涡轮增压和废气再循环耦合的HSDI柴油机清洁燃烧机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代高速直喷(High Speed Direct Injection,简称HSDI)柴油机是乘用车节能减排最有效的技术之一。HSDI柴油发动机兼备传统柴油机和汽油机的卓越性能:油耗低、低转速高扭矩和升功率大等优点。随着节能和减排问题的日益突出,国内多数汽车企业已经把节能减排的“重担”落在HSDI柴油机上。然而,柴油机传统燃烧方式的燃烧路径经过了T-φ图中的碳烟和NOx易生成区,造成碳烟和NOx缸内源排放较高,达到欧Ⅳ和欧V排放标准需要采用复杂的后处理系统。因此,探索可行的清洁高效的燃烧系统,减轻后处理系统的负担和降低后处理系统成本已成为世界柴油动力汽车发展的当务之急。
     为了实现HSDI柴油机清洁燃烧,使缸内NOx源排放量达到欧V标准,同时尽可能地降低碳烟的排放量,本文通过仿真与试验相结合的方法,探索了HSDI柴油机通过增压后缸内引入大量冷却EGR实现稀释低温清洁燃烧相关技术路线和优化方法,包括增压技术和EGR控制技术。重点分析了EGR率和喷油规律等参数对缸内喷雾燃烧过程的机理和品质特性。论文研究的主要内容及创新性有以下几方面:
     1)分析HSDI柴油机原机(采用单级VGT增压方式)的源排放特性,然后利用整车动力学仿真平台(GT-drive)将原机搭载于某轿车上进行NEDC和FTP75道路循环仿真分析,了解该发动机在这两个典型道路循环行驶工况下的工作区域以及对应工作区域的排放特性。分析结果得知HSDI柴油机应重点改善中低转速中低负荷的排放特性,同时为后期研究稀释低温清洁燃烧发动机工况点的选取提供重要依据。
     2)通过反求方法建立了EGR率对增压压力的变化关系式和HSDI柴油机性能仿真模型,得到了多工况点最优VGT开度以及相应的EGR率。研究结果表明,对单级增压而言,增压压力随EGR率增加而增大,当EGR率增加到50%时,增压压力应达0.4MPa以上;对于两级增压而言,两级增压器分担的增压比相等,将造成大部分工作点处于压气机的低效区,不利于提高发动机的燃油经济性;增压压力压比分配应一级大一级小,有利于提高增压系统的效率和整机的燃油经济性。
     3)针对内燃机各缸新鲜空气进入量和EGR量不均匀性带来的各种问题,建立了发动机稳态和瞬态进气过程1D&3D耦合仿真平台。利用该平台,研究分析了发动机稳定工况和多种变工况下新鲜空气和EGR的各缸均匀性,包括变工况过程中不同气缸同类气道的进气流量均匀性,以及各缸进气量大小的变化规律。此外,还研究了变工况过程中喷油量变化结束后,进气总量、新鲜空气、EGR、空燃比和BMEP的变化规律,以及趋于稳定的响应时间和响应特性。提出了一种EGR和新鲜空气各缸平衡快速响应的控制方法,该方法获得一项国家发明专利。通过建立该分析手段可以更好地分析和优化各缸的进气均匀性和响应特性,为了解发动机瞬态行为提供了重要的监测和分析手段,也为保证每一缸每一循环实现高效清洁燃烧提供重要的技术保障。
     4)建立了稀释低温清洁燃烧仿真研究Kiva-3V平台,包括复杂几何结构拓扑方法,六面体结构网格生成技术。基于Kiva-3V仿真优化平台研究了常规燃烧方式(EGR率为0时)燃油喷射系统对喷雾和燃烧过程的影响,确定了喷嘴的最优几何参数。研究结果表明,过多的喷孔数不利于喷雾和燃烧的改善;油束夹角较小,NOx和碳烟排放升高;喷嘴凸出高度应与燃烧室深度及喷射夹角匹配合理。为了便于数据的快速处理和分析,评价分析发动机各项性能参数,课题开展过程中开发了一套“发动机性能评价数据库及数据自动化处理软件”,并获得了软件著作权。
     5)针对HSDI柴油机中等转速中等负荷工况点(RPM=2500r/min BMEP=0.9MPa),利用仿真分析手段和实验验证相结合的方法研究了喷油规律、EGR率、过量空气系数、喷油定时、进气温度和涡流比等参数对高EGR率下喷雾燃烧过程的影响,并揭示NOx、碳烟和CO生成的环境和机理,分析各参数的变化对滞燃期、放热率峰值和排放污染物的变化趋势。通过多参数的耦合优化,得到改善燃烧过程,降低有害排放的参数技术路线,为后期标定该发动机实现欧V排放标准起到指导作用。
     最后,通过实验验证了Kiva-3V仿真平台的可靠性,认为该仿真平台能很好的预测缸内喷雾燃烧过程以及排放污染物的生成量。该仿真研究平台不仅可作为发动机燃烧系统的有利开发工具,还可为制定EGR率和增压压力控制策略提供重要的分析手段,获得更多重要信息,为开发清洁低温燃烧系统提出优化方法和提出技术路线。
Modern high speed direct injection (HSDI) diesel engine for passenger car is one of the most effective technologies for energy saving and emission reduction. HSDI diesel engine combines the remarkable performances of both traditional diesel engine and gasoline engine, such as low fuel consumption, high torque at low speed, low noise and high power per liter, etc. As the issues of energy-saving and emission reducing have been becoming more prominent today, in China, most auto companies aim to develop HSDI diesel engine to cope with these problems. However, combustion path of traditional diesel engine passes through the regions which are easy to generate soot and NOx in T-φ plot, and it causes higher sources emission of soot and NOx in cylinder and can't meet the requirements of Euro IV and Euro V emission standard unless adopt complex post-processing system. Therefore, seeking for feasible clean efficient combustion system, lightening post-processing system's burden and reducing post-processing system cost become the most urgent tasks for diesel automobile industry development in the world.
