磁性化碳纤维电磁波吸收材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子设备的广泛应用带来的电磁污染问题和军事领域对隐身材料的需求,电磁波吸收材料得到了快速发展。近年来,碳材料在电磁波吸收方面的研究受到越来越多的关注。本文以连续碳纤维为基体,通过电镀和热氧化法在其表面沉积磁性镀层,对磁性碳纤维的形貌、成分和电磁性能进行系统研究,探讨其理论吸波性能。最后选取合适的吸波剂,制备硅橡胶基吸波片材复合材料,研究其
     实际吸波性能。采用传统电镀法在碳纤维表面制备FeCo合金镀层,在不同温度下获得了不同的合金镀层形貌,随温度升高依次为片状、点状和锥状。镀层合金晶体结构均为Co3Fe7,厚度为0.5-1.0μm。制备磁性碳纤维/石蜡复合材料,研究其2-18 GHz频率段内的电磁参数,进而计算理论吸波值。结果发现不同温度下的产物介电常数差异比较大,而磁导率相近,较高的介电常数使吸波性能明显下降。降低复合材料中磁性碳纤维的质量分数后,其介电常数降低,获得了良好的吸波性能。
     为了进一步提高磁性碳纤维的吸波性能,首先利用热氧化法在FeCo合金镀层中引入Fe和Co的氧化物,350℃氧化下的产物具有较高的磁导率,在高频范围内改善了阻抗匹配性能,使高频小于-10 dB的有效频宽达到5 GHz。其次结合电镀和热氧化法制备出CuO/FeCo合金/碳纤维双镀层磁性材料,镀层表面生成纳米柱状CuO,产物表现出铁磁性,在保持低的介电常数的同时,双磁性镀层增大了材料的磁导率,提高了阻抗匹配性能,在中高频表现出优异的理论电磁波吸收性能,最大值为-47.6 dB,厚度降低至1.6 mm。该吸波剂独特的微米级三层结构有利于电磁波的进入和内部多次反射,从而增大电磁波损耗。
     以甲基乙烯基硅橡胶为基体,羰基铁粉和短切FeCo合金/碳纤维磁性材料为复合吸波剂,制备出贴片型吸波复合材料。SEM结果表明吸波剂在复合材料中得到了良好的分散。在羰基铁粉含量为50%时,含量为2%和4%的磁性碳纤维即能大幅度提高复合材料的实际吸波性能,最大吸收值为-21.3 dB,有效频宽扩大至6.2 GHz。磁性碳纤维的加入降低了复合材料的体积电阻率和密度,提高了其拉伸强度,该复合材料有望成为一种吸波性能优良的轻质贴片型吸波材料。综上所述,利用电镀和热氧化法可以在碳纤维表面简单、高效的制备磁性合金和氧化物镀层,调节原始碳纤维的电磁参数,提高其理论吸波性能。短切磁性碳纤维作为吸波剂能有效提高硅橡胶基复合材料的实际吸波性能,在电磁波吸收领域具有良好的应用潜能。
Electromagnetic wave absorption (EMA) materials are drawing extensive attention because of increasing electromagnetic pollution in daily life as well as military requirements for stealth weapon systems. Due to low density, high strength and excellent electrical property, carbon materials are suitable candidates for EMA materials. In this paper, electroplating and thermal oxidation were adopted to prepare magnetic coating on continuous carbon fibers. The structure, morphology and electromagnetic wave parameters of magnetic hybrid carbon fibers were studied, and the mechanism of electromagnetic wave absorption was also discussed. Finally, the proper absorber was chosen for the preparation of silicon rubber based composites, and the practical absorption ability was evaluated.
     FeCo alloy coated carbon fibers (MCF) with controlled surface morphology were prepared by the electroplating method at different temperatures. Three different morphologies of the coatings, including sheet-like, spot-like and pyramid-like structures were obtained. The crystal structure of the uniform coatings was Co3Fe7 with thickness of about 0.5-1.0μm. The complex electromagnetic parameters of magnetic carbon fibers mixed with paraffin were measured in the frequency range of 2-18 GHz. The results indicated considerable difference of complex permittivity and similar complex permeability, high complex permittivity led to weak EMA. The complex permittivity was lowered by the decrease of mass diffraction of MCF in composite, and excellent absorption ability was achieved.
