三维碳纤维增强镁基复合材料残余应力的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三维碳纤维增强镁基复合材料(3D-C_f/Mg)具有高比强度、高比刚度和低热膨胀系数等优点,同时,三维编织结构克服了一维和二维复合材料各向异性明显的缺点,因此在航天、航空、以及先进武器系统等领域有广阔的应用前景。但是,高温制备的3D-C_f/Mg复合材料在冷却过程中,由于基体镁合金的热膨胀系数(CTE)是碳纤维的25~30倍,两者严重不匹配,造成复合材料内部存在很大的热残余应力,严重影响了材料的力学性能,甚至会引发材料开裂。
     本文以调整和改善3D-C_f/Mg复合材料残余应力为目标,研究了温度形变处理对复合材料残余应力的影响。首先,采用随动硬化有限元模型,研究了3D-C_f/Mg复合材料基体热残余应力的大小、分布以及不同工艺处理对热残余应力的影响。然后,根据数值模拟的结果,设计方案对复合材料进行了高、低温处理,并对比分析了处理前后复合材料的组织结构;最后研究不同方案处理后复合材料的力学性能,分析总结了残余应力改善以后,复合材料强度、模量和硬度的变化。
     有限元分析的结果表明:高温制备的3D-C_f/Mg复合材料冷却后,基体内产生很大的热残余应力,平均为147.32MPa。120℃和240℃高温处理后,基体中热残余应力的大小和分布变化不明显,平均热残余应力分别为138.38MPa和138.25MPa。但经过低温处理后,复合材料基体的残余应力明显减小,且随着处理温度的降低,热残余应力呈下降趋势,经过-78℃和-196℃处理后,基体平均热残余应力分别降低至99.40MPa和34.16MPa。
     实验进行对材料120℃高温处理和-196℃液氮处理,利用SEM和XRD衍射对比分析处理前后复合材料的微观形貌和晶面间距发现:高温制备的3D-C_f/Mg复合材料冷却后产生很大的热残余应力,一方面,使碳纤维微丝发生了严重的扭曲和变形,截面呈现椭圆或豆瓣状;另一方面,造成镁合金基体晶面间距变大。高温(120℃)处理后,残余应力变化微小,碳纤维截面仍呈椭圆形,镁基体晶面间距略大于处理前。液氮处理后,热残余应力明显减小,一方面,碳纤维微丝的截面回复至圆形;另一方面,镁基体的晶面间距更接近AZ91D合金。
     最后研究了残余应力改善对复合材料性能的影响,结果表明:120℃高温处理后,复合材料仍存在较大残余应力,弹性模量、硬度与处理前相比,分别降低了5.5%和4.2%,但由于基体韧性提高,弯曲强度提高了7.0%,断口呈现韧性断裂。液氮处理后,复合材料残余应力明显减小,弹性模量提高了9.2%,但由于残余应力下降,硬化作用消失,弯曲强度和硬度明显下降,分别降低了19.9%和17.2%,断口呈现准解离断裂,且与处理前相比,小断面更多。
Three-dimensional carbon fiber reinforced magnesium composites (3D-C_f/Mg) are candidate materials for aerospace structures and advanced weapon systems due to their high specific strength, high specific stiffness and low coefficient of thermal expansion (CTE). In addition, compared to unidirectional composites and laminated composites, 3D-C_f/Mg is more competitive because of its higher stiffness and strength in three orthogonal directions, especially in thickness direction. However, there is a serious mismatch of volume shrinkage and coefficient of thermal expansion (CTE) between the carbon fiber frame and magnesium alloy, resulting in a large residual stress in 3D-C_f/Mg, which will affect the mechanical properties of materials, and even lead to material cracking.
     In order to improve the mechanical properties, this thesis will investigate the residual stress of 3D-C_f/Mg composites after different treatments. Firstly, a nonlinear elastoplastic model is proposed and a finite element method is used to study the thermal residual stress in 3D-C_f/Mg study and its modification after different treatments. Then, an experimental investigation was realized by SEM and XRD, which indicates the influences of thermal residual stress on the microstructure of the composites. Finally, the mechanical properties of 3D-C_f/Mg composites are studied in order to analysis the influence of residual stress on the strength, modulus and hardness.
     The result of numerical simulation shows that high-temperature prepared 3D-C_f/Mg exhibit a large thermal residual stress, which is 147.32MPa on the average in the matrix, after cooling to room temperature. After heat-treatment at 120℃and 240℃, thermal residual stress in the matrix does not change significantly, which is 138.38MPa and 138.25MPa respectively. However, after cold-treatment, the residual stress in the matrix significantly decreases. After cold-treatments at -78℃and -196℃, the average residual stress in the matrix respectively decreases to 99.40MPa and 34.16MPa.
