叶酸偶联壳聚糖纳米粒的制备及其载药性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
叶酸受体和其配体的结合具有特异性、选择性。利用叶酸受体在某些肿瘤部位过度表达而在正常组织低水平表达的特性,选择价廉易得、天然无毒、生物相容性好,并具有一定抗肿瘤活性的生物大分子——壳聚糖作为药物载体,将叶酸偶联至壳聚糖后再与抗肿瘤药物相结合,通过叶酸受体的介导作用,增加药物在病灶局部的浓度、提高疗效、降低毒副作用,达到靶向给药的目的,在肿瘤治疗领域具有重要的实际意义。
     本课题首次采用新的均相合成法制备叶酸偶联壳聚糖。通过红外光谱和紫外光谱对产物的结构进行了表征。运用正交实验设计的方法,分别对非均相和均相两种合成法的制备工艺进行了优化,结果表明:叶酸活性酯与壳聚糖的质量比对偶联比的影响最大,其次是反应时间,反应温度的影响最小;当叶酸活性酯与壳聚糖的质量比为2:1、反应时间为48 h、反应温度为45℃时,两种方法制备的产物的偶联比都达到最大,分别为0.029和0.088。
     通过离子交联法制备壳聚糖纳米粒,研究了影响纳米粒粒径的主要因素,结果表明:壳聚糖和TPP浓度分别为5.0 mg/mL和2.0 mg/mL、二者质量比为4:1;室温下反应20 min时,壳聚糖纳米粒的粒径最小,为91.3 nm。在上述条件下,以相同方法制备出叶酸偶联壳聚糖纳米粒,经激光粒度仪测得其平均粒径为122 nm, Zeta电位为+47.1 mV;扫描电镜照片显示纳米粒的形状规则,基本呈球形,大小分布均匀,平均粒径约为150 nm。
     以阿霉素和5-氟尿嘧啶为模型药物,制备了载阿霉素的叶酸偶联壳聚糖纳米粒和载5-氟尿嘧啶的叶酸偶联壳聚糖纳米粒。激光粒度仪测得二者的平均粒径分别为190 nm和164 nm;两种载药纳米粒的稳定性均良好,放置25天后平均粒径基本无变化。经检测,在90%置信度下,3批载阿霉素的叶酸偶联壳聚糖纳米粒的平均包封率为(37.89±0.70)%,平均载药量为(16.22±0.17)%;载5-氟尿嘧啶的壳聚糖叶酸偶联壳聚糖纳米粒的平均包封率为(44.73±0.83)%,平均载药量为(24.91±0.08)%。
The binding between folate receptor and its ligand is specific and selective. Based on the fact that folate receptor can be overexpressed on the surface of some kinds of tumor cells but scarecely expressed on normal cells, chosing chitosan as the material of drug carrier which is an inexpensive, nontoxic, biocompatiable macromolecule, folate-conjugated chitosan that coupled with anticancer drug can increase the concentration of drugs, enhance the curative effect and reduce side effect through folate receptor-mediated delivery, which makes practically significant sense in the field of tumor therapy.
     New method of preparing in homogeneous phase was brought forward in this research for the first time. The folate-conjugated chitosan was prepared and the structure of product was characterized by FT-IR and UV-Vis spectra. The optimum condition of synthesis was obtained by orthogonal experimental design and the results were as follows:The mass ratio between folate and chitosan was the most important factor, the next one was the reacting time, the third one was the reacting temperature; When the mass ratio between folate and chitosan was 2:1 with reacting for 48 hours at the temperature of 45℃, the conjugated scale arrived at the maximum of 0.088 in homogeneous phase and 0.029 in unhomogeneous phase.
     Chitosan nanoparticles with average particle size of 91.3 nm were prepared by ionically cross-linking method. The optimum technologies were obtained by researching the major factors in preparation and the results were as follows:the concentration of chitosan and folate were 5.0 mg/mL and 2.0 mg/mL respectively, the mass ratio was 4:1 with reacting for 20 minutes at room temperature. Under this condition, folate-conjugated chitosan nanoparticles were prepared by the same method. The average particle size and the Zeta potential were 122 nm and +47.1 mV respectively. Photo given by SEM showed an spheric shape and the average particle size was about 150 nm.
