Zn-22 wt.%Al合金在雷管延期体中的可行性应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业雷管延期体生产环节使用了大量的重金属铅,严重污染了自然环境并对人体造成巨大危害,本文提出采用室温超细晶材料Zn-22wt.%Al共析合金替代铅来生产工业雷管延期体,实现雷管延期体的非铅化。
     Zn-22wt.%Al合金通过360℃、24小时的均匀化处理+水淬的热处理方式可以有效地细化晶粒,获得细小的两相组织,其平均晶粒尺寸约为0.5μm,提高了室温下的塑性变形能力。
     由于管材的力学性能不易测试,本文采用热挤压棒材的方法来研究挤压温度和挤压比对Zn-22wt.%Al合金室温力学性能和微观组织的影响,进而为管材的制备提供工艺参数指导。实验结果发现,在200℃C~350℃的挤压温度和8、16、32的挤压比范围内,挤压温度越低、挤压比越小,合金的晶粒越细小,越有利于实现Zn-22wt.%Al合金室温下低流变应力和高延展性,并在挤压温度200℃、挤压比为8、应变速率为10-3s-1时获得了室温下267%的延伸率和105MPa的极限抗拉强度。
     本文自行设计了一套管材的平面分流挤压模,并通过Deform软件对挤压过程进行了仿真模拟,结果发现焊合室高度对管材的焊合质量的影响很大,而挤压温度(200℃、250℃)的影响却不明显,当焊合室高度为8mm时管材容易出现焊缝,高度为15mm时焊合良好,并通过YJJ-500B型卧式挤压机成功制备出焊合质量良好(?)20×4.6mm的Zn-22wt.%Al合金管。
     拉拔实验中,将Zn-22wt.%Al合金管材由(?)18mm成功拉拔至(?)12mm,但受限于现有设备,若要继续将合金管拉拔至雷管延期体所要求的(?)4.5mm还存在一定困难,在此也提出了一系列改进措施和方法。实验同时也证明了Zn-22wt.%Al合金管在拉拔过程中不会发热过大,这一点非常适合于制备雷管延期体。总体上来看,Zn-22wt.%Al合金具有优良的可挤压性和一定的可拉拔性,将其应用于雷管延期体具有一定的研究前景和可行性,但仍需要继续探索。
A great deal of lead has been used in the production links of Delay detonator body, and it does great harm to natural environment and human health, to solve this problem, this study try to use Zn-22wt.%Al eutectoid alloy with an ultrafine-grained structure at room temperature to replace lead to produce Delay detonator body in a innovative way, thus make Delay detonator body out of lead. This study included with melting alloy, heat treatment, hot extrusion, mechanical properties and microstructure analysis, porthole die design, preparation of Zn-22wt.%A1 alloy pipe, tube drawing, a set of production process.
     The homogenizing treatment at 360℃for 20h and quenching subsequently can effectively develop an ultrafine-grained structure in Zn-22wt.%Al casting blank, the microstructures had an equiaxed and homogeneously distributed Al-rich and Zn-rich duplex-phase and its average grain size was about 0.5μm. At the same time, the plastic deformation ability at room temperature has been greatly improved.
     As we know, extrusion temperature and extrusion ratio have an important impact on the properties of materials. In this article, Zn-22wt.%Al alloy samples with different microstructures and mechanical properties were obtained by hot extrusion. From the result,it is concluded that with the rise of extrusion temperature(200、250、300、350℃) and extrusion ratio (8、16、32),the flow stress is increasing while the elongation-to-failure is decreasing. When extrusion temperature is 200℃and extrusion ratio is 8,this alloy exhibited a large elongation of 267% albeit at room temperature and a rate of 10-3s-1.
     The porthole die of circular tube is designed and the extrusion process is simulated by Deform-3D simulation software. It is concluded that maximum welding pressure on the welding plane increase with respect to chamber height, while it is not much affected by extrusion temperature. When chamber height is 15mm,high quality pipe is prepared out at the temperature of 200℃。
     Compared with lead, the hardness and flow stress of Zn-22wt.%Al alloy is higher, limited to existing equipment, the drawing process can not be finished normally and confront with some difficulties. To solve this problem, this article brings forward some improvement measures。The experiment also show that Zn-22wt.%Al alloy do not generate too much heat during the drawing process, which is very suitable for producing Delay detonator body, but still need to continue to explore and research.
引文
[1]刘自汤.我国工业雷管的现状与发展[J].爆破器材,1996(2):21-25.
    [2]Committee on Measuring Lead in Critical Populations. Measuring Lead exposure in Infants, Children and other sensitive population. Washington DC:National Academy Press, 1993:1-72.
    [3]李敏,林玉锁.城市环境铅污染及其对人体健康的影响[J].环境监测管理与技术,2006,18(5):6-10.