     In order to improve the EMA properties, firstly, thermal oxidation was used to obtain oxidates of Fe and Co in alloy coating, the complex permeability became higher and the impedance match was optimized in high frequency. It was worth noting that the effective bandwidth was broadened to 5 GHz. Secondly, CuO/FeCo alloy/carbon hybrid fibers were fabricated by electroplating Cu on FeCo alloy/carbon hybrid fibers and followed by thermal oxidation, nanorod-like CuO was formed on the surface. The product exhibited soft ferromagnetism, the low complex permittivity was maintained and the complex permeability was enhanced. CuO/FeCo alloy/carbon hybrid fibers/paraffin composite displayed excellent absoption ability at middle and high frequency range, the strongest RL was -47.6 dB for a thinner layer of 1.6 mm. The special structure of micron-triple-layer enhanced the final absorbing property by inner multi-reflection and loss of lectromagnetic wave.
     For practical EMA test, methyl vinyl silicone rubber (MVQ) based composites were fabricated with carbonyl iron (CI) and chopped MCF as complex absorbers. SEM results showed that the absorbers were dispersed evenly in rubber matrix. When the content of CI was fixed to 50 wt%, the RL were decreased drmatically by the addition of MCF with mass difraction of 2 wt% and 4 wt%, and the optimism RL reached -21.3 dB with a broad effective bandwidth of 6.2 GHz. The density and volumn resistivity of the composites were reduced by the addition of MCF, and the tensile strength was improved. The composites could be used as light EMA pasters with wide and strong absroption ability.
     In conclusion, electroplating and thermal oxidation seemed efficient ways to prepare magnetic carbon fibers, adjust the electromagnetic parameters, and improve the absorpion ability of carbon fibers. As excellent absorber, chopped MCF could enchance the practical absorpion propery efficiently and have a great potential for application in EMA field.
引文
[1] Sharma SP, Lakkad SC. Effect of CNTs growth on carbon fibers on the tensile strength of CNTs grown carbon fiber-reinforced polymer matrix composites. Compos Part A-Appl S 2011;42(1):8-15.
    [2] Zhao F, Huang YD, Liu L, et al. Formation of a carbon fiber/polyhedral oligomeric silsesquioxane/carbon nanotube hybrid reinforcement and its effect on the interfacial properties of carbon fiber/epoxy composites. Carbon 2011;49(8):2624-2632.
    [3] Zhang RL, Huang YD, Liu L, et al. Effect of the molecular weight of sizing agent on the surface of carbon fibres and interface of its composites. Appl Surf Sci 2010;257(6):1840-1844.
    [4] Celebi S, Nijhuis TA, Van Der Schaaf J, et al. Carbon nanofiber growth on carbon paper for proton exchange membrane fuel cells. Carbon 2011;49(2):501-507.
    [5] Wu GP, Wang YY, Li DH, et al. Direct electrochemical attachment of carbon nanotubes to carbon fiber surfaces. Carbon 2011;49(6):2152-2155.
    [6] Lee OH, Kim SS, Lim YS. Conduction noise absorption by fiber-reinforced epoxy composites with carbon nanotubes. J Magn Magn Mater 2011;323(5):587-591.
    [7] Shi JW. Preparation of Fe(III) and Ho(III) co-doped TiO2 films loaded on activated carbon fibers and their photocatalytic activities. Chem Eng J 2009;151(1-3):241-246.
    [8] Aalto S, Haarala C, Bruck A, et al. Mobile phone affects cerebral blood flow in humans. J Cereb Blood Flow Metab 2006;26(7):885-890.
    [9] Lu XG, Liang GY, Sun QJ, et al. High-frequency magnetic properties of Ni-Zn ferrite nanoparticles synthesized by a low temperature chemical method. Mater Lett 2011;65(4):674-676.
    [10] Deng LW, Ding L, Zhou KS, et al. Electromagnetic properties and microwave absorption of W-type hexagonal ferrites doped with La3+. J Magn Magn Mater 2011;323(14):1895-1898.
    [11] Hosseini SH, Mohseni SH, Asadnia A, et al. Synthesis and microwave absorbing properties of polyaniline/MnFe2O4 nanocomposite. J Alloy Compd 2011;509(14):4682-4687.