     Doxorubicin-loaded-folate-conjugated chitosan nanoparticles and 5-Fluorouracil-loaded-folate-conjugated chitosan nanoparticles were prepared in this research. The nanoparticles were stable and had no change in size during 25 days. The average particle size of the former was 190 nm with the average embedding ratio and the average drug loading were (37.89±0.70)% and (16.22±0.17)% respectively on condition that the confidence coefficient was 90%. For the latter, the average particle size was 164nm with the average embedding ratio and the average drug loading were (44.73±0.83)% and (24.91±0.08)% respectively on condition that the confidence coefficient was 90%.
引文
1.游伟程.肿瘤的预防——21世纪肿瘤防治研究的焦点[J],北京大学学报:医学版,2005,37(3):229-230.
    2.贾伟,高文远.药物控释新剂型[M],北京:化学工业出版社,2005,35-43.
    3. Harris D, Robinson J R. Drug delivery via the mucous membranes of the oral cavity [J], Journal of Pharmaceutical Sciences,1992,81(1):1-10.
    4.张阳德.纳米药物学[M],北京:化学工业出版社,2005,13.
    5. Langer R. New methods of drug delivery [J], Science,1990,249(4976):1527-1533.
    6. Jones M N. Carbohydrate-mediated liposomal targeting and drug-delivery [J], Advanced Drug Delivery Reviews,1994,13(3):215-250.
    7.任杰.可降解与吸收材料[M],北京:化学工业出版社,2003,89-101.
    8.陈飞虎.靶向给药系统[J],中国药理学通报,2004,20(3):262.
    9.杜会强,安鸿志,李红霞.抗肿瘤靶向给药系统[J],中国医院药学杂志,2007,27(2):242-244.
    10. Li H, Song J H, Park J S, et al. Polyethylene glycol-coated liposomes for oral delivery of recombinant human epidermal growth factor [J], International Journal of Pharmaceutics, 2003,258(1-2):11-19.
    11. Katayama K, Kato Y, Onishi H, et al. Preparation of novel double liposomes using the glass-filter method [J], International Journal of Pharmaceutics,2002,248(1-2):93-99.
    12. Charman S A, Charman W N, Rogge M C. Self-emulsifying drug delivery system: formulation and biopharmaceutic evaluation of an investigational lipophilic compound [J], Pharmacological Research,1992,9(1):87-93.
    13. Yang Yi Yan, Shi Meng, Goh S H. POE/PLGA composite microspheres:formation and in vitro behavior of double walled microspheres [J], Journal of Controlled Release,2003, 88(2):201-213.
    14. El-Gibaly I. Development and in vitro evaluation of novel floating chitosan microcapsules for oral use comparison with non-floating chitosan microspheres [J], International Journal of Pharmaceutics,2002,249(12):7-12.
    15. Olivieri L, Seiller M, Bromberg L. Optimization of a thermally reversible W/O/W multiple emulsion for shear-induced drug release [J], Journal of Controlled Release,2003, 88(3):401-412.
    16. Akiyoshi K, Kang E C, Kurumada S, et al. Controlled association of amphiphilic polymers in water:theimosensetive nanoparticles formed by self-assembly of hydrophobically modified pullulans and poly-(N-isopropylacrylamides) [J], Macromolecules,2000,33(9):3244-3249.
    17. Kneuer C, Sameti M, Haltner E G, et al. Silica nanoparticles modified with aminosilanes as carrier for plasmid DNA [J], International Journal of Pharmaceutics,2000,196(2): 257-261.
    18.杨绮华.药物载体系统的研究进展[J],中国新药杂志,2002,11(8):593-596.
    19.李赛,刘孝波.高分子纳米粒子在靶向给药载体中的研究进展[J],生物医学工程杂志,2004,21(3):495-497.
    20. Kou J H, Fleisher D, Amidon G L. Modeling drug release from dynamically swelling poly(hydroxyethyl methacrylate-co-methacrylic acid)hydrogels [J], Journal of Controlled Release,1990,12(3):241-250.
    21.吕泽,王身国.高分子包囊药物释放体系[J],功能高分子学报,1997,10(3):429-434.
    22.王亚辉,张新民.在药物缓释体系中应用的可生物降解材料[J],合成化学,1999,7(4):394-400.
    23.王身国,蔡晴,吕泽,等.组织工程中药物控制释放技术的应用研究[J],生物医学工程学杂志,2001,115(5):280-284.
