汽油机富氧进气基本燃烧特征理论分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用GT-POWER软件,结合准维燃烧模型中的湍流火焰传播模型,从不同进气氧浓度对火焰传播速度影响的角度,分析化学计量空燃比下富氧进气对汽油机基本燃烧特征的影响。并在21%、23%、25%、27%四种进气氧浓度下,分析转速、进气压力、进气温度、负荷、压缩比和排量等不同影响因素对汽油机基本性能的影响,研究进气氧浓度和这些影响因素对汽油机基本性能的综合影响效果。此外,本文还从能量角度分析不同进气氧浓度下汽油机工作过程综合用能和能量品质,研究基于能量观点的发动机富氧进气燃烧可行性。
This paper used the GT-POWER software, combined with SI turbulence combustion model. Based on the influence on flame speed affected by different oxygen concentration, this paper analyzed the influence on combustion characteristics of gasoline engine affected by oxygen concentration under theoretical air-fuel ratio. In order to analyze the total effect by the oxygen concentration and different influencing factor, this paper selected four different oxygen concentrations. Further more, this paper analyzed the energy and the availability changes of gasoline engine under different oxygen concentration. 1. The influence on combustion characteristics of gasoline engine affected by oxygen concentration under theoretical air-fuel ratio:
     ①. The maximum burn rate and the maximum heat release rate happen at the crank angle when 50% fuel burned. When the oxygen concentration increases, the maximum burn rate and the maximum heat release rate increases before this angle, and decreased after this angle.
     ②. When the oxygen concentration increases, the combusting lagging period and the 0-50% fuel burn duration decrease, the 50-75% fuel burn duration decrease, but the 75-90% fuel burn duration and the main burn duration increase, the total combustion duration decreases a little, the total combustion duration is shortest when the oxygen concentration is 25%.
     ③. When the oxygen concentration increases, the coefficient of residual gas decreases, the average temperature and the maximum temperature increase, the time when the maximum temperature happens is earlier than before, the heat transfer and exhaust energy increase.
     ④. When the oxygen concentration increases, the pressure, the brake mean effective pressure, the maximum rate of pressure rise and the maximum pressure increase, the time of the maximum pressure and of the maximum rate of pressure rise are earlier than before, the brake power and torque increase and have the same maximum increase rate of 21%, the brake efficiency and the brake specific fuel consumption have a maximum decrease rate of 2%. Before the maximum rate of pressure rise, when the oxygen concentration increase, the rate of pressure rise increase, and after the maximum rate of pressure rise, the rate of pressure rise decrease when the oxygen concentration increase.
     ⑤. When the oxygen concentration increases, the NOx increases rapidly, but the increase rate is shorter and shorter when the oxygen concentration is higher and higher. When the oxygen concentration changes from 21% to 23%, 25% and 27%, the NOx increase rate changes from 36.2% to 50.7% and 56.2%.
     2. The total effect by the oxygen concentration and different influencing factor under theoretical air-fuel ratio:
     ①. Influence of speed: When the oxygen concentration increases, the power and the torque increase at the same speed.
     ②. Influence of intake pressure: When the intake pressure increases, the power and the torque increase linearly. When the oxygen concentration increases, the power and torque increase at the same intake pressure, and the increase rate is higher when the intake pressure is higher. When the intake pressure is 16.8% lower than the standard air pressure, the 27% oxygen concentration can reach the same dynamic performance as the standard air pressure.
     ③. Influence of intake temperature: When the intake temperature increases, the power and the torque decrease. When the oxygen concentration increases, the power and the torque have the maximum increase rate of 21%.
     ④. Influence of load: When the load increases, the power and the torque increase. When the oxygen concentration increases, the power and the torque at 3% load of 27% oxygen concentration are higher than which at full load of 21% oxygen concentration.
     ⑤. Influence of compression ratio: When the compression ratio increases, the power and the torque increase. When the oxygen concentration increases, the power and the torque increase. Compared with the example engine of 21% oxygen concentration, in order to reach the same dynamic performance, the 25% oxygen concentration can get 30.9% decrease rate of compression ratio.
     ⑥. Influence of displacement: When the displacement increases, the power and the torque increase. When the oxygen concentration increases, the power and the torque increase. Compared with the example engine of 21% oxygen concentration, in order to reach the same dynamic performance, the 27% oxygen concentration can get 19% decrease rate of displacement.
     3. Basic analyse of the second law of thermodynamics:
     When the oxygen concentration increases, the percentage of heat transfer and exhaust energy increase, the percentage of work decreases, the percentage of the availability of heat transfer and exhaust energy increase, the percentage of the availability of work decreases. This indicates that, when the oxygen concentration increases, the average cylinder temperature and exhaust temperature increase, so the availability of heat transfer and exhaust energy increase. The decrease of thermal efficiency makes the percentage of the availability of work decrease. Furthermore, the decrease of availability lost means that to increase the oxygen concentration can increase the availability efficiency of the second law of thermodynamics.