     Analyze the microstructure of the materials by SEM and XRD after heat-treatment at 120℃and cold-treatment at -196℃. The results show that high-temperature prepared 3D-Cf/Mg exhibit a large thermal residual stress, causing the deformation of cross-section of the carbon fiber and an increase of interplanar spacing of the matrix. After heat-treatment at 120℃, the residual stress changes a little, therefore, the cross-section of the carbon fiber is still oral and the interplanar spacing of the matrix is slightly larger after treatment. However, after cold-treatment at -196℃, the residual stress obviously decreases, so the cross-section of carbon fiber changed from oval to round and the interplanar spacing of the matrix return to the value of that of AZ91D.
     Finally, study the influence of the residual stress on the strength, modulus, and hardness the composites. The results show that after heat-treatment, the residual stress decreases slightly. And the flexural modulus and hardness decreased slightly, respectively by 5.5% and by 4.2%. However, as the plastic property of the matrix has been improved, the flexural strength increased by 7.0%. In the other hand, after cold-treatment, the residual stress in the composite significantly reduced and the flexural modulus increased by 9.2%. However, the flexural strength and hardness decreased by 19.9% and 17.2% respectively.
引文
[1]于化顺.金属基复合材料及其制备技术.北京,化学工业出版社, 2006.
    [2]于春田.金属基复合材料.北京,冶金工业出版社, 1995.
    [3]郝斌,段先进,崔华等.金属基复合材料的发展现状及展望.材料导报, 2005, 19(7): 64-67.
    [4]吴利英,高建军,靳武钢.金属基复合材料的发展及应用.化工新型材料, 2002, 30(10): 32-35.
    [5]王军,严彪,徐政.金属基复合材料的发展和未来.上海有色金属, 1999, 20(4): 88-192.
    [6]胡业勤.硼酸镁晶须增强AZ91D镁基复合材料中残余应力的拉曼光谱表征.成都理工大学, 2010.
    [7]兰永德,汤伯祥,苏华钦等.国外镁基复合材料的研究与应用.江苏冶金, 1995, (4): 57-58.
    [8]潘复生,张津,张喜燕.轻合金材料新技术.北京,化学工业出版社, 2008.
    [9]蔡叶,苏华钦.镁基复合材料研究的回顾与展望.特种铸造及有色合金, 1996, (3): 17-19.
    [10]刘秋云,费维栋,姚忠凯.金属基复合材料的热残余应力研究进展.宇航材料工艺, 1998, (3): 1-6.
    [11]胡明,费维栋.非连续增强金属基复合材料的热残余应力.宇航材料工艺, 2005, (1): 15-19.
    [12] T. Wilkins, Y. L. Shen. Stress enhancement at inclusion particles in aluminum matrix composites: computational modeling and implications to fatigue damage. Computational Materials Science, 2001, 22 (3-4) : 291-299.
    [13]马志军,杨延清,朱艳等.连续纤维增强钛基复合材料热残余应力的研究进展.稀有金属材料与工程, 2004, 33(12): 1248-1251.
    [14]宋美惠,武高辉,王宁等. Cf/Mg复合材料热膨胀系数及其计算.稀有金属材料与工程, 2009, 38(6): 1043-1047.
    [15] G. Wu, M. Song, Z. Xiu, etc. Microstructure and properties of M40 carbon fibrereinforced Mg-Re-Zr alloy composites. Journal of Materials Science and Technology, 2009, 25(3): 423-426.
    [16] M. Russell-Stevens, R. Todd, M. Papakyriacou. Microstructural analysis of a carbon fibre reinforced AZ91D magnesium alloy composite. Surface and Interface Analysis. 2005, 37: 336-342.
    [17]张津,章宗和等.镁合金及应用.北京,化学工业出版社, 2004.
    [18]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用.北京,机械工业出版社, 2002.
    [19]余琨,黎文献,王日初等.变形镁合金的研究、开发及应用.中国有色金属学报, 2003, 13(2): 277-288.
    [20]刘楚明,纪仁峰,周海涛等.镁及镁合金阻尼性能的研究进展.中国有色金属学报, 2005, 15(9): 1319-1325.
    [21]李荣华,黄继华,殷声.镁基复合材料研究现状与展望.材料导报, 2002, 16(8): 17-19.