    24.平其能.纳米药物和纳米载体系统[J],中国新药杂志,2002,11(1):42-46.
    25.陈克正,王丽平,刘兴斌.纳米微粒在生物医药领域中的应用研究[J],药学进展,2000(4):193-195.
    26. Birrenback G S, Speiser P. Polymlerized micelles and their use as adjuvantsin immunologys [J], Journal of Pharmaceutical Sciences,1976,65(12):1763.
    27. Couvrenr P, Roland M, Guior P, et al. Polycyanoacrylate nanocapsules as potential lysomotropic carriers preparation morphological and sorptive properties [J], Journal of Pharmacy and Pharmacology,1979,31(5):331.
    28.朱屯,王福明,王习东等.国外纳米材料技术进展与应用[M],北京:化学工业出版社,2002,8(2):143-159.
    29. Gupta P K, Hung C T, Morris R M, et al. Ultrastructural disposition of adriamycir associated magnetic albumin microspheres in rats [J], Journal of Pharmaceutical Sciences, 1989,4(3):290-294.
    30. Irene B, Catherine D, Patrick C. Nanoparticles in cancer therapy and diagnosis [J], Advanced Drug Delivery Reviews,2002,54(2):631-651.
    31. Ghaghada K B, Saul J, Natarajan J V, Bellamkonda R V, Annapragada A V. Folate targeting of drug carriers:A mathematical model [J], Journal of Controlled Release,2005, 104(1):113-128.
    32. Schroeder J E, Shweky I, Shmeeda H, Banin U, Gabizon A. Folate-mediated tumor cell uptake of quantum dots entrapped in lipid nanoparticles[J], Journal of Controlled Release, 2007,124(1-2):28-34.
    33.方尚玲.叶酸及其检测[J],武汉工业学院学报,2000,1:8-11.
    34. Saul J M, Annapragada A V, Bellamkonda R V. A drug-ligand approach for enhancing targeting selectivity of the therapeutic nanocarriers [J], Journal of Controlled Release,2006, 114(3):277-287.
    35. Yang L J, Li J, Zhou W, Yuan X, Li S. Targeted delivery of antisense oligodeoxynucleotides to folate receptor-overexpressing tumor cells [J], Journal of Controlled Release,2004, 95(2):321-331.
    36.夏姣云,汪勇先,唐林,于俊峰等.叶酸在放射性核素标记研究中的应用[J],同位素,2005,18(4):237-244.
    37. Takeuchi H, Yamamoto H, Kawashima Y. Mucoadhesive nanoparticulate systems for peptide drug delivery [J], Advanced Drug Delivery Reviews,2001,47(1):39-45.
    38. Leong K W, Mao H Q, Truong-Le V L, Roy K, Walsh S M, August J T. DNA-polycation nanospheres as non-viral gene delivery vehicles [J], Journal of Controlled Release,1998, 53(1-3):183-193.
    39. Jeyanthi R, Panduranga R K. Controlled release of anticancer drugs from collagen-poly(HEMA) hydrogel matrices [J], Journal of Controlled Release,1990,13(1): 91-98.
    40. Kou J H, Fleisher D, Amidon G L. Modeling drug release from dynamically swelling poly(hydroxyethyl methacrylate-co-methacrylic acid)hydrogels [J], Journal of Controlled Release,1990,12(3):241-250.
    41. Lee R J, Low P S, Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro [J], Biochimica et BioPhysica Acta-General Subjects,1995,12(3):134-144.
    42. Song Li, Hemant M. Folate-mediated of Antisense Oligodeoxynucleotides to Ovarian Cancer Cells [J], Pharmacological Research,1998,10(3):1540-1545.
    43.陆伟跃,刘敏.叶酸—脂质体制备及对HeLa细胞靶向作用[J],上海医科大学学报,2000,2(1):4-8.
    44.蒋挺大.壳聚糖[M],北京:北京化学工业出版社,2001,1-12.
    45.王小红,马建标,何炳林.甲壳素壳聚糖及其衍生物的应用[J],功能高分子报,1999,12(2):197-202.
    46.方华丰.壳聚糖微球的研究进展[J],国外医药—合成药、生化药、制剂分册,1999,20(4):315-319.
    47.严瑞宣.水溶性高分子[M],北京:化学工业出版社,1998,23-43.
    48.鲁从华,罗传秋,曹维孝.壳聚糖的改性及其应用[J],高分子通报,2001,(6):46-53.