引文
[1]. 王学松.膜分离技术及其应用.科学出版社.1994.
    [2]. Wallesten J,Lipafiikov A N,Chomiak J et al.Turbulent Flame Speed Closure Model:Further Development and Implementation for 3-D Simulation of Combustion in SI Engine.SAE 982613,1998
    [3]. R.W.Bilger,“Future Progress in Turbulent Combustion Research[J]”,Progress in energy and combustion science,2000.3
    [4]. 林杰伦.发动机工作过程数值计算.西安:西安交通大学出版社,1986
    [5]. 高孝洪.船舶发动机仿真及其应用.北京:人民交通出版社,1993
    [6]. 王锡斌,“柴油机燃用多种燃料的喷雾和燃烧过程多维数值模拟的研究”,西安交通大学博士论文,20030901
    [7]. 周俊杰、邱东、解茂昭等“柴油机工作过程数值计算”,大连理工大学出版社,1990年 6 月,第 1 版
    [8]. 徐秀华、夏少华《模拟计算在发动机优化过程中的应用》现代汽车动力 2002.3
    [9]. 李国伟,蒋德明.发动机气缸内三维气体流场的数值模拟.工程热物理学报,1995(2)
    [10]. 范士杰,王开春.国产新型轿车空气动力特性的三维仿真计算.汽车工程,2000(5)
    [11]. 袁新,陈佐一.分析与计算流体力学.清华大学热能工程系,1999
    [12]. 常思勤.三维流动数值模拟中网格划分方法的研究.武汉汽车工业大学学报,1998(2)
    [13]. 许元默,帅石金,王燕军等.发动机缸内数值模拟现状及发展方向.小型发动机与摩托车,2002 31(5):364
    [14]. 王宇琳.柴油机缸内气流运动模拟:硕士学位论文.昆明:昆明理工大学,2002
    [15]. 朱明善等编著.热力学分析.北京:高等教育出版社,1992.
    [16]. 朱明善编著.能量系统的可用能分析.北京:清华大学出版社,1988.
    [17]. B.M.布罗章斯基著,王加漩译.可用能方法及其应用.北京:中国电力出版社,1996.
    [18]. 黄飞,林向东,陈新海等.膜法富氧试验及富氧燃烧.锅炉技术.2000.31(3):21-23.
    [19]. Sulpizio.Oxygen Enrichment-Markets and ProcessEeconomics.1985 Membrane Technology/Planning Conference.Cambridge,assachusetts,Oct,1985
    [20]. 天津欧达科技设备有限公司.中国能源,2000.4:42
    [21]. Weber W.F,BowmanW.Chem.Eng.prog.1986,11:23-28
    [22]. P.Tocu etal,Metalurgia.Feb.1980.2:61-65
    [23]. F.A.Vonesh JR,C,W.Watts.Industrial Heating Dec.1984:35
    [24]. 沈光林.膜法富氧在国内应用新进展[J].深冷技术,2006.2,No.1
    [25]. Till Marc.Numerical Simulation of Oxygen-Enriched Combustion in Industrial Processes.Computational Fluid Dynamics,2003.3:42-52
    [26]. 刘毅.富氧助燃技术及其应用.节能与环保,2005.2:28
    [27]. 沈光林等.膜法富氧用于助燃的理论研究.膜科学与技术.1994.14(3).
    [28]. 刘庆才,陈淑荣.富氧燃烧的主要环境影响因素概述.节能环保技术
    [29]. E.P.Hawthorne,“Oxygen Injection as a Means of Increasing Aero-Engine Performance,”Aircraft Engineering,1946.
    [30]. W.J.Wartinbee,Jr.“Emissions Study of Oxygen Enriched Air,”Society of Automotive Engineers,SAE paper number 710606,1971.
    [31]. A.A.Quader,“Exhaust Emissions and Performance of a Spark Ignition Engine Using Oxygen Enriched Intake Air,”Combustion Science and Technology,vol.19,pp.81–86,1978.
    [32]. B.Detuncq,J.Williams,C.Guernier,M.Gou,and Y.Fraser,“Performance of a Spark Ignition Engine Fueled by Natural Gas Using Oxygen Enriched Air,” Society of Automotive Engineers,SAE paper number 881658,1988.