    [22]吕学旺.镁基非晶合金及复合材料的制备与力学性能的研究.沈阳,沈阳工业大学, 2005.
    [23]王玲,赵浩峰,蔚晓嘉.金属基复合材料及其浸渗制备的理论与实践.北京,冶金工业出版社, 2005.
    [24]赵玉涛,戴起勋,陈刚.金属基复合材料.北京,机械工业出版社, 2007.
    [25]贺福.碳纤维及其应用技术.北京,化学工业出版社, 2004.
    [26]贺福.碳纤维及石墨纤维.北京,化学工业出版社, 2010.
    [27]吴人杰.金属基复合材料的现状与展望.金属学报, 1997, 33(1): 78-84.
    [28]吴申庆.金属基复合材料制备技术的应用及其发展.机械工人, 2000, (11): 29-30.
    [29]杜文博,严振杰,吴玉锋等.镁基复合材料的制备方法与新工艺.稀有金属材料与工程, 2009, 38(3): 559-564.
    [30]郗雨林,柴东琅,张文兴等.低温反应自熔制备Mg基复合材料的组织与性能.热加工工艺, 2005, (5): 7-10.
    [31] R. T. Whalen, G. G. Doncel, S. L. Robinson, etc. Mechanical properties of particulate composites based on a body-entered-cubic Mg-Li alloy containing boron. Scripta Materialia, 1989, 23(1):137-140.
    [32]权高峰. SiC颗粒增强镁基复合材料的研究.西安交通大学学报, 1997, 31(6): 121-123.
    [33] Z. Trojanova, P. Lukac, H. Ferkel, etc. Stability of microstructure in magnesium reinforced by nanoscaled alumina particles. Materials Scinece and Engineering A, 1997, A234-236:789-891.
    [34]郗雨林,张文兴,柴东琅等.粉末冶金法制备MB15镁基复合材料组织及性能的研究.热加工工艺, 2002, (1):51-53.
    [35] G. Gonzalez-Doncel, J. Wolfenstine, P. Metenier, etc. The use of foil metallurgy processing to achieve ultrafine grained Mg-9Li laminates and Mg-9Li-5B4C particulate composites. Journal of Materials Science, 1990, 25: 4535-4540.
    [36] A. Noguchi, I. Ezawa, J. Kaneko, etc. SiCp/Mg-Ca alloy composites obtained by spray forming. Journal of Japan Institution f Light Metals, 1995, 45(2): 64-69.
    [37] T. W. Hong, S. K. Kim, H. S. Ha, etc. Macrostructural evolution and semisolid forming of SiC particulate reinforced AZ91HP magnesium composites. Materials Science and Technology, 2000, 16: 887.
    [38]王广欣,刘惠民.金属基复合材料的制备及力学性能.浙江,浙江大学出版社, 1996.
    [39] M. Zheng, K. Wu, C. Yao. Effect of interfacial reaction on mechanical behavior of SiCw/AZ91D magnesium matrix composites. Materials Science and Engineering A, 2001, 318: 50-56.
    [40]宋美惠,武高辉,姜龙涛等.碳纤维增强AZ91D复合材料微观组织.稀有金属材料与工程. 2008, 37(10): 1861-1864.
    [41]赵慧锋,夏存娟,马乃恒等.涂层碳纤维增强镁基复合材料.热加工工艺, 2007, 36(12): 37-39.
    [42]张萍,张永忠,尹法章等.碳纤维增强镁基复合材料的制备及微观结构分析.有色金属, 2011, 63(1): 19-22.
    [43]刘文娜,余欢,徐志锋等. SiCp/AZ91D复合材料真空压力浸渗制备工艺及微观组织的研究.铸造, 2008, 57(5): 461-469.
    [44]汪志太,余欢,徐志峰等.高体分SiCp/Mg复合材料真空压力浸渗制备工艺研究.南昌航空大学学报(自然科学版), 2007, 21(2): 1-4.
    [45] Z. L. Pei, K. Li, J. Gong, etc. Micro-structure and tensile strength analyses on the magnesium matrix composites reinforced with coated carbon fiber. Journal of Materials Science, 2009, 44: 4124-4131.
    [46]宋天民,焊接残余应力的产生与消除.北京,中国石化出版社, 2010.
    [47]袁发荣,伍尚礼.残余应力测试与计算.湖南,湖南大学出版社, 1987.
    [48]刘秋云,费维栋,姚忠凯.金属基复合材料的热残余应力研究进展.宇航材料工艺, 1998, (3): 1-6.
