钨基纳米材料修饰碳糊电极的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为过渡金属的化合物,纳米WO_3具有可逆电致变色和良好的催化性能,还对NO_x、O_3、O_2、H_2S、NH3等多种气体有敏感性,在医药行业和过程控制、环境监测等领域可得到广泛的应用,但作为电极材料却研究甚少。本论文是利用溶剂热法以WCl6为主要原料在180℃持续16小时条件下得到钨基纳米电极材料,然后用其制作碳糊电极,主要研究了以下几个方面:
     1.利用溶剂热法制备了WO_3纳米线,将其作为修饰剂制作出修饰碳糊电极。实验中,采用循环伏安法、脉冲差分法等对纳米WO_3修饰电极电化性能进行了研究,找出了测定丁香酚的最优测试条件,建立了线性范围方程,并对电极的重现性和回收率做了评估。
     2.在WO_3制备过程中加入一定量的MnCl2,得到纳米MnWO_4,并成功制作了纳米MnWO_4修饰碳糊电极。实验表明,与纯WO_3修饰电极相比,MnWO_4修饰电极在测定丁香酚时富集时间缩短至60s,检测线性范围移向低浓度区,检测限低至8×10-9mol/L,线性效果较好,电极具有良好的重现性,并做了回收率评估。
     3.在WO_3纳米线修饰的碳糊电极上,采用循环伏安法、脉冲差分法等对和厚朴酚的测定进行了研究,找出了WO_3最佳配比和最优的测试条件,建立了测定和厚朴酚浓度的线性范围方程,电极表现出良好重现性。同时,将该方法成功应用于测定厚朴中和厚朴酚,测定结果与高效液相色谱法(HPLC)相比较,相对偏差低于5%,回收率在96.5%~98.8%,数据一致性好。
     本论文有助于人们把纳米WO_3新型材料作为测试电极来研究药物中主要活性成份的测定,建立一种简单、快速、准确的检测方法,为准确掌握药物中有效成份剂量的控制在临床医学实践中得到更好的利用提供参考。
As a chemical compound of transient metals, nano-WO_3not only has thecharacteristics of reversible electrochromism and catalytic properties, but also hasacute sensitivity to such gases as NO_x, O_3, O_2, H_2S, NH3, which can be widelyapplied to pharmaceutical industry, process control, environmental monitoring, etc.But little attention has been paid to its use as a kind of electrode material. The presentthesis conducts a series of research on the use of tungsten based material modifiedcarbon paste electrode, which is generated from WCl6as the main raw material byusing solvothermal method, lasting for16hours at the temperature of180℃. Themain aspects are as follows:
     1. WO_3nanowire, synthesized using a simple hydrothermal technique, was usedto modify the carbon paste electrode (CPE). Determination of eugenol wasinvestigated under the methods of cyclic voltammetry and differentiation pulsevoltammetry. Therefore, optimal conditions have been discovered, on the basis ofwhich the linear equation for the determination of eugenol content has beenestablished and evaluation has been made on the reproducibility and recovery rate ofthe electrode.
     2. Nano-MnWO_4was obtained by mixing a certain amount of MnCl2in thepreparation process of WO_3. Nano-MnWO_4was successfully modified the carbonpaste electrode.It shows that nano-MnWO_4modified carbon paste electrode canimprove the electrochemical properties of pure WO_3modified carbon paste electrode,the accumulation time of the determination of eugenol reduced to60seconds. It isalso displayed that the linear range moves towards the area of lower concentration andeven as low as8×10-9mol/L, which brings better linearity and reproducibility.Assessment recovery is also carried out.
     3. The determination of honokiol is carried out under the methods of cyclicvoltammetry and pulse differentiation. WO_3nanowire is used to modify carbon pasteelectrode, the best ratio and optimal test conditions of which is discovered. Linearrange equation has been established to determine the density of honokiol and good reproducibility of electrode has been observed. Meanwhile, the same methods aresuccessfully applied to the determination of Magnolol and honokiol, the result ofwhich is consistent with the result of HPLC, relative deviation lower than5%and therecovery rate from96.5%to98.8%.
