycle forms and physiological metabolisms of Catharanthus roseus[J]. Acta Ecologica Sinica,2007, 27(7):2742-2747.
    [119]于景华,李德文,庞海河,等.UV-B辐射对南方红豆杉生活史型和紫杉烷类含量的影响[J].生态学报2011,31(1):75-81.
    [120]李双明,孙蕊,骆浩,等.紫外辐射对东北红豆杉鲜叶中紫杉醇及三尖杉宁碱含量的影响[J].植物研究,2007,4(27):501-507.
    [121]庞海河.增强UV-B辐射下南方红豆杉形态、结构及代谢的研究[D].黑龙江:东北林业大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700