    [49]王金龙.基于有限元的金属基复合材料热残余应力分析.煤矿机械, 2007, 28(8): 75-76.
    [50]胡明,费维栋.非连续增强金属基复合材料的热残余应力.宇航材料工艺, 2005, (1): 15-19.
    [51]李坤,裴志亮,宫骏等.碳纤维增强镁基复合材料的界面反应和拉伸性能研究.空间科学学报, 2009, 29(1): 6-9.
    [52]廖利, D. Lai, M. Clavel. CMMp复合材料热残余应力的计算模型.武汉城市建设学院学报, 1997, 14(2) : 10-15.
    [53] L. Liao. Etude du comportement en fatigue d’un composite a matrice aluminnium A356 et a renfort SiCp. France, Universite du Technologie de Compiegne, 1996.
    [54]康国政,高庆.单向短纤维复合材料中热残余应力研究.西南交通大学学报, 2001, 36(4) : 387-391.
    [55]马志军,杨延清,朱艳.连续纤维增强钛基复合材料热残余应力的研究进展.稀有金属材料与工程, 33(12): 1248-1251.
    [56]黄斌,杨延清.金属基复合材料中热残余应力的分析方法及其对复合材料组织和力学性能的影响.材料导报, 2006, 20: 413-415.
    [57]吴晶,李文芳,蒙继龙.金属基复合材料的热残余应力力学模型研究进展.材料科学与工程学报, 2003, 21(2) : 289-292.
    [58] R. J. Arsenault, M. Taya. Thermal residual strss in metal matrix composite. Acta Metallurgica, 1987, 35(3):651.
    [59] EI. Ch. Hage, R. Younes, Z. Aboura. Analytical and numerical modeling of mechanical properties of orthogonal 3D CFR. Composites Science and Technology, 2009, 69: 111–116.
    [60] B. Sun, Y. Liu, B. Gu. A unit cell approach of finite element calculation of ballistic.
    [61] J. F. DiGregorio, T. E. Furtak. Analysis of residual stress in 6H-SiC particles within Al2O3/SiC composites through raman spectroscopy. J Am Ceram Soc, 1992, 75: 1854.
    [62] X. Yang, R. J. Yang. Model ceramic fiber-reinforced glass composites: residual thermal stresses. Composite, 1994, 25: 488.
    [63]王德尊,姜传海.碳化硅晶须增强铝基复合材料热残余应力的宏观特征.材料科学与工艺, 1997, 5(1) : 111-113.
    [64]周玉.材料分析方法.北京,机械工业出版社, 2007.
    [65]范雄.金属X射线学.北京,机械工业出版社, 1998.
    [66]马世良.金属X射线衍射学.西安,西北工业大学出版社, 1987.
    [67]范雄. X射线金属学.北京,机械工业出版社, 1982.
    [68]王强,王彪,马德才等.退火对NiTi合金材料表面氧离子注入所产生残余应力影响的试验研究.焊接, 2007, (2): 36-38.
    [69]任旭东,张永康,周建忠等.激光冲击钛合金表面退火后的残余应力分布.农业机械学报, 2007, 38(5): 165-167.
    [70]张骥.利用振动时效技术消除大型筒体和焊接按余应力.焊接, 1996, (2): 20-22.
    [71] C. A. Walker, A. J. Nfaddeu, D. J. Fohnston. Vibratory stress relief—an investigation of underlying process. Eo1193?IMechE, Proc. Instn. Mech. Engrs, 1995, 209:51-57.
    [72]吴恒,李栋才.过载拉伸对焊接接头应力集中区域力学行为的影响.内蒙古石油化工, 2006(3): 27-28.
    [73] Z. Trojanova, P. Lukac, W. Riehemann, etc. Study of relaxation of residual internal stress in Mg composites by internal friction.Materials Science and Engineering A, 2002, 324:122-126.
    [74]姜传海,郑明毅,王德尊等.碳化硅晶须镁基复合材料热残余应力及其调整.稀有金属, 25(4) : 286-288.
    [75]姜传海,王德尊,姚忠凯等.低温循环过程中SiCw/6061Al复合材料残余应力的变化规律.金属热处理, 1999, (12): 21-22.
    [76] A. Orlova. Subgrain size in view of the composite model of dislocation structure. Materials Science and Engineering, 2001, A297: 281–285.
    [77] M. Vogelsang, R. J. Arsenault, R. M. Fisher. An in situ HVEM study of dislocationgeneration ar Al/SiC interfaces in metal matrix composites. Metallurgical and Materials Transactions A, 1986, 25(10): 4535-4540.