    [33]. R.R.Sekar,W.W.Marr,R.L.Cole,T.J.Marciniak,J.E.Schaus,J.N.Eustis .Cylinder Pressure Analysis of a Diesel Engine Using Oxygen Enriched Air and Emulsified Fuels.SAE 901565
    [34]. S.Kajitani,N.Sawa,T.McComiskey,and K.T.Rhee,“A Spark Ignition Engine Operated by Oxygen Enriched Air,” Society of Automotive Engineers,SAE paper number 922174,1992.
    [35]. S.Kajitani,E.Clasen,S.Campbell,and K.T.Rhee,“Partial-Load and Start-Up Operations of a Spark-Ignition Engine with Oxygen Enriched Air,” Society of Automotive Engineers,SAE paper number 932802,1993.
    [36]. H.K.Ng,R.R.Sekar,S.W.Kraft,and K.R.Stamper,”The Potential benefits of Intake Air Oxygen Enrichment in Spark Ignition Engine Powered Vehicle,” Society of Automotive Engineers,SAE paper number 932803,1993.
    [37]. T.T.Maxwell,V.Setty,J.C.Jones,and R.Narayan,“The Effect of Oxygen Enriched Air on the Performance and Emissions of an Internal Combustion Engine,” Society of Automotive Engineers,SAE paper number 932804,1993.
    [38]. Kashmir S.Virk,Uygur Kokturk,and Craig R.Bartels.Effects of Oxygen-Enriched Air on Diesel Engine Exhaust Emissions and Engine Performance.SAE paper No.931004
    [39]. W.W.Marr,R.R.Sekar,R.L.Cole,T.J.Marciniak,D.E.Longman .Oxygen-Enriched Diesel Engine Experiments With a Low-Grade Fuel.SAE 932805
    [40]. Shuichi Kajitani,E.Clasen,S.Campbell,K.T.Rhee .Partial-Load and Start-Up Operations of Spark-Ignition Engine With Oxygen Enriched Air.SAE 932802
    [41]. Ramesh B.Poola,Henry K.Ng,Raj R.Sekar,John H.Baudino,Christopher P.Colucci.Utilizing Intake-Air Oxygen-Enrichment Technology to Reduce Cold-Phase Emissions SAE 952420
    [42]. R.B.Poola,R.R.Sekar,H.K.Ng,J.H.Baudino,and C.P.Colucci,“The Effects of Oxygen-Enriched Intake Air on FFV Exhaust Emissions Using M85,”Society of Automotive Engineers,SAE paper number 961171,1996.
    [43]. R.B.Poola,H.K.Ng,R.R.Sekar,J.H.Baudino,and C.P.Colucci,“Utilizing Intake-Air Oxygen-Enrichment Technology to Reduce Cold-Phase Emissions,” Society of Automotive Engineers,SAE paper number 952420,1995.
    [44]. Ramesh B.Poola,Kevin C.Stork ,Raj Sekar,Kevin Callaghan ,Stuart Nemser.Variable Air Composition with Polymer Membrane-A New Low Emissions Tool.SAE paper No.980178
    [45]. Ronald J.Donahue,David E.Foster.Effects of Oxygen Enhancement on the Emissions from a DI Diesel via Manipulation of Fuels and Combustion Chamber Gas Composition.SAE 2000-01-0512
    [46]. K.A.Subramanian,A.Ramesh.Experimental Investigation on the use of Water Diesel Emulsion with Oxygen Enriched Air in a DI Diesel Engine.SAE 2001-01-0205
    [47]. Timothy T.Maxwell,Varadaraja Setty,Jesse C.Jones and Raghu Narayan,The Effect of Oxygen Enriched Air on the Performance and Emissions of an Internal Combustion Engines,SAE PAPER 932804,1993
    [48]. Kevin Callaghan,Stuart Nemser,Ramesh Poola,Raj Sekar,Kevin Stork,William Johanson,Nitrogen Enriched Intake Air Supplied by High Flux Membranes for the Reduction of Diesel NOx Emissions,SAE PAPER 980177
    [49]. D.N.Assanis,R.B.Poola,R.Sekar and G.R.Cataldi,Study of Using Oxygen-Enriched Combustion Air for a Diesel Engines,ASME Journal of Engineering for Gas Turbines and Power JANUARY,Vol.123,2001