     The research aim of this paper is to make the in-cylinder NOx emissions of HSDI diesel engine reach the Euro V standard and reduce soot emissions as much as possible. By the means of combining simulation and experiment, the paper explores optimization methods and technical route of diluted low-temperature clean-combustion technologies on HSDI diesel engine with cooled EGR after turbocharging, including turbocharging and EGR control technology. The paper focuses on how the parameters, including EGR rate and injection law, etc, affect the mechanism and characteristics of quality for cylinder spray and combustion process. The main research contents and innovations are summarized as follows:
     (1) Firstly, the emission characteristics of the original HSDI diesel engine (a single-stage turbocharging VGT mode) were analyzed. Then, by using the vehicle dynamics simulation platform (GT-drive), the HSDI diesel engine was added to a car which ran under the New European Driving Cycle (NEDC) and FTP75, and the operation areas and corresponding emission characteristics of this engine under the two road circular running conditions were studied. Results show that it should focus on improving emission characteristics of the HSDI diesel engine under the conditions of low speed and low load, which provide significant evidences for selecting operation point for the latter study.
     (2) Secondly, the relationship among EGR rate and boosting pressure as well as the HSDI diesel engine performance simulation model were established through the reverse method. The optimal VGT opening and corresponding EGR rate were obtained. The results show that when the EGR rate increases to50%, boosting pressure should be greater than0.4MPa. For the two levels of supercharger, equivalent intensification causes most working points locate in low efficiency area of compressor, and that is bad for the engine's fuel economy. Unequal boosting pressure distribution can improve both the efficiency of pressurization system and the fuel economy of engine.
     (3) Thirdly, to solve the problems caused by the uniformity between fresh air and EGR quantities in each cylinder of IC engine, its steady state and transient state simulation platform based on1D&3D coupling was established. Fresh air and EGR uniformity of each cylinder were analyzed under steady and a variety of non-steady operation conditions, including uniformity of intake flow mass for similar ports but different cylinders and intake mass variation laws of each cylinder. Additionally, the variation laws and response time and response characteristics of total intake mass, fresh air, EGR, BMEP and air-fuel ratio after fuel injection variation ends under non-steady operation condition were also studied. On that basis, a new control method for the balance of EGR and fresh air in each cylinder was proposed, and it was authorized national invention patent. The research method established in this paper is very helpful for analyzing and optimizing intake uniformity and response characteristics of each cylinder. In addition, this method not only gives a important monitoring and analysis means to study engine transient behavior, but also provides a important technical support to realize high efficient clean-combustion in each cylinder at each cycle.
     (4) Next, a simulation platform of Kiva-3V for diluted low-temperature clean-combustion, including complex geometric structure topological method and hexahedral structure grid generation technology, was established. On this basis, the influences of fuel injection system on spray and combustion process under conventional combustion method (EGR rate is0) were studied, and finally the optimal geometrical parameters of nozzle were determined. Results show that too many holes is bad for spray and combustion improvement; the smaller fuel beam angle is, the more NOx and soot emissions would be; the nozzle bulge height, combustion chamber depth and jet angle should match reasonably. In order to facilitate data processing and analysis and evaluate performance parameters of the engine, an engine performance evaluation database and automatic data processing software was developed and granted software copyright.