    [4]王力.铅污染对儿童健康的危害[J].健康与生物医药,2008(4):168.
    [5]马扣祥.铅污染及儿童铅中毒的途径及防治措施[J].电池工业,2003,8(2):89-93.
    [6]马宏昊,沈兆武.无铅雷管系统研究[J].爆破器材,2009,38(3):18.
    [7]陈良友,刘长江,李树斌,等.废铅芯延期体循环利用方法[P].中国专利:CN102031376A,2011-04-27.
    [8]史山群.国外火工品[M].北京:国防工业出版杜,1977:42-54.
    [9]郭爱清.影响电雷管铅延期体延时精度的实验探讨[J].煤矿爆破,2008,4:15-16.
    [10]陈志军.工业雷管延期精度的研究[D].南京:南京理工大学,2010.
    [11]张立斌,海锦涛,白秉哲.超塑技术在高新材料中的应用及发展策略[J].科学学报,1996,92(1):39-41.
    [12]Takashi Ninomiya, Hirohito Him, Naoyuki Kanetake, Takao Choh. High Strain Rate Superplmtic Bulge Forming of SiC Particle Reinforced 2124 Aluminum Alloy symposite[J]. Japan Institute of Light Metals,1998,48(8):380-384.
    [13]Y. Yan, C. B. Zhang, B. R. Liu. Superplastic Deformation and Fracture Mechanism of a SiCp/2024Al Composite[J]. Acta Metallurgica Sirtica(Enhlish Letters),1999,12(6): 1295-1302.
    [14]T.T.Anderson, L.Hislop. Production of Aerospace Parts Using Superlastic forming and Diffusion Bonding of Titanium Superplasticity in Aerospace[J]. Themetallurgical Society, 1988:345-360.
    [15]D. Lee, The nature of superplastic deformation in the Mg-Al eutectic[J]. Acta Metallurgica,1969(17):1057-1069.
    [16]吴诗淳.金属超塑性变形理论[M].第一版.北京:国防工业出版社,1997.
    [17]陈浦泉.组织超塑性[M].第一版.哈尔滨:哈尔滨工业大学出版社,1988.
    [18]崔建忠,马龙翔.塑性变形机制[J].金属科学与工艺.1991,10(1):68-75.
    [19]R. C. Gifkins. Grain rearrangements during superplastic deformation[J]. Materials Science.1987,13:1926-1936.
    [20]K. Matsuki, Morita, H, M.Yamada,et al. Relative motion of grains during superplastic flow in an Al-9Zn-1wt.%Mg alloy[J]. Metal Science.1977,11:156-163.
    [21]林兆荣.金属超塑性成形原理及应用[M].北京:航空工业出版社,1990.
    [22]王长丽.锌合金和铝合金超塑微挤压研究[D].哈尔滨:哈尔滨工业大学,2001.
    [23]单德彬,郭斌,王春举,等.精密微塑性成形系统[P].哈尔滨工业大学.专利申请号:03132554.8.
    [24]聂小武.实用有色合金铸造技术[M].辽宁:辽宁科学技术出版社,2009.
    [25]何景素,王燕文.金属的超塑性[M].第一版.北京:科学出版社,1986.
    [26]Z.M.E1-Baradie. Grain refining of Zn-22wt.%Al superlastic alloy[J]. Materials Processing Technology.1977,84:73-78.
    [27]C.F.Yang, L.H.Chiu, Y.P.Sheu. Effects of thermomechanical treatments on superlasticity of Zn-22wt.%Al alloy [J]. Materials and Manufacturing processes.1977,12:199-214.
    [28]Minoru Furukawa, Zenji Horita, Minoru Nemoto, Ruslan Z.Valiev, T. G. Langdon. Fabrication of submicrometer-grained Zn-22%A1 by torsion straining[J]. Materials research. 1996,11:2128-2130.
    [29]Minoru Furukawa. Microstructual characteristics and superplastic ductility in a Zn-22%A1 alloy with submicrometer grain size[J]. Materials Science and Engineering.1998, 241:122-128.
    [30]S.M.Lee, T.G. Langdon. High strain rate superplasticity in a Zn-22%A1 alloy after equal-channel angular pressing[J]. Materials Science Form.2001,355-359:321-326.
    [31]D.W.Livesey, N.Ridley. Investigation of the stress-strain rate curve at low strain rate for superplastic Zn-22%A1 alloy [J]. Scripta Metallurgica, 1982,16:165-168.
    [32]F. A. Mohamed, T. G. Langdon. Flow localization and neck formation in a superplastic metal[J].Acta Metallurgica.1981,29:911-920.
    [33]H. Naziri, R. Pearce, Effect of prestraining under hydrostatic pressure on the creep life of an Zn-22%A1 alloy [J]. J Aust Inst Metals.1970,15:206-211.