     The thesis can contribute to the determination and study of the main activeingredients of medicine by using nano-WO_3as a new kind of testing electrode. Suchtesting method is simple, rapid and accurate, which can provide accurate reference tothe drug dose control of active ingredients so that it can be better used in clinicalpractice.
引文
[1] HiroyUki Kataoka. New trends in sample preparation for clinical andpharmaceutical analysis [J]. TrAC Trends in Analytical Chemistry,2003,22(4):232~244
    [2]董绍俊,车广礼,谢远武.化学修饰电极[M].北京:科学出版社,2003
    [3] Han Xiao, Lei Liu, Fanben Meng, et al. Electrochemical Approach To DetectApoptosis [J]. Analytical Chemistry,2008,80(13):5272-5275
    [4] Xiaoli Zhu, Kun Han, Genxi Li. Magnetic Nanoparticles Applied inElectrochemical Detection of Controllable DNA Hybridization[J]. AnalyticalChemistry,2006,78(7):2447–2449
    [5] James S. Swensen, Yi Xiao, Brian S. Ferguson, et al. Continuous, Real-TimeMonitoring of Cocaine in Undiluted Blood Serum via a Microfluidic,Electrochemical Aptamer-Based Sensor [J]. Journal of American ChemicalSociety.2009,131(12):4262–4266
    [6] Lana L. Norman, Antonella Badia. Redox Actuation of a Microcantilever Drivenby a Self-Assembled Ferrocenylundecanethiolate Monolayer: An Investigation ofthe Origin of the Micromechanical Motion and Surface Stress [J]. Journal ofAmerican Chemical Society.2009,131(6):2328–2337
    [7]易兰花,田俐,费俊杰.碳糊电极阳极吸附伏安法测定双酚A [J].化学世界.2010,(4):207~209
    [8]易兰花,王俊芬,黎拒难等.碳糊电极阳极吸附伏安法测定诺氟沙星[J].理化检验(化学分册),2007,(01):57-59,62
    [9]韩丽.碳糊电极和化学修饰碳糊电极的制备及应用综述[J].甘肃高师学报,2009,(05):45-47.
    [10] Patriarche G J, Vire J C. Application of polarography and voltammetry inanalysis of drugs[J]. Analytica Chimica Acta,1987,96(7):193-204.
    [11]张正奇,刘辉,黎艳飞.碳糊电极新进展[J].分析科学学报,1998,14(01):81-87.
    [11]胡世通,胡军. Maillard反应的高分子产物的研究进展[J].高分子通报.2007,45:894~897
    [12]夏姣云.碳糊修饰电极的研制及其吸附伏安法测定痕量锑的研究[D].长沙:中南大学硕士论文,2003.
    [13]裴建红,钟家跃,尹权.炭糊电极电位法测定痕量银[J].高等学校化学学报,1991,12(9):1173-1176.
    [14]郭会时,李益恒.化学修饰碳糊电极在吸附伏安法中的应用[J].韶关学院学报(自然科学版),2001,22(03):77-82
    [15] S. H. Wang, T. C. Chou, C. C. Liu. Nano-crystalline Tungsten Oxide NO2Sensor[J]. Sensors and Actuators B,2003,(94):343–351.
    [16] J. C. Yang, P. K. Dutta. Solution-based Synthesis of Effcient WO3SensingElectrodes for High Temperature Potentiometric NOx Sensors[J]. Sensors andActuators B,2009,(136):523–529.
    [17]徐宇兴.一维纳米结构氧化钨的制备、表征和气敏性能研究[D].北京:清华大学,2008.
    [18] Y. S. Kim. Thermal Treatment Effects on the Material and Gas-sensing Propertiesof Room-temperature Tungsten Oxide Nanorod Sensors[J]. Sensors andActuators B,2009,(137):297–304.
    [19] J. Shim, C. R. Lee, H. K. Lee,et al. Electrochemieal Characteristies of Pt-WO3/Cand Pt-TiO2/C Electrocatalysts in a Polymer Electrolyte Fuel Cell[J]. Journal ofPower Sources,2001,(102):172-177.