     (5) Based on the HSDI diesel engine under operation condition of RPM=2500r/min BMEP=0.9MPa, the effects of fuel injection pattern, EGR rate, excess air coefficient, injection timing, inlet temperature and swirl ratio on the processes of spray and combustion with a high EGR rate were studied by simulation analysis and experiment. Furthermore, the formation environment and mechanism of NOx, soot and CO, the effects of parameters variations on ignition delay, heat release rate and emission pollutants were analyzed. Through the coupling optimization of multiple parameters, an optimized route was determined for improving combustion process and reducing emission pollutants, and it would be helpful guideline in the next stage for engine calibration to meet Euro V emission standard.
     Finally, the simulation platform of Kiva-3V was verified by experiment, and it was proved to be reliable and can predict in-cylinder spray combustion process and emission pollutants very well. The simulation platform is not only a favorable tool for engine combustion system development, but also provides important analysis method to determine EGR rate and supercharged pressure control strategy, at the same time gets more important information to propose optimization method and technical route for the development of clean low-temperature combustion system.
引文
[1]韩志玉,陈征,刘敬平等.现代乘用车柴油机技术[J].中国工程科学,2009,11(11):30-36
    [2]张正智.中国柴油乘用车发展现状[J].汽车工业研究,2008,(9):11-14
    [3]Kiyomi Nakakita. Development Trends in Combustion and Aftertreatment Systems for Next-Generation HSDI Diesel Engines [J]. R&D Review of Toyota CRDL,2002,37(30):1-7
    [4]Michael Murphy. Passenger car fuel efficiency:technologies and trends to 2015[J]. Automotive World,2008, (2):12-38
    [5]Arjan Helmantel and Ingermar Denbratt. HCCI Operation of a Passenger Car DI Diesel Engine with an Adjustable Valve Train. SAE Paper 2006-01-0029,2006
    [6]SaKai Takatoshi. Trend of Diesel Engine for Passenger Car in Europe [J]. Isuzu Technical Journal,2002, (107):35-39
    [7]Leet Jeffrey A. Trends of Diesel Passenger Vehicles in the USA [J]. Engine Technology, 2005,7(3):12-17
    [8]Akira, Shigeru, Kazunori, et al. Effects of Diesel Fuel Properties on Direct-Injection Diesel Engine Performances [J]. Society of Automotive Engineers of Japan,2001,55(5): 24-29
    [9]Ezawa Masana. Clean Diesel Passenger Car in Japan [J]. Journal of the Society of Automotive Engineers of Japan,2005,59(7):117-123
    [10]中国市场情报中心.全球柴油车的比例到2015年将达28%.http://auto.yzdsb.com. cn/system/2004/09/08/000406740.shtml,2005-04-13
    [11]维基百科.Turbocharged Direct Injection. http://en.wikipedia.org/wiki/Turbocharged Direc Injection
    [12]维基百科.PSA HDI Engine. http://en.wikipedia.org/wiki/PSA_HDi_engine
    [13]维基百科.JTD Engine. http://en.wikipedia.org/wiki/JTD_engine
    [14]林伟.欧洲柴油车比例将从2004年45%上升到2012年53%[J].轻型汽车技术,2005,(4/5):39-39
    [15]东方汽车网.中国乘用车柴油化艰难历程http://www.chinahanji.com /newsshow.asp?ID=1254,2010-09-04
    [16]张可.加快发展先进柴油乘用车技术与战略研究[J].专家视角,2010,(1):29-34
    [17]史昭熙,李德桃.关于建立和完善我国汽车排放法规若干问题的探讨和建议[J].内燃机学报,1996,14(2):111-118
    [18]Fang Tiegang. Low-Temperatuer Combustion in a small-bore high-speed direct injection optically accessible diesel engine [D]. Illinois:Univ. of Illinois at Urbana-Champaign,2008, 22-43
    [19]Nicholas Milad. Advanced Diesel Engine 42% Brake Thermal Efficiency Technology Demonstrators[C]. SAE Paper 2011-01-0121,2011
    [20]成品油价网.http://oil.usd-cny.com/,2010-4-10
    [21]苏万华,赵华,王建昕等.均质压燃低温燃烧发动机理论与技术[M].北京:科学出报社,2009
    [22]国际汽车制造商协会(OICA)统计.http://oica.net/category/production-statistics/, 2010-4-12
    [23]Ruud Verbeek, Marc van Aken, Maarten Verkiel. DAF Euro-4 heavy duty diesel engine with TNO EGR system and CRT particulates filter[C]. SAE Paper 2001-01-1947,2001
    [24]GB 19578-2004.国家标准乘用车燃料消耗量论限值[S].2004
    [25]GB XXXX-XXXX.乘用车燃料消耗量评价方法及指标.征求意见稿,2009
    [26]http://www.bosch.com.cn/new/web/press/press_release_detai1102_cn.htm.