    [12] Yang WF, Qiao L, Wang T, et al. Enhanced microwave absorption properties of Fe73.5Cu1Nb3Si15.5B7 nanoflakes by moderate surface oxidization and rotational orientation in composites. J Alloy Compd 2011;509(25):7066-7070.
    [13] Liu JH, Zhang XL, Li SM, et al. Microwave absorption properties of rod-shaped Co-Ni-P shells prepared by metallizing Bacillus. Appl Surf Sci 2011;257(6):2383-2386.
    [14]王志强,张振军,范壮军.碳纳米管/三元乙丙橡胶复合材料吸波性能的研究.材料导报2010(14):26-28.
    [15] Zhang HY, Zeng GX, Ge Y, et al. Electromagnetic characteristic and microwave absorption properties of carbon nanotubes/epoxy composites in the frequency range from 2 to 6 GHz. J Appl Phys 2009;105(5):054314.
    [16] Wang C, Han XJ, Xu P, et al. The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl Phys Lett 2011;98(7):072906.
    [17] Ling QC, Sun JZ, Zhao Q, et al. Effects of carbon black content on microwave absorbing and mechanical properties of linear low density polyethylene/ethylene-octene copolymer/calcium carbonate composites. Polym-Plast Technol 2011;50(1):89-94.
    [18] Hou CL, Li TH, Zhao TK, et al. Electromagnetic wave absorbing properties of carbon nanotubes doped rare metal/pure carbon nanotubes double-layer polymer composites. Mater Design 2011;33(1):413-418.
    [19] Korneva G, Ye H, Gogotsi Y, et al. Carbon nanotubes loaded with magnetic particles. Nano Lett 2005;5(5):879-884.
    [20] Xiang R, Luo GH, Qian WZ, et al. Encapsulation, compensation, and substitution of catalyst particles during continuous growth of carbon nanotubes. Adv Mater 2007;19(17):2360-2363.
    [21] Lee J, Jin S, Hwang Y, et al. Simple synthesis of mesoporous carbon with magnetic nanoparticles embedded in carbon rods. Carbon 2005;43(12):2536-2543.
    [22] Dong XP, Chen HR, Li X, et al. Synthesis and magnetic properties of mesostructured-Fe2O3/carbon composites by a co-casting method. Chem Mater 2007;19(14):3484-3490.
    [23] Flahaut E, Agnoli F, Sloan J, et al. CCVD synthesis and characterization of cobalt-encapsulated nanoparticles. Chem Mater 2002;14(6):2553-2558.
    [24] Wang ZL, Liu RX, Zhao FY, et al. Facile synthesis of porous Fe7Co3/carbon nanocomposites and their applications as magnetically separable adsorber and catalyst support. Langmuir 2010;26(12):10135-10140.
    [25] Kim IT, Nunnery GA, Jacob K, et al. Synthesis, characterization, and alignment of magnetic carbon nanotubes tethered with maghemite nanoparticles. J Phys Chem C 2010;114(15):6944-6951.
    [26] Lian G, Jia BP, Jing S. Self-assembly of magnetite beads along multiwalled carbon nanotubes via a simple hydrothermal process. Carbon 2007;45(7):1476-1481.
    [27]郭伟凯,李赵周.纤维类雷达波吸收剂的研究进展.宇航材料工艺2003;4(6):33-37.
    [28]赵东林,沈迟.炭纤维及其复合材料的吸波性能和吸波机理.新型炭材料2001;16(2):66-71.
    [29]孟辉.纤维型雷达隐身吸波材料的研究进展.现代涂料与涂装2005;23(6):51-58.
    [30]甘永学.碳纤维表面涂层.航空制造技术1993;13(4):32-37.
    [31]甘永学,易沛,陈汴琨,等.碳纤维电镀铜的研究.电镀与精饰1988;2(4):78-81.
    [32]朱教群,张炳,梅炳初,等.碳纤维表面电镀铜.稀有金属快报2007;26(2):28-31.
    [33]凤仪.碳纤维表面电镀铜的研究.合肥工业大学学报(自然科学版) 1993;30(4):1-4.
    [34]唐谊平,刘磊,赵海军,等.短碳纤维增强铜基复合材料制备新工艺.机械工程材料2006;30(10):21-24.