    [34]C. H. Caceres, D. S. Wilkinson. Superplastic behavior of a Zn-22 pct Al-0.5 pec Cu alloy[J]. Metallurgical Transactions A.1986,17A:1873-1875.
    [35]Tsutomu Tanaka, Kenji Higashi. Superplasticity at room Temperature in Zn-22A1 Processed by Equal-Channel-Angular Extrusion[J]. Materials Transactions.2004,45(4): 1261-1265.
    [36]S. H. Xia, J. Wang, J. T. Wang, J. Q. Liu. Improvement of room-temperature superplasticity in Zn-22 wt.%Al alloy[J]. Materials Science and Engineering,2008, A493: 111-115.
    [37]孙军.室温超塑性Zn-22 wt.%Al合金制备及力学性能研究[D].南京:南京理工大学,2011.
    [38]吴幼成,宋敬埔.延期药技术综述[J].爆破器材,2000,29(2):23-29.
    [39]刘谦.诺兰达公司利用电子雷管进行地下矿山的大型卸压爆破[J].工程爆破,2002(1):50-52.
    [40]Grobler. H. P. Using electronic detonators to improve all-round blasting performaces[M]. A. A. Balkema Publishers,2003:1-12.
    [41]吴新霞,赵根,王文辉,周桂松,刘小均等.数码雷管起爆系统及雷管性能测试[J].爆破,2006(4):93-96.
    [42]Rorke. Tony, Thabethe. Sydney. Blasting next to an unsupported road using electronic detonators[J]. Journal of Explosives Engineering,2004:34-40.
    [43]王鹏.可编程电子延期雷管研究[D].武汉:武汉理工大学,2007.
    [44]刘静安.铝型材挤压模具设计、制造、使用及维修[M].北京:冶金工业出版社,2002:23-100.
    [45]夏少华.微米晶/超细晶复合增塑及其机制研究[D].南京:南京理工大学,2010.
    [46]赵浩峰,王玲.铸造锌铝合金及其复合材[M].北京:中国标准出版社,2002.
    [47]王狂飞,白钦.热处理工艺对ZA27合金组织与性能的影响[J].机械工程材料.1999,23:2-10.
    [48]O.A.卡依勃舍夫.金属的塑性和超塑性[M].北京:机械工业出版社,1982.
    [49]M.Mabuchi, H. Iwasaki, K. Yanase, K. Higashi. Low temperature superplasticity in an AZ91 magnesium alloy processed by ECAE[J]. Scripta Mater.1997,36:681-686.
    [50]Chih-Fu Yang, Jiun-Hung Pan, Ming-Chieh Chuang. Achieving high strain rate superplasticity via severe plastic deformation processing [J]. Journal of Materials Science, 2008,43:6260-6266.
    [51]王祖唐,关延栋,雷沛等.金属塑性成型理[M].北京:机械工业出版社,1989.
    [52]李尚健.金属塑性变形成形过程模拟[M].第一版.北京:机械工业出版社,1999.
    [53]张国瑞.有限元法[M].第一版.北京:机械工业出版社.1991.
    [54]俞汉清,陈金德,金属塑性成形原理[M].第一版.北京:机械工业出版社,1999.
    [55]肖景容,李尚健,塑性成型模拟理论[M].第一版.武汉:华中理工大学出版社,1994.
    [56]汪大年.金属塑性成型理论[M].第一版.北京:机械工业出版社,1991..
    [57]李传民,王向丽,闫华军等.金属成形有限元分析实例指导教程[M].第一版.北京:机械工业出版社,2007.
    [58]J.M. Lee, B.M. Kim, C.G. Kang. Effects of chamber shapes of porthole die on elastic deformation and extrusion process in condenser tube extrusion[J]. Materials and Design, 2005,26(4):327-336.
    [59]于沪平,彭颖红,阮雪榆.平面分流焊合模成形过程的数值模[J].锻压技术,1999(5):9-11.
    [60]孙朝华.铝型材挤压过程数值模拟及模具优化设计[D].太原:太原理工大学,2001.
    [61]J.H.H. Lee, S.K. Jung. A non-steady state FM analysis of Al tubes hot extrusion by a porthole die[J]. Journal of Materials Processing Technology,2006,173(4):223-228.
    [62]Q. Li, C. Harris, J. Mark. Finite element modeling simulation of transverse welding phenomenon in aluminum extrusion process[J]. Material Design,2003, (24):493-497.
    [63]赵云路,唐志玉.铝塑型材挤压成型技术[M].北京:机械工业出版社,2000.
    [64]周乘龙.挤压“大帽”的原因与防治[J].铝加工,1991(3):57-60.
    [65]温景林,丁桦,曹富荣,等.有色金属挤压与拉拔技术[M].第一版.北京:化学工业出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700