    [27]居钰生,缪雪龙,夏少华.我国高速轻型车用柴油机现状及其实现国3排放的技术途径[J].现代车用动力,2006,(2):1-5
    [28]Lian Z W, Reitz R D. The Effect of Vaporization and Gas Compressibility on Liquid Jet Atomization[J]. Atomization and Sprays,1993,3:249-264
    [29]Reitz R D. Modeling Atomization Processes in High-Pressure Vaporizing Sprays[J]. Atomisation and Spray Technology,1988,3:309-337
    [30]Naber J D, Reitz R D. Modeling Engine Spray/Wall Impingement[J].SAE Transactions, 1989,97(6):118-140
    [31]John E Dec. A conceptual model of DI diesel combustion based on laser-sheet imaging[C]. SAE Paper 970873,1997
    [32]John E Dec, Christoph Espey, Christoph Espey. Chemiluminescence imaging of auto ignition in a DI diesel engine[C]. SAE Paper 982685,1998
    [33]周龙保,刘忠长,高宗英.高内燃机学[M].北京:机械工业出版社,2011,211-220
    [34]Abraham J, Pickett L M. Computed and Measured Fuel Vapor Distribution in a Diesel Spray[J]. Atomization and Sprays,2010,20(3):241-250.
    [35]Pickett L M, Siebers D L. Fuel effects on soot processes of fuel jets at DI diesel conditions[C]. SAE Paper 0096-736X,2003
    [36]Pickett L M, Siebers D L. Soot in diesel fuel jets:effects of ambient temperature, ambient density, and injection pressure[J].Combustion and Flame,2004,138(1):114-135
    [37]Pickett L M, Siebers D L., Idicheria C.A. Relationship between ignition processes and the lift-off length of diesel fuel jets[C]. SAE Paper 2005-01-3843,2005
    [38]Han Z, Uludogan, Hampson A, et al. Mechanisms of Soot and NOx Emission Reduction Using Multiple-Injection in a Diesel Engine[C], SAE Paper 960633,1996
    [39]M Gomaa, A J Alimin, Kamarudin K A. Trade-off between NOX, Soot and EGR rates for an IDI diesel engine fuelled with JB5,World Academy of Science[J], Engineering and Technology,2010,11:1987-1993
    [40]Alain, Xavier, Jean. Influence of EGR unequal distribution from cylinder to cylinder on NOx-PM trade-off of a HSDI automotive Diesel engine[J]. Applied Thermal Engineering, 2009,29(10):2043-2050
    [41]Dickey D W, Ryan III T W. NOx Control in Heavy-duty Diesel Engines-What is the Limit [C]. SAE 980174,1998
    [42]Chan, Das, Reitz R D. Modeling Multiple Injection and EGR Effects on Diesel Engine Emissions[C]. SAE Paper 972864,1997
    [43]王浒,尧命发,郑尊清等.基于VGT的EGR对电控柴油机影响的试验研究[J].内燃机学报,2009,27(2):109-115
    [44]王天灵,李骏,吴君华等.EGR和VGT的匹配对增压柴油机排放的影响[J].吉林大学学报(工学版),2006,36(4):493-496
    [45]Nicolas Dronniou, Marc Lejeune, Iyad Balloul. Combination of High EGR Rates and Multiple Injection Strategies to Reduction Pollutant Emissions [C]. SAE Paper 2005-01-3726, 2005.