    49.方华丰,周宜开.壳聚糖微球的研究[J],中国医院药学杂志,1999,19(12):744-745.
    50.刘秋香,曾林涛,梁艳,覃彩芹.5-氟尿嘧啶壳聚糖纳米微球的制备及表征[J],孝感学院学报,2007,27(3):5-8.
    51. Janes K A, Fresneau M P, Marazuela A, Fabra A, Alonso M J. Chitosan nanoparticles as delivery systems for doxorubicin [J], Journal of Controlled Release,2001,73(2-3): 255-267.
    52.李国明,叶俊生,郑国红,刘聪,汪朝阳.左旋多巴-壳聚糖微球的制备及其释药性能[J],应用化学,2007,24(9):1062-1065.
    53.张洪,黄徐英.三七皂苷壳聚糖缓释微球的制备及体外释放特性研究[J],广东药学院学报,2006,22(5):479-482.
    54. Tian X X, Groves M J. Formulation and biological activity of antineoplastic proteoglycans derived from Mycobacterium vaccaein chitosan nanoparticles [J], Journal of Pharmacy and Pharmacology,1999,51(2):151-157.
    55. Cuiz, Mumper R J. Chitosan based nanoparticles for topical genetic immunization [J], Journal of Controlled Release,2001,75(3):409-419.
    56. Ohya Y, Shiratani M, Kobayashi H, et al. Release behavior of 5-fluorouracil from chitosan gel nanospheres immobilizing 5-fluorouracil coated with polysaccharides and their cell specific toxicity [J], Pure and Applied Chemistry,1994, A31(5):629-642.
    57. Shikata F, Tokumitsu H, lchikawa H, et al. In vitro cellular acdumulation of gadolinium incorporated into chitosan nanoparticles designed for neutron capture therapy of cancer [J], European Journal of Pharmaceutics and Biopharmaceutics,2002,53(1):57-63.
    58. Calvo P, Remunan-Lopez C, Vila-Jato J L, et al. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers [J], Journal of Applied Polymer Science,1997, 63(1):125-132.
    59. Fernandez-Urrusuno R, Calvo P, Remunan-Lopez C, Vila-Jato, Alonso M J. Enhancement of nasal absorption of insulin using chitosan nanoparticles [J], Pharmacological Research, 1999,16(10):1576-1581.
    60. Mooren F C, Berthold A, Domschke W, et al. Influence of chitosan microspheres on the Transport of prednisolone sodium phosphate aross H-T 29 cell monolayers [J], Pharmacological Research,1998,15(1):58-65.
    61. Denkbas E B, Odabasi M. Chitosan Microspheres and Sponges Preparation and Characterization [J], Journal of Applied Polymer Science,2000,76(7):1637-1643.
    62. Mitra S, Gaur U, Ghosh P C, et al. Tumour targeted delivery of encapsulated dextran doxorubicin conjugate using chitosan nanoparticles as carrier [J], Journal of Controlled Release,2001,74(1-3):317-323.
    63. Erbacher P, Zou S, Bettingger T, et al. Chitosan basede vector/DNA complexed for gene delivery biophysical characteristics and transfecttion ability [J], Pharmacological Research, 1998,15(9):1332-1339.
    64. Hazrati A M, Akrawi S, Hickey A J, Wedlund P, et al. Tissue distribution of indium-111 labeled poly(glycolic acid) matrices following jugular and hepatic portal vein administration [J], Journal of Controlled Release,1989,9(3):205-214.
    65. Roy K, Mao H Q, Huang S K, et al. Oral gene delivery with chitosan DNA nanoparticles Generates immunologic protection in a murine model of peanut allergy [J], Nature Medicine,1999,5(4):387-391.
    66. Mao H Q, Roy K, Troung Le V L, et al. Chitosan DNA nanoparticles gene carriers:sythsis, characterization and transfection efficiency [J], Journal of Controlled Release,2001,70(3): 399-421.
    67.刘晨光,刘成圣,孟祥红等.壳聚糖作为药物缓释材料的研究进展[J],高技术通讯,2003,21(3):98-102.
    68.朱莉,王驰.抗肿瘤前药在肿瘤靶向治疗中的新进展[J],中国新药杂志,2007,16(17):1345-1349.