    [35]张丽芳,傅富强,任宝林,等.碳纤维电镀镍的研究.材料工程1994;5(7):18-21.
    [36]霍彩红,何范.碳纤维表面金属化工艺研究.表面技术2003;32(6):40-42.
    [37]王睿,万怡灶,何芳,等.碳纤维连续镀镍生产工艺及其屏蔽复合材料.复合材料学报2010;27(5):19-23.
    [38]鲁鹏,夏存娟,王浩伟,等. Zn涂层碳纤维增强镁基复合材料的研究.热加工工艺2009;38(10):122-125.
    [39] Yang Y, Zhang BS, Xu WD, et al. Preparation and electromagnetic characteristics of a novel iron-coated carbon fiber. J Alloy Compd 2004;365(1-2):300-302.
    [40]马铁军,李家俊,黄远,等.新型结构吸波材料研究.天津大学学报(自然科学与工程技术版) 1999;32(3):359-361.
    [41] Mitrano C, Balzano A, Bertacca M, et al. CFRP-based broad-band radar absorbing materials. IEEE Radar Conference 2008;2252(4):701-706.
    [42] Tzeng SS. Catalytic graphitization of electroless Ni-P coated PAN-based carbon fibers. Carbon 2006;44(10):1986-1993.
    [43] Xie G, Wang Z, Cui Z, et al. Ni-Fe-Co-P coatings on coiled carbon nanofibers. Carbon 2005;43(15):3181-3183.
    [44] Yi HB, Wen FH, Qiao L, et al. Microwave electromagnetic properties of multiwalled carbon nanotubes filled with Co nanoparticles. J Appl Phys 2009;106(10):103922.
    [45] Gong YX, Zhen L, Jiang JT, et al. Preparation of CoFe alloy nanoparticles with tunable electromagnetic wave absorption performance. J Magn Magn Mater 2009;321(22):3702-3705.
    [46] Yang Y, Xu CL, Xia YX, et al. Synthesis and microwave absorption properties of FeCo nanoplates. J Alloy Compd 2010;493(1-2):549-552.
    [47] Han Z, Li D, Wang H, et al. Broadband electromagnetic-wave absorption by FeCo/C nanocapsules. Appl Phys Lett 2009;95(2)023114.
    [48] Tang YP, Liu L, Wu YT, et al. Froth floatation integrated into electrodeposition to prepare Ni/short carbon fibers composites with network and sheet structures. Mater Lett 2007;61(6):1307-1310.
    [49] Yang Y, Zhang BS, Xu WD, et al. Preparation and properties of a novel iron-coated carbon fiber. J Magn Magn Mater 2003;256(1-3):129-132.
    [50] Arai S, Endo M. Carbon nanofiber-copper composite powder prepared by electrodeposition. Electrochem Commun 2003;5(9):797-799.
    [51] Vickers PE, Watts JF, Perruchot C, et al. Surface chemistry and acid-base properties of a PAN-based carbon fibre. Carbon 2000;38(5):675-689.
    [52] Li WW, Liu L, Zhong C, et al. Effect of carbon fiber surface treatment on Cu electrodeposition: The electrochemical behavior and the morphology of Cu deposits. J Alloy Compd 2011;509(8):3532-3536.
    [53] Andricacos PC, Arana C, Tabib J, et al. Electrodeposition of nickel-iron alloys. I. Effect of agitation. J Electrochem Soc 1989;136(5):1336-1340.
    [54] Harris TM, St. Clair J. Testing the role of metal hydrolysis in the anomalous electrodeposition of Ni-Fe alloys. J Electrochem Soc 1996;143(12):3918-3922.
    [55] Matlosz M. Competitive adsorption effects in the electrodeposition in iron-nickel alloys. J Electrochem Soc 1993;140(8):2272-2279.
    [56] Eliaz N, Venkatakrishna K, Hegde AC. Electroplating and characterization of Zn-Ni, Zn-Co and Zn-Ni-Co alloys. Surf Coat Tech 2010;205(7):1969-1978.
    [57] Hegde AC, Venkatakrishna K, Eliaz N. Electrodeposition of Zn-Ni, Zn-Fe and Zn-Ni-Fe alloys. Surf Coat Tech 2010;205(7):2031-2041.