    [46]Chryssakis, Assanis. Effect of multiple injections on fuel-air mixing and soot formation in diesel combustion using direct flame visualization and CFD techniques[C]. ASME 2005 Internal Combustion Engine Division Spring Technical Conference. Chicago,2005,171-180
    [47]Reitz, Madison, Thiel. Diesel Engine Particulate (Soot) Reduction by Means of Multiple Injections with an Increasing Injection Pressure in Each Successive Pulse [P]. US 6526939B2, 2003-03-04
    [48]Shuji Kimura, Osamu Aoki, Yasuhisa Kitahara. Ultra-Clean Combustion Technology Combining a Low-Temperature and Premixed Combustion Concept for Meeting Future Emission Standards[C]. SAE Paper 2001-01-0200,2001
    [49]Sasaki Shizuo, Ito Takekazu. Smoke-less Rich Combustion by Low Temperature Oxidation in Diesel Engines[C]. JSAE Annual Congress. Japan,2000,17-20
    [50]Kazuhiro Akihama, Yoshiki Takatori, Kazuhisa Inagaki. Mechanism of the Smokeless Rich Diesel Combustion by Reducing Temperature[C]. SAE Paper 2001-01-0655,2001
    [51]Najt P M, Foster D E. Compression-ignited homogeneous charge combustion[C]. SAE Paper 830264,1983
    [52]Iida N. Alternative Fuels and Homogeneous Charge Compression Ignition Combustion Technology[C]. SAE Paper 972071,1997
    [53]Zhao H, Peng Z, Ladommatos N. Understanding of controlled autoignition combustion in a four-stroke gasoline engine[J]. Inst Mech Eng Part D J Automot Eng,2003,215(1): 297-310
    [54]黄豪中.油均质压燃(HCCI)发动机燃烧过程数值模拟和实验研究:[博士学位论文].天津:天津大学,2007
    [55]Gray A W, Ryan T W. III. Homogeneous Charge Compression Ignition (HCCI) of Diesel Fuel[C]. SAE paper 971676,1997
    [56]Christensen M, Johansson B, Amneus P, et al. Supercharged Homogeneous Charge Compression Ignition[J]. SAE paper980787,1998
    [57]Christensen M, Johansson B, Einewall P. Homogeneous Charge Compression Ignition (HCCI) Using Iso-octane, Ethanol and Natural Gas-A Comparison with Spark Ignition Operation[C]. SAE paper 972874,1997
    [58]Aceves S M, Smith J R, Westbrook, et al. Compression Ratio Effect on Methane HCCI Combustion[J]. ASME Journal of Engineering for Gas Turbines and Power,1999,12(1): 569-574
    [59]Aceves S M, Flowers D L, Westbrook C K, et al. A Multi-Zone Model for Prediction of HCCI Combustion and Emissions[C]. SAE paper2000-01-0327,2000
    [60]Kelly-Zion, P L, Dec J E. A Computational Study of the Effect of Fuel Type on Ignition Time in HCCI Engines[C]. International Combustion Symposium,2000,28(1):1187-1194
    [61]Christensen M, Hultqvist A, Johansson B. Demonstrating the Multi-Fuel Capability of a Homogeneous Charge Compression Ignition Engine with Variable Compression Ratio[C]. SAE Paper1999-01-3679,1999
    [62]Joel Martinez-Frias, Salvador M. Aceves, Daniel Flowers, et al. HCCI Engine Control by Thermal Management[C]. SAE Paper 2000-01-2869,2001
    [63]Ra Y, Reitz R D. The Use of Variable Geometry Sprays with Low Pressure Injection for Optimization of Diesel HCCI Engine Combustion[C]. SAE paper 2005-01-0148,2005
    [64]Kook S, Bae C. Combustion Control Using Two-stage Diesel Fuel Injection in a Single-cylinder PCCI Engine[C]. SAE Paper 2004-01-0938,2004
    [65]Neely G, Sasaki S, Huang Y, et al. Diesel Emission Control Strategy to Meet US Tier 2 Emission Regulations[C]. SAE Paper 2005-01-1091,2005
    [66]Tamagna D, Ra Y., Reitz R D. Multi-dimensional Simulation of PCCI Combustion Using Gasoline and Duel-Fuel Direct Injection with Detailed Chemical Kinetics[C]. SAE Paper 2007-01-0190,2007
    [67]Sasaki S., Ito T., Iguchi S. Smoke-less Rich Combustion by Low Temperature Oxidation in Diesel Engines[J]. Aachen Colloquium Automobile and Engine Technology,2000,100: 17-20
    [68]Charles J. Mueller, Ansis Upatnieks. Dilute Clean Diesel Combustion Achieves Low Emissions and High Efficiency While Avoiding Control Problems of HCCI[C].11th Annual Diesel Engine Emissions Reduction Conference, Palmer House Hilton, Chicago, Illinois, 2005.