    69. Gouvreur P, Dubernet C, Puisieux F. Controlled drug delivery with nanoparticles current possibilities and future trends [J], European Journal of Pharmaceutics and Biopharmaceutics,1995,41(41):2.
    70.张俊山,陈晓青,蒋新宇.纳米药物研究进展[J],中国现代医学杂志,2002,1(14):239-242.
    71.李亚林,徐文方.口服氟尿嘧啶类抗癌药的研究进展[J],国外医药—合成药、生成药、制剂分册,2001,22(6):323-326.
    72.沈正荣,吴兰亭,程敬亮.5-氟尿嘧啶聚乳酸微球制备及体内外释药特性的研究[J],中国医药工业杂志1995,26(7):306-308.
    73.易以木,杨唐玉.5-Fu阿拉伯胶-白蛋白毫微粒的制备[J],同济医科大学学报,1999,28(5):402-404.
    74.李伟,黄梅,刘信安.5-氟尿嘧啶毫微囊的制备[J],化学世界,2004,45(1):35-38.
    75. Simeonova M, Velichkova R, Ivanova G, et al. Poly(butylcyanoacrylate)nanoparticles for Topical delivery of 5-fluorouracil [J], International Journal of Pharmaceutics,2003, 263(1-2):133-140.
    76.赵惟,马会利,齐宪荣.靶向肿瘤新生血管的阿霉素阳离子脂质体的体外研究[J],药学学报,2007,42(9):982-988.
    77.许开元,邹英华,齐宪荣,洪宏.阿霉素海藻酸钠微球对兔VX2肝移植瘤生长转移影响的实验研究[J],中国医学影像技术,2007,23(8):1108-1110.
    78.李范珠.阿霉素纳米囊的制备工艺及其毒性试验[J],中国现代应用药学,2006,23(6):474-477.
    79.常津.具有靶向抗癌功能的纳米高分子材料——阿霉素免疫磁性毫微粒的体内磁靶向定位试验[J],中国生物医学工程学报,1996,15(4):354-359.
    80.张良珂,候世祥,毛声俊.叶酸偶联白蛋白纳米粒制备工艺研究[J],生物医学工程杂志,2004,21(2):225-228.
    81.柳时,徐喆,罗智.叶酸偶联壳聚糖纳米粒的制备[J],医药导报,2006,25(6):561-563.
    82. Lee J W, Lu J Y, Low P S, Fuchs P L. Synthesis and evaluation of taxol-folic acid conjugates as targeted antineoplastics [J], Bioorganic & Medicinal Chemistry,2002,10(7): 2397-2414.
    83.朱明华.仪器分析[M],北京:高等教育出版社,2000,281.
    84. Jameela S R, Kumary T V, Lal A V, et al. Progesterone-loaded chitosan microspheres:a long acting biodegradable controlled delivery system [J], Journal of Controlled Release, 1998,52(1-2):17-24.
    85.梁桂媛,方话丰,刘志伟.5-氟尿嘧啶壳聚糖微球的制备[J],广东药学院学报,2001,16(1): 7-12.
    86. Hu Y, Jiang X Q, Ding Y, et al. Synthesis and characterization of chitosan-poly(acrylic acid) nanoparticles [J], Biomaterials,2002,23(15):3193-3201.
    87. Ahn J S, Choi H K, Cho C S. A novel mucoadhesive polymer prepared by template polymerization of acrylic acid in the presence of chitosan [J], Biomaterials,2001,22(9): 923-928.
    88.任艳玲,郭益冰,赵亚红,杨宇民.过氧化氢在中性条件下氧化降解壳聚糖的研究[J],南通大学学报(医学版),2007,27(4):254-256.
    89. Bremmell KE, Jameson G J, Biggss. Polyelectrolytes-sorptionatthe solid/liquid interface interaction forces and stability [J], Colloids and Surfaces A:Physicochemical and Engineering Aspects,1998,139:199-211.
    90. James M, Hunter R J, O'Brien R W. Effect of particle size distribution and aggregation on electroacoustic measurements of ζ potential [J], Langmuir,1992,8:420-423.
    91.王杰.长循环纳米粒[J],国外医学:药学分册,1999,26(6):350-354.
    92. Mitra S, Gaur U, Ghosh P C, et al. Targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier [J], Journal of Controlled Release,2001, 74(1-3):317-323.
    93.刘程.表面活性剂应用大全[M],北京:北京工业大学出版社,1994,374-378.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700