    [58] Chen YJ, Cao MS, Wang TH, et al. Microwave absorption properties of the ZnO nanowire-polyester composites. Appl Phys Lett 2004;84(17):3367-3369.
    [59] Inoue K, Nakata T, Watanabe T. Surface morphology and crystallographic orientation of electrodeposited Fe film. J Jpn I Met 2001;65(4):229-235.
    [60] Sahaym U, Miller SL, Norton MG. Effect of plating temperature on Sn surface morphology. Mater Lett 2010;64(14):1547-1550.
    [61]朱虹,杨志民,杜军.超细铁钴合金粉末微结构及其磁性能研究.稀有金属2008;32(3):289-293.
    [62] Phang SW, Tadokoro M, Watanabe J, et al. Microwave absorption behaviors of polyaniline nanocomposites containing TiO2 nanoparticles. Curr Appl Phys 2008;8(3-4):391-394.
    [63] Naito Y, Tanaka N. Broad-banding and changing operation frequency of circulator. IEEE T Microw Theory 1971;MTT-19(4):367-372.
    [64] Qi XS, Yang Y, Zhong W, et al. Simultaneous synthesis of carbon nanobelts and carbon/Fe-Cu hybrids for microwave absorption. Carbon 2010;48(12):3512-3522.
    [65] Wei JQ, Wang JB, Liu QF, et al. Enhanced microwave absorption properties of Fe3Al/Al2O3 fine particle composites. J Phys D: Appl Phys 2010;43(11):115001.
    [66] Zeng J, Xu J. Microwave absorption properties of CuO/Co/carbon fiber composites synthesized by thermal oxidation. J Alloy Compd 2010;493(1-2):L39-L41.
    [67] Qiang CW, Xu JC, Zhang ZQ, et al. Magnetic properties and microwave absorption properties of carbon fibers coated by Fe_3O_4 nanoparticles. J Alloy Compd 2010;506(1):93-97.
    [68] Kim SS, Jo SB, Gueon KI, et al. Complex permeability and permittivity and microwave absorption of ferrite-rubber composite at X-band frequencies. IEEE Trans Magn 1991;27(6):5462-5464.
    [69] Liu XG, Geng DY, Ma S, et al. Electromagnetic-wave absorption properties of FeCo nanocapsules and coral-like aggregates self-assembled by the nanocapsules. J Appl Phys 2008;104(6):064319.
    [70] Wu JH, Kim YK. Synthesis and microwave properties of highly permeable FeCo-based nano-alloys. Phys Status Solidi A 2007;204(12):4087-4090.
    [71] Sun GB, Dong BX, Cao MH, et al. Hierarchical dendrite-like magnetic materials of Fe_3O_4, Fe_2O_3, and Fe with high performance of microwave absorption. Chem Mater 2011;23(6):1587-1593.
    [72] Tong GX, Wu WH, Guan JG, et al. Synthesis and characterization of nanosized urchin-like-Fe_2O_3 and Fe_3O_4: Microwave electromagnetic and absorbing properties. J Alloy Compd 2010;509(7):4320-4326.
    [73] Liu Y, Zhang ZQ, Xiao ST, et al. Preparation and properties of cobalt oxides coated carbon fibers as microwave-absorbing materials. Appl Surf Sci 2011;257(17):7678-7683.
    [74] Papadimitropoulos G, Vourdas N, Vamvakas VE, et al. Optical and structural properties of copper oxide thin films grown by oxidation of metal layers. Thin Solid Films 2006;515(4):2428-2432.
    [75] Xu CH, Woo CH, Shi SQ. Formation of CuO nanowires on Cu foil. Chem Phys Lett 2004;399(1-3):62-66.
    [76] Xu CH, Woo CH, Shi SQ. The effects of oxidative environments on the synthesis of CuO nanowires on Cu substrates. Superlattice Microst 2004;36(2):31-38.
    [77] Zeng J, Xu JC, Tao P, et al. Ferromagnetic and microwave absorption properties of copper oxide-carbon fiber composites. J Alloy Compd 2009;487(2):304-308.
    [78] Yu T, Zhu YW, Xu XJ, et al. Controlled Growth and Field-Emission Properties of Cobalt Oxide Nanowalls. Adv Mater 2005;17(13):1595-1599.