    [20] S. R. Aliwell, J. F. Halsall, K. F. E. Pratt, et al. Ozone Sensors Based on WO3: aModel for Sensor Drift and a Measurement Correction Method[J]. MeasurementScience and Technology,2001,(12):684-690.
    [21] C. S. Rout, M. Hegde, C.N.R. Rao. H2S Sensors Based on Tungsten OxideNanostructures[J]. Sensors and Actuators B,2008,(128):488–493.
    [22]黄世震,林伟,陈伟,等.纳米WO3-ZnS系H2S气敏元件的研究[J].传感器技术,2001,20(1):21-22.
    [23] N. I. Jime, M. A. Centeno, R. Scotti, et al. NH3Interaction withChromium-doped WO3Nanocrystalline Powders for Gas Sensing Applications[J].Journal of Materials Chemistry,2004,(14):2412-2420.
    [24] G. Sberveglieri, L. Depero, S Groppelli, et al.WO3sputtered thin film for NOxMonitoring[J]. Sensors Actuators B,1995,(26/27):89-92
    [25] X. Wang, G Saka, K Shimanoe, et al.Spin-coated thin film of SiO2-WO3composites for detection of sub-ppm WO2.Sensors Actuators B,1997,(45):141
    [26] Wubeshet Sahle, Mats Nygren. Electrical conductivity and high resolutionelectron microscopy studies of WO3xcrystals with0≤x≤0.28[J]. Journalof Solid State Chemistry.1983,48(2):154-160
    [27]莫若飞,靳国强,郭向云.反应时间对水热合成三氧化钨的影响[J].材料导报,2008,22(专辑X):451-453.
    [28] T. Hirose. Structural phase transition and semieconduetor-metal transition inWO3[J]. Journal of the Physical Society of Japan.1980,49(2):562-568
    [29] Sven Berglund, Wubeshet Sahle. Accommodation of oxygen loss in WO3equilibrated with CO Plus CO2buffers[J]. Journal of Solid State Chemistry,1981,36(1):66-73
    [30] L. M. Levinson, H. R. Philipp. The Physics of Metal Oxide Varistors[J]. Journalof Applied Physics,1975,46(3):1332-1341
    [31] S. K. Deb. Optical and Photoelectric Properties and Colour Centres in Thin Filmsof Tungsten Oxide[J]. Philosophical magazine,1973,27:801-802
    [32] J. Luo, M. Hepel. Photoelectrochemical Degradation of Naphthol Blue BlackDiazo Dye on WO3Film Electrode[J]. Electrochemical Acta,2001,46:2913–2922.
    [33] M. Yagi, S. Maruyama, K. Sone, et al. Preparation and PhotoelectrocatalyticActivity of a Nano-structured WO3Platelet Film[J]. Journal of Solid StateChemistry,2008,181:175–182.
    [34] U. I. Porqueras, E. Bertran. Optical Properties of Li Doped Electrochromic WO3Thin Films[J].Thin Solid Films,2000,(8):377-378.
    [35] Huiyao Wang, Pei Xu, Tianmin Wang. The preparation and properties study ofphotocatalytic nanocrystalline/nanoporous WO3thin films [J]. Materials&Design,2002,23(3):331~336
    [36]黎先财,柯勇,杨沂风,等.超细三氧化钨的制备及催化应用[J].中国钨业,2003,18(4):26-32
    [37] S.Nishigaki, S.Yano, H.kato. Bao-TiO2-WO3microwave ceramics and crystallineBaWO4[J]. Journal of the American Ceramic Society,1988,71: c11-c17
    [38] T.Takada. Effect of glass additions on Bao-TiO2-WO3microwave ceramics [J].Journal of the American Ceramic Society,1994,77:1909-1916
    [39] V.O. Makarov, M. Trontelj. Effect of Al2O3on the microstructure and electricalproperties of WO3-based varistor ceramics [J]. Journal of the European CeramicSociety,2000,20(6):747-749
    [40] Y. Wang, K. L. Yao and Z. L. Liu. Novel nonlinear current-voltage characteristicsof sintered tungsten oxide [J]. Journal of Materials Science Letters,2001,20(18):1741-1743
    [41] P. J.Shaver. Activated tungsten oxide gas detectors. Applied Physics Letters,1967,11(8):255-257.