    [69]Henein N A, Bhattacharyya A, Schipper J, et al. Combustion and Emission Characteristics of a Small Bore HSDI Diesel Engine in the Conventional and LTC Combustion Regimes[C].SAE Paper2005-24-045,2005
    [70]Henein N A, Kastury A, Natti K. Advanced Low Temperature Combustion (ALTC): Diesel Engine Performance, Fuel Economy and Emissions[C].SAE Paper 2008-01-0652,2008
    [71]郑朝蕾.柴油机高效清洁燃烧方式基础理论研究:[博士学位论文].天津:天津大学,2008
    [72]Green Car Congress. EPA's Clean Diesel Combustion Engine. http://www. greencarcongress.com/2005/01/eparsquos_clean.html,2005-01-29
    [73]Alriksson M, Rente T, Denbratt I. Low Soot Low NOx in a Heavy Duty Diesel Engine Using High Levels of EGR[C]. SAE Paper 2005-01-3836,2005
    [74]Green Car Congress. Reactivity Controlled Compression Ignition (RCCI) for Simultaneous Reduction of Fuel Consumption, NOx and PM. http://www.greencarcongress. com/2010/08/reactivity-controlled-compression-ignition-rcci-for-simultaneous-reduction-of-fuel-consumption-nox-a.html,2010-08-05
    [75]Reitz R D, Reactivity Controlled Compression Ignition:A Pathway to High-Efficiency, Clean Internal Combustion Engines[C].5th Annual Nelson Institute Earth Day Panel Session: Innovation in Clean Technology,2011
    [76]Derek Splitter, Reitz R D, Reed Hanson. High Efficiency Low Emissions RCCI Combustion by Use of a Fuel Additive[C]. SAE Paper 2010-01-2167,2010
    [77]Kokjohn L, Hanson R M, Splitter D A, et al. Fuel reactivity controlled compression ignition (RCCI):a pathway to controlled high-efficiency clean combustion International Journal of Engine Research June 1[J],2011,12:209-226
    [78]wikipedia.http://en.wikipedia.org/wiki/Homogeneous_charge_compression_ignition, 2007-08-03
    [79]长丰集团.国家高技术研究发展计划(863计划)课题任务合同书《新一代轿车用环保高效柴油机研发》,课题编号:2008AA11A116,2008
    [80]廖水容.基于KIVA的二甲基醚发动机燃烧数值模拟研究:[硕士学位论文].重庆:重庆交通大学,2007
    [81]刘宇.基于GT-Power的汽油机仿真及优化设计:[硕士学位论文].长春:吉林大学, 2004
    [82]徐秀华,夏少华.模拟计算在发动机优化过程中的应用[J].现代汽车动力,2002,(3):23-26
    [83]孙朕.基于GT-Power的二甲基醚DME发动机性能仿真研究:[硕士学位论文].重庆:重庆交通大学,2010
    [84]朱访君,吴坚.内燃机工作过程数值计算及其优化[M].北京:国防工业出版社,1997:13-25
    [85]GT-Power User Manual Version 2,2006
    [86]Amsden A A, Ramshaw J D, O'Rourke P J, et al. Duckowicz. KIVA-Ⅱ:A Computer Program for Two- and Three- Dimensional Fluid Flows with Chemical Reaxtions and Fuel Sprays[R]. Los Alamos National Laboratory report LA-10245-MS,1985
    [87]O'Rourke P J, Amsden A A. The TAB Method for Numerical Calculation of Spray Droplet Breakup[C]. SAE Paper 872089,1987
    [88]Amsden A A, O'Rourke P J, T. D. Butler, et al. KIVA-Ⅱ:A Computer Program for Chemically Reactive Flows with Sprays[R]. Los Alamos National Laboratory report, LA-11560-MS,1989
    [89]Amsden A A. KIVA-3:A KIVA Program with Block-Structured Mesh for Complex Geometries[R]. Los Alamos National Laboratory report, LA-12503-MS,1993
    [90]Liu A B, Mather D and Reitz R D. Modeling the Effects of Drop Drag and Breakup on Fuel Sprays[C]. SAE Paper 930072,1993
    [91]O'Rourke P J and Amsden A A. A Particle Numerical Model for Wall Film Dynamics in Port-Injected Engines[C]. SAE Paper 961961,1996
    [92]Amsden A A. KIVA-3V:A Block-Structured KIVA Program for Engines with Vertical or Canted Valves[R]. Los Alamos National Laboratory report, LA-13313-MS,1997
    [93]Amsden A A. Kiva-3V, Release 2, Improvements to Kiva-3V[R]. Los Alamos National Laboratory report, LA-13608-MS,1999
    [94]O'Rourke P J and Amsden A A. A Spray/Wall Interaction Submodel for the KIVA-3 Wall Film Model[C]. SAE Paper2000-01-0271,2000
    [95]百度百科.湍流模型.http://baike.baidu.com/view/1109424.htm