    [79] Zhang BS, Feng Y, Jie X, et al. Microwave-absorbing properties of de-aggregated flake-shaped carbonyl-iron particle composites at 2-18 GHz. IEEE Trans Magn 2006;42(7):1778-1781.
    [80] Suzuki Y, Arai S, Endo M. Ni-P alloy-carbon black composite films fabricated by electrodeposition. Appl Surf Sci 2010;256(22):6914-6917.
    [81] Vanithakumari SC, Shinde SL, Nanda KK. Controlled synthesis of CuO nanostructures on Cu foil, rod and grid. Mat Sci Eng B-Solid 2011;176(8):669-678.
    [82] Hsieh CT, Chen JM, Lin HH, et al. Synthesis of well-ordered CuO nanofibers by a self-catalytic growth mechanism. Appl Phys Lett 2003;82(19):3316-3318.
    [83] Duan X, Lieber CM. General synthesis of compound semiconductor nanowires. Adv Mater 2000;12(4):298-302.
    [84] Kaur M, Muthe KP, Despande SK, et al. Growth and branching of CuO nanowires by thermal oxidation of copper. J Cryst Growth 2006;289(2):670-675.
    [85] Kumar A, Srivastava AK, Tiwari P, et al. The effect of growth parameters on the aspect ratio and number density of CuO nanorods. J Phys Condens Mat 2004;16(47):8531-8543.
    [86] Garcia F, Diego LF, Adanez J, et al. Temperature variations in the oxygen carrier particles during their reduction and oxidation in a chemical-looping combustion system. Chem Eng Sci 2005;60(3):851-862.
    [87] Chandrasekhar TV, Sahni VC. Magnetic transitions in cupric oxide: the effect of oxygen defects. J Phys Condens Mat 1994;6(30):423-426.
    [88] Chen SJ, Liu YC, Lu YM, et al. Photoluminescence and Raman behaviors of ZnO nanostructures with different morphologies. J Cryst Growth 2006;289(1):55-58.
    [89] Lee SE, Kang JH, Kim CG. Fabrication and design of multi-layered radar absorbing structures of MWNT-filled glass/epoxy plain-weave composites. Compos Struct 2006;76(4):397-405.
    [90] Chen MX, Zhu Y, Pan YB, et al. Gradient multilayer structural design of CNTs/SiO2 composites for improving microwave absorbing properties. Mater Design 2011;32(5):3013-3016.
    [91] Li BY, Duan YP, Zhang YF, et al. Electromagnetic wave absorption properties of cement-based composites filled with porous materials. Mater Design 2011;32(5):3017-3020.
    [92] Gama AM, Rezende MC, Dantas CC. Dependence of microwave absorption properties on ferrite volume fraction in MnZn ferrite/rubber radar absorbing materials. J Magn Magn Mater 2011;323(22):2782-2785.
    [93] Zou H, Li SH, Zhang LQ, et al. Determining factors for high performance silicone rubber microwave absorbing materials. J Magn Magn Mater 2011;323(12):1643-1651.
    [94]何燕飞,龚荣洲,王鲜,等.橡胶片型吸波材料硫化特性研究.功能材料2006;37(3):386-388.
    [95]王振军,李克智,王闯,等.羰基铁粉-碳纤维水泥基复合材料的吸波性能.硅酸盐学报2011(01):69-74.
    [96]刘旭光,王应德,王磊,等.异形SiC纤维/羰基铁粉复合纤维束吸波性能.稀有金属材料与工程2010;39(1):301-304.
    [97]刘辉,高云雷,赵东林,等.热处理对羰基铁粉磁性能和吸波性能的影响.安全与电磁兼容2010(06):71-74.
    [98]段海平,李国防,段玉平,等.橡胶基复合吸波贴片的电磁性能研究.表面技术2010;39(5):61-64.
    [99]周克省,黄孔李.吸波材料的物理机制及其设计.中南工业大学学报(自然科学版) 2001;32(6):617-621.
    [100] Sujith A, Unnikrishnan G, Radhakrishnan CK, et al. Interaction of silica and carbon black fillers with natural rubber/poly(ethylene-co-vinyl acetate) matrix by swelling studies. Polym Composite 2007;28(6):705-712.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700