    [42]邱电,张魁华,方炳虎.丁香酚的药理作用[J].动物医学进展,2007,28(8):101-103.
    [43]翟春玲.丁香酚酊治疗浅部真菌病疗效观察[J].中国医学杂志,2008,6(12):12-13.
    [44]李得恩.保健食品中丁香酚的毛细管气相色谱测定法[J].环境与健康杂志,2008,25(7):574-574.
    [45]苏小川,黄梅,甘宾宾,等.气相色谱-质谱联用法测定调味品中丁香酚、Ⅱ色素[J].理化检验:化学分册,2006,42(12):1003-1006.
    [46]王海英.气相色谱法测定丁香油中丁香酚含量[J].哈尔滨医药,2009,29(4):20-21.
    [47]王喆桅,金城,焦懿,等.气相色谱法测定行军散中丁香酚的含量[J].解放军药学学报,2010,26(2):137-138.
    [48]徐奇超. GC法测定丁细牙痛胶囊中丁香酚的含量[J].中国药师,2011.14(1):72-73.
    [49]赖东美,胡珊梅,李玲玲. GC法测定万金油中桉油精和丁香酚的含量[J].中国药房,2011,22(13):1211-1212.
    [50]陈寒杰. HPLC测定珍珠通络胶囊中丁香酚含量[J].青海医药杂志,2007,37(1):51-53.
    [51]赵启苗,王远志,贾天柱. HPLC测定长形肉豆蔻及其不同炮制品挥发油中甲基丁香酚、异甲基丁香酚及黄樟醚含量[J].中成药,2009,31(5):801-802.
    [52] ShuJun Liu, ZongTao Lin, Hong Wang,et al. Quantification of eugenol andbancroftione in Caryophylli Fructus using high-performance liquidchromatography [J]. Journal of Chinese Pharmaceutical Sciences,2010,19(6):459-463
    [53]李永红,王瑞,孙志浩. RP-HPLC方法同时测定生物转化液中的香草醛和异丁香酚含量[J].河南工业大学学报:自然科学版,2007,28(5):50-52.
    [54]杨立平,邓桂明,陈镇. RP-HPLC法测定咳喘穴位敷贴散中丁香酚的含量[J].中国现代药物应用,2008,2(6):32-33.
    [55]余小平. RP-HPLC法测定中药丁香中丁香酚的含量[J].中华中医药学刊,2009,27(4):880-881.
    [56]罗红梅,廖钫,谭宝玉.丁香酚在活化玻碳电极上的电化学行为.广州化工,2009,37(3):104-106.
    [57]黎先财,柯勇,杨沂凤,等.超细三氧化鸽的制备及催化应用[J].中国钨业,2003,15(4):26-31
    [58] Weibing Hu, Yimin Zhao, Zuli Liu, et al. Nanostructural Evolution: FromOne-Dimensional Tungsten Oxide Nanowires to Three-Dimensional FerberiteFlowers[J]. Chemistry of Materials.2008,20(17):5657–5665.