    [96]Han Z and Reitz R D. Turbulence Modeling of Internal Combustion Engines Using RNG k-e models[J]. Comb. Sci. Tech,1995,106(267):4-6
    [97]Kong S C, Han Z, Reitz R D, et al. The Development and Application of a Diesel Ignition and Combustion Model for Multidimensional Engine Simulation[C]. SAE Paper 950278,1995
    [98]Victor Yakhot and Steven A. Orszag. Renormalization Group Analysis of Turbulence[J]. Phys. Rev. Lett,1986,57(14):1722-1724
    [99]史绍熙.内燃机燃烧研究中的几个前沿问题[J].内燃机学报,1990,8(2):95-104
    [100]Bracco F V. Modeling of Engine Sprays[C]. SAE Paper 850394,2002
    [101]贺萍.对KIVA程序中粒子跟踪数学模型的修正[J].内燃机学报,1997,15(2):159-165
    [102]Reitz R D. Modeling Automization Processes in High Pressure Vaporzing Sprays[J]. Atomisation and Spray Technology,1987,3(4):309-337
    [103]Reitz R D. Structure of High Pressure Fuel Sprays[C]. SAE Paper 870594,1987
    [104]朱广圣,林钧毅,张月林.柴油机瞬态燃油喷注贯穿和蒸发的数值模拟[J].燃烧科学与技术,1998,(2):12-16
    [105]宋军,刘永长,贺萍等.柴油机多阶雾化模型及动态喷雾模型[J].内燃机学报,1997,(3):297-305
    [106]John K D. A Particle Fluid Model for Liquid Sprays[J]. Journal of Computational Physics,1980,35(2):229-253
    [107]Beale J C., Reitz R D. Modeling Spray Atomization with the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model [J]. Atomization and Sprays,1999,9(6): 623-650
    [108]Reitz R D. Modeling Atomization Process in High Pressure Vaporizing Sprays[J]. Atomization and Spray Technology,1987,3:309-337
    [109]Halstead M, Kirsh L, Quinn C, et al. The Autoignition of Hydrocarbon Fuels at High Temperatures and Pressures Fitting of a Mathematical Model[J], Combust and Flame,1977, 30:45-60
    [110]解茂昭.内燃机计算燃烧学[M].大连:大连理工大学出版社,2005,122-148
    [111]Magnussen B F, Hjertager B H. On Mathematical Modeling of Turbulent Combustion with Special Emphasis on Soot Formation and Combustion[C]. Symposium (International) on Combustion, Trondheim,1976:719-729
    [112]蒋德明,陈长佑,杨嘉林等.高等车用内燃机原理(下册)[M].西安:西安交通大学出版社,2005:231-264
    [113]Heywood, LB.1976 Pollutant Formation and Control in Spark-Ignition Engines[J]. Progress in Energy and Combustion Science,1976,1:135-164
    [114]Patterson M J, Kong S C, Hampson G. J. Modeling the Effects of Fuel Injection Characteristics on Diesel Engine Soot and NOx Emissions[C]. SAE Paper 940523,1994
    [115]Hiroyasu H and Kadota T. Models foe Combustion and Formation of Nitric Oxide and Soot in DI Diesel Engines[C]. SAE Paper 760129,1976
    [116]Belarduni P, Bertoli C, Ciajolo A, et al. N. Three Dimensional Calculations with In Cylinder Sampling Valve Data[C]. SAE Paper 922225,1992.
    [117]Walls J R, Strickland-Constable R F. Oxidation of Carbon between 1000-2400℃[J]. Carbon,1964,1(3):333-334
    [118]Hampson G. J, Xin J, Liu Y, et al. Modeling of NOx Emissions with Comparison to Exhaust Measurements for a Gas Fuel Converted Heavy-Duty Diesel Engine[J]. Journal of Fuels and Lubricants,105(4),1996:1503-1517
    [119]刘敬平,杨汉乾,湖南大学.发动机性能评价数据库及数据自动化处理软件.软件编号:2010SR026392,2010-10-4
    [120]GB17691-2005.车用压燃式、气体燃料点燃式发动机与汽车排气污染物排放限值及测量方法(中国Ⅲ、Ⅳ、Ⅴ阶段)[S].2005
    [121]博世贸易(上海)有限公司.柴油喷射系统.http://www.bosch-trading.com.cn/web/-product/product_diesel_.jsp,2011-04-28
    [122]Maiboom A, Tauzia X, Hetet J F, et al. Experimental study of various effects of exhaust gas recirculation (EGR) on combustion and emissions of an automotive direct injection diesel engine[J], Energy,2008,33:22-34
    [123]春阳,孙立宁,杜志江等.电控柴油机产品ECU标定系统的开发与实现[J].汽车工程,2007,29(7):586-589
    [124]Bowman C T. Kinetics of Pollutant Formation and Destruction in Combustion[J]. Progress in Energy and Combustion Science,1975,1:33-45