    [78]秦蜀懿,刘澄,陈嘉颐等. SiCp/LD2复合材料的微区力学性能.中国有色金属学报, 1999, 9(4) : 748-751.
    [79] D. Duttaa, J. D. Simsa, D. M. Seigenthaler. An analytical study of residual stress effects on uniaxial deformation of whisker reinforced metal-matrix composites. Acta Metallurgica et Materialia, 1993, 41(3): 885-908.
    [80]丁向东,连建设,江中浩.短纤维增强金属基复合材料的热残余应力及其对拉伸和压缩载荷下应力分布的影响.兵工学报, 2002, 23(2) : 282-285.
    [81]马志军,杨延清,朱艳等.基体材料性能对钛基复合材料热残余应力的影响.金属学报, 2002, 38(Suppl.), 488-491.
    [82] S. Ho, E. J. Lavernia. Thermal residual stresses in metal matrix composites: A Review. Applied Composite Materials, 1995, (2): 1-30.
    [83] T. Wilkins, YL. Shen. Stress enhancement at inclusion particles in aluminum matrix composites: computational modeling and implications to fatigue damage. Computational Materials Science, 2001, 22 (3-4) : 291-299.
    [84]朱明,李美栓,李亚利.溶胶-凝胶高温氧化防护涂层.腐蚀科学与防护技术, 2004, 16(1): 33-37.
    [85]刘土光,张涛.弹塑性力学基础理论.武汉,华中科技大学出版社, 2008.
    [86]林瑞泰.热传导理论与方法.天津,天津大学出版社, 1992.
    [87]张洪济.热传导.北京,高等教育出版社, 1992.
    [88]李同林,殷绥域.弹塑性力学.武汉,中国地质大学出版社, 2006.
    [89]徐秉业,沈新普,崔振山.固体力学.北京,中国环境科学出版社, 2005.
    [90]侯增寿,樊东黎,王广生等.热处理手册(第一卷).北京,机械工业出版社, 2001.
    [91]王慧敏,陈振华,严红革等.镁合金的热处理.金属热处理, 2005, 30(11): 49-54.
    [92]詹美燕,李元元,陈维等. AZ31D镁合金轧制板材在退火处理中的组织性能演变.金属热处理, 2007, 32(7): 8-12.
    [93]聂洪波.三点弯曲法测试硬质合金弹性模量.粉末冶金材料科学与工程, 2010, 15(6): 606-610.
    [94]田云德,秦世伦.复合材料等效弹性模量的改进混合律方法.西南交通大学学报,2005, 40(6): 783-787.
    [95]吕毅,吕国志,吕胜利.细观力学方法预测单向复合材料的宏观弹性模量.西北工业大学学报, 2006, 24(6): 787-790.
    [96]王瑞,王建坤,武玲.平纹织物复合材料的弹性模量预测.复合材料学报, 2002, 19(1): 90-94.
    [97]柏振海,黎文献,罗兵辉等.一种复合材料弹性模量的计算方法.中南大学学报, 2006, 37(3): 438-443.
    [98]梁基照,周林.短天然纤维增强聚合物复合材料弹性模量估算.现代塑料加工应用, 2010, 22(6): 52-54.
    [99] W. Riehemann, B. L. Mordike, K. U. Kainer. Magnesium alloys and their application. Werkstoff-Information Gesellschaft, Frankfurt, Germany, 1998.
    [100] S. Ochiai, K. Osamura. Influences of interfacial bonding strength and scatter of fibre strength on tensile behavior of unidirectional metal matrix composites. Journal of Materials Science, 1988, 23: 886-893.
    [101]上海交通大学《金属断口分析》编写组.金属断口分析.北京,国防工业出版社, 1979.
    [102]崔约贤,王长利.金属断口分析.哈尔滨,哈尔滨工业大学出版社, 1998.
    [103]杨德庄.位错与金属强化机制.哈尔滨,哈尔滨工业大学出版社, 1991.
    [104]张猛,胡亚民,李先禄.金属塑性变形.重庆,重庆大学出版社, 1989.
    [105]周纪华,管克智.金属塑性变形阻力.北京,中国农业机械出版社, 1989.
    [106]张敏,朱波,王成国等.用SEM研究碳纤维的表面及断口形貌.功能材料, 2010, 41(10): 1731-1733.
    [107]杨辉,钱林茂,朱等.预塑性应变对纳米压痕硬度尺寸效应的影响.机械工程学报, 2005, 41(9): 24-27..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700