    [59]王硕,舒菲菲,王亚林,等.二氧化锡催化型碳糊电极测定苯酚[J].净水技术,2010,29(3):62-65,78
    [60]丁德芳,曹元媛,刘友文,等.氧化钨变色薄膜性能优化的研究进展[J].中国陶瓷,2010,46(11):3-5
    [61] W.B. Hu, X.L. Nie, Y.Zh. Mi. Controlled synthesis and structure characterizationof nanostructured MnWO4[J]. Materials Characterization,2010,61:85-89
    [62] Masahiro Ogata, Midori Hoshi, Kumiko Shimotohno, et al. Antioxidant activityof Magnolol, honokiol, and related phenolic compounds[J]. Journal of theAmerican Oil Chemists' Society,1997,74(5):557-562
    [63] Junho Park, Jongsung Lee, Eunsun Jung, et al. In vitro antibacterial andanti-inflammatory effects of honokiol and magnolol against Propionibacteriumsp[J]. European Journal of Pharmacology,2004,496(1–3):189-195
    [64] Yi-Ruu Lin, Hwei-Hsien Chen, Chien-Hsin Ko, et al. Neuroprotective activity ofhonokiol and magnolol in cerebellar granule cell damage[J]. European Journal ofPharmacology,2006,537(1–3):64-69
    [65] Xinan Wu, Xingguo Chen, Zhide Hu. High-performance liquid chromatographicmethod for simultaneous determination of honokiol and magnolol in ratplasma[J]. Talanta,2003,59(1):115-121
    [66] Ziping Zhang, Zhide Hu, Gengliang Yang. Separation and Determination ofMagnolol and Honokiol in Magnolia officinalis Bark by Capillary ZoneElectrophoresis[J]. Microchimica acta,1997,127(3/4):253-258
    [67]曾志,赵富春,蒙绍金,等.有机质谱学在厚朴酚与和厚朴酚结构确定中的应用[J].质谱学报,2006,27(2):65-70
    [68] Min Zhang, Li Ming Du. Simultaneous Determination of Magnolol and Honokiolby Synchronous Fluorescence Spectroscopy[J]. Chinese Chemical Letters,2006,17(12):1603-1606
    [69] Xiao Yao, Xuejiao Xu, Pengyuan Yang, et al. Carbon nanotube/poly(methylmethacrylate) composite electrode for capillary electrophoretic measurement ofhonokiol and magnolol in Cortex Magnoliae Officinalis[J]. Electrophoresis,2006,27(16):3233–3242
    [70] Gang Chen, Xuejiao Xu, Yizhun Zhu,et al. Determination of honokiol andmagnolol in Cortex Magnoliae Officinalis by capillary electrophoresis withelectrochemical detection[J]. Journal of Pharmaceutical and Biomedical Analysis,2006,41(4):1479-1484
    [71] Akira Kotani, Satoshi Kojima, Hideki Hakamata, et al. Determination ofHonokiol and Magnolol by Micro HPLC with Electrochemical Detection and ItsApplication to the Distribution Analysis in Branches and Leaves of Magnolia[J].Chemical and Pharmaceutical Bulletin,2005,53(3):319-322
    [72] Jun Zhao, Wensheng Huang, Xiaojiang Zheng. Mesoporous silica-basedelectrochemical sensor for simultaneous determination of honokiol andmagnolol[J]. Journal of Applied Electrochemistry,2009,39(12):2415-2419
    [73] Po-Hsun Lo, S. Ashok Kumar, Shen-Ming Chen. Amperometric determination ofH2O2at nano-TiO2/DNA/thionin nanocomposite modified electrode[J]. Colloidsand Surfaces B: Biointerfaces,2008,66(2):266-273
    [74] Xuxiao Lu, Huiping Bai, Ping He, et al. A reagentless amperometricimmunosensor for α-1-fetoprotein based on gold nanowires and ZnO nanorodsmodified electrode[J]. Analytica Chimica Acta,2008,61(2):158-164
    [75] Dan Du, Xiuping Ye, Jiande Zhang, et al. Stripping voltammetric analysis oforganophosphate pesticides based on solid-phase extraction at zirconiananoparticles modified electrode[J]. Electrochemistry Communications,2008,10(5):686-690
    [76] Qiong He, Shuai Yuan, Cuie Chen, et al. Electrochemical properties of estradiolat glassy carbon electrode modified with nano-Al2O3film[J]. Materials Scienceand Engineering: C,2003,23(5):621-625
    [77] Y. M. Zhao, W. B. Hu, Y. D. Xia, et al. Preparation and characterization oftungsten oxynitride nanowires[J]. Journal of Materials Chemistry,2007,17,4436-4440

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700