    [125]Jing Ping Liu, Norbert Schorn, Christof Schernus, et al. Comparison of Method of Characteristics with Finite Difference Methods on One-Dimensional Gas Flow in IC Engine Manifold[C]. SAE 960078,1996
    [126]Jing Ping Liu, Bingham J F. A study on the intake pressure wave actions and volumetric efficiency-speed characteristics of multi-cylinder engines[J]. 内燃机学报,1997,15(2): 138-150
    [127]Jing Ping Liu, Bingham J F. Effects of intake system dimensions on volumetric efficiency-speed characteristics of multi-cylinder engines[J]. 内燃机学报,1997,15(3): 257-266
    [128]Musculus M P B. On the Correlation Between NOx Emissions and the Diesel Premixed Burn[C]. SAE Paper 2004-01-1401,2004
    [129]Hiroshi Uchida. Transient Performance Prediction for Turbocharging Systems Incorporating Variable-geometry Turbocharges[J]. R&D Review of Toyota CRDL,2002,41 (3):22-28
    [130]Ugur Kesgin. Effect of turbocharging system on the performance of a natural gas engine[J]. Energy Conversion and Management,2005,46(1):11-32
    [131]Nakonieczny K. Entropy generation in a diesel engine turbocharging system [J]. Energy, 2002,27(11):1027-1056
    [132]李毅.详解VGT可变截面涡轮增压.http://www.che168.com/article/325952_1.html, 2010-11-15
    [133]Byeongil An, Takashi Shiraishi. Development of Variable Two-stage Turbocharger for Passenger Car Diesel Engines[J]. Mitsubishi Heavy Industries Technical Review,2010,47 (4):1-6
    [134]夏兴兰,陈大陆,王胜利.内燃机气道性能的评价方法[J].现代车用动力,2007,(2):7-12
    [135]. Cui Y, Pan W, Leylek J H. Cylinder-to-cylinder variation of losses in intake regions of IC engine[C]. SAE 981025,1998
    [136]杜巍,孙伟华,刘福水.增压多缸柴油机各缸进气不均匀性的研究[J].内燃机工程,2010,02:27-30
    [137]杜巍,刘福水,李志杰.增压柴油机进气压力波动规律的试验研究[J].内燃机工程,2008,03:37-40
    [138]Jacek Misztal, Hongming Xu, Miroslaw L. Cylinder-to-Cylinder Variations in a V6 Gasoline Direct Injection HCCI Engine[J]. ASME,2009,131(4):12-16
    [139]Alain Maiboom, Xavier Tauzia and Jean-Francois Hetet. Influence of EGR unequal distribution from cylinder to cylinder on NOx-PM trade-off of a HSDI automotive Diesel engine[J].Applied Thermal Engineering,2009,29:2043-2050
    [140]郭胜江,吴广庆,陈国邦.适用于回流区流体力学模拟计算的三种高雷诺数湍流模型的比较[J].制冷学报,2005,26(3):26-29
    [141]张彪.统计学[M].长沙:湖南人民出版社,2001,80-123
    [142]刘敬平,杨汉乾,杨靖等.用于内燃机的废气再循环系统[P].中国专利.ZL201010521187.1,2010-10-27
    [143]LIU Yong-feng, ZHANG You-tong, XIONG Qing-hui. Mesh Generation and Dynamic Mesh Management for KIVA-3V[J].北京理工大学学报(英文版),2009,18(1):12-17
    [144]Han Z. and Reitz R D. A Temperature Wall Function Formulation for Variable-Density Turbulence Flows with Application to Engine Convective Heat Transfer Modeling[J]. International Journal of Heat and Mass Transfer,1995,40(3):613-625
    [145]Reitz R D and Tang-wei Kuo. Modeling of HC Emissions Due to Crevice Flows in Premixed-Charge Engines[C]. SAE Paper 892085,1989
    [146]Syed and Raja K. In-cylinder fluid flow, turbulence and spray models—A review[J]. Jawaharlal Nehru Technological University,2009,13:1620-1627
    [147]Montgomery D T and Reitz R D. Six-Mode Cycle Evaluation of the Effect of EGR and Multiple Injections on Particulate and NOx Emissions from a D.I. Diesel Engine[C]. SAE Paper 960316,1996
    [148]Yi Liu and Reitz R D. Optimizing HSDI Diesel Combustion and Emissions Using Multiple Injection Strategies[C]. SAE 2005-01-0212,2005
    [149]Lyle M P, Dennis L S. Non-Sooting Low Flame Temperature Mixing-Controlled DI Diesel Combustion[C]. SAE Paper 2004-01-1399,2004
    [150]孙平,夏开彦,谢雪峰等.柴油机稳流气道试验台的仿真与试验[J].农业工程学报,2007,23(1):99-104
    [151]于吉超,刘德新,冯洪庆.柴油机进气涡流自动试验系统设计与评价方法[J].中国工程科学,2007,9(5):85-90

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700