    [50]. Douglas E.Longman and Roger L.Cole,In-Cylinder Injection of Air / Oxygen-Enriched Air to Reduce Diesel Exhaust Emissions,2005 Joint Meeting of the U.S.Sections of the Combustion Institute,March 2005
    [51]. Jerald A.Caton,Results from a Cycle Simulation Incorporating the Second Law of Thermodynamics: Results for Spark-Ignition Engines Using Oxygen Enriched Combustion Air,SAE PAPER 2005-01-1130,2005
    [52]. Steve McConnell and Raj Sekar,Nitrogen-Enriched Air for the Reduction of NOx Emissions in Heavy-Duty Diesel Engines,II.A.8,Advanced Combustion Engine R& D,2004 Annual Progress Report,Energy Efficiency and Renewable Energy,Office of Freedom CAR and Vehicle Technologies,December 2004
    [53]. Ramesh B.Poola,Sekar Ramanujam R.and Cole Roger L.,Variable Oxygen-Nitrogen-Enriched Intake Air System for Internal Combustion Engine Applications,U.S.Patent 5649517,1997
    [54]. K.Kitagawa,N.Konishi,N.Arai and A.K.Gupta1,Temporally Resolved Two-Dimensional Spectroscopic Study on the Effect of Highly Preheated and LowOxygen Concentration Air on Combustion,Journal of ASME Engineering for Gas Turbines and Power,JANUARY,Vol.125,2003
    [55]. C.D.Rakopoulos,D.T.Hountalas,T.C.Zannis and Y.A.Levendis,Operational and Environmental Evaluation of Diesel Engines Burning Oxygen-Enriched Intake Air or Oxygen-Enriched Fuels: A Review,SAE PAPER 2004-01-2924,2004
    [56]. 姚春德,刘增勇,何邦全,高昌卿,孙家峰,进气氮气含量对柴油机混合气形成与燃烧过程的影响,燃烧科学与技术,No.3,Vol.8,2002
    [57]. 金英爱,崔淑琴,苏俊林,基于氧氮环境的发动机燃烧及其发展,吉林大学学报,2006
    [58]. 朱序和,富氧燃烧技术在内燃机中的应用,能源研究与信息,No.2,Vol.16,2000
    [59]. 王志民; 陈国需; 李华峰; 熊云,缺氧条件下含氧燃料添加剂助燃性能的研究,内燃机学报,Vol.22,No.1,2004,P75-78
    [60]. 张纪鹏,高青,郝利君,空气加氢改善发动机性能的试验研究,燃烧科学与技术,Vol.4,No.4,1998
    [61]. 金英爱 高青 玄哲浩,发动机燃烧过程模拟分析及临界爆震预测,燃烧科学与技术,VOL.9,No.6,2003
    [62]. 高青,张建华,马光兴,孙志军,孙济美,内燃机燃烧过程光纤传感器光电探测技术的研究,汽车工程,No.6,Vol.19,1997
    [63]. 高青,缸内燃烧光电测量的可视化技术,《吉林大学学报》工学版,VOL.32,No.1,2002.1,P12-15
    [64]. 左承基、李海海、徐天玉、路苏君,柴油机富氧燃烧排放特性的试验研究,热科学与技术,2003.01
    [65]. 肖广飞、乔信起、栗工、黄震、李理光、陈宗蓬,膜法富氧进气降低点燃式发动机冷起动排放,上海交通大学学报,2006.8
    [66]. 刘志明、郝吉明、朱天乐、傅立新,富氧条件下 NOx 催化净化的研究进展,环境污染治理技术与设备,2002.08
    [67]. 唐强、张黎立、张力,富氧助燃提高天然气发动机动力性能实验,重庆大学学报,2006.11
    [68]. GT-Power User’s Manual and Tutorial.Gamma Techmologies,August 2004
    [69]. 许元默、帅石金、王燕军等《发动机缸内数值模拟现状及发展方向》小型发动机与摩托车 2002.5
    [70]. 刘亚君、陈国华《小型四冲程汽油机准维循环模拟研究》小型发动机 2000.2
    [71]. 蒋德明,等.火花点火发动机的燃烧[M].西安:西安交通大学出版社,1992
    [72]. Woschni G.A Universally Applicable Equation for the Instantaneous Head Transfer Coefficient in the Internal Combustion Engine.SAE 670931.
    [73]. Woschni G.Experimental Investigation of the Heat Transfer in Internal Combustion Engines with Insulated Combustion Chamber Walls,in Heat and Mass Transfer in Gasoline and Diesed Engines.Ed.Spalding D B .New York:Hemispher Publ.Corp.,1989
    [74]. 周龙保等编.内燃机学.北京:机械工业出版社,1999.
    [75]. 程至远,解建光.内燃机排放与净化.北京理工大学出版社.2000.
    [76]. 周玉明.内燃机废气排放及控制技术.人民交通出版社.2001.
    [77]. 王建昕,傅立新,黎维彬.汽车排气污染智力及催化净化器.化学工业出版社.2000.
    [78]. 蒋德明.内燃机燃烧与排放学.西安交通大学出版社.2001.
    [79]. 何学良,詹永俊,李疏松.内燃机燃料.中国石化出版社.1999.
    [80]. 刘巽俊.内燃机的排放与控制.机械工业出版社.2003.
    [81]. 魏象仪.内燃机燃烧学.大连理工大学出版社.1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700