共析体系合金的组织分布控制及强韧化处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
块体纳米晶材料的高强度低塑性缺陷已成为限制其工程应用的主要问题,2002年,Y.M.Wang等人在《Nature》上撰文介绍了在液氮温度下通过大变形量轧制+短时退火的方法获得了晶粒尺寸双峰分布的纳米结构纯铜,在保持了纳米铜高强度的同时有效改善了塑性,该结果表明了通过实现晶粒尺寸双峰分布(Bimodal)结构解决这一问题的可能性。但至今尚未有一种方法可以在多相合金中通过定量控制微米晶的比例与分布以获得兼具高强度与大延伸的多相块体纳米合金。针对这一不足,本研究通过合金成分设计+共析相变处理+剧烈塑性变形+退火的工艺组合在铜铝与锌铝共析体系双相合金中成功实现了可控的Bimodal结构,有效地改善了块体纳米晶材料的低塑性,特别是拉伸塑性在强度少量损失的前提下得到了较大提高;同时首次分析了纳米晶基体上微米晶区的分布状态对材料力学性能的影响,并探讨了在上述两种不同合金系中Bimodal结构的不同形成机制。
     研究结果表明:Cu-10.8wt.%Al合金中先共析相经高压扭转变形(High Pressure Torsion,HPT)细化与退火长大后形成微米晶区,而共析马氏体经变形细化与退火分解后形成超细晶基体,具有该Bimodal结构的试样与完全纳米晶态试样相比,抗拉强度由997MPa降至730MPa,但塑性应变量由0提高到4%;共析相变处理得到呈弥散分布的先共析相原位转变成微米晶,结果表明弥散分布于超细晶基体上的微米晶区使试样抗拉强度上升至1300MPa,塑性应变量为3%;同样具有40%先共析相比例的Zn-41wt.%Al合金在共析相变处理后直接进行室温4道次等径角变形(Equal Channel Angular Pressing,ECAP)后得到Bimodal结构,力学性能测试表明该合金在损失部分抗拉强度的前提下,塑性延伸率显著提高至26%(完全纳米晶态仅为7%)。
High strength with loss of ductility has been demonstrated a limitation of engineering utility in bulk nanostructured materials. Y.M.Wang et al reported nano-Cu with bimodal structure obtained by cryo-rolling at liquid nitrogen, which possesses excellent tensile ductility without obvious loss of strength. It suggests micrometer-sized grains with some fractions embedded in nanostructured matrix, namely bimodal structure was possible to be an effective route to eliminate the loss of ductility. But there is no process which can fabricate multi-phase nano-alloys by quantificationally controlling the fraction anddistribution of micro-meter sized grains. Present research succeeds in achieving controllable bimodal structure according to processing routes of composition design + eutectoid-phase-transformation treatment + severe plastic deformation + annealing. Results showed that tensile ductility was greatly improved without much loss of strength. Meanwhile, effect of distribution of micro-meter sized grains on mechanical properties was first discussed. Also analysis about different formation mechanisms of bimodal structure in these two eutectoid systems was included.
     Experiment results suggested that micrometer-sized grains originated from the refinement during high pressure torsion and then coarsening happened after annealing, while decomposition of eutectoid martensite resulted in formation of nanostructured matrix; compared with its nanostructured counterpart, specimen with this bimodal structure performed a little loss of strength from 997MPa to 730MPa, but much higher in tensile ductility from 0 to 4%; additionally, strength and tensile ductility were improved further to 1300MPa and 3% because of dispersion of micrometer-sized grains resulted from eutectoid transformation treatment. Bimodal structure is also observed in Zn-41wt.%Al with 40% hypo-eutectoid phase in volume fraction after solid solution treatment and 4 passes ECAP. Mechanical test results showed that the tensile uniform ductility increases from 7% to 26% with loss of the strength in this alloy.
引文
[1] H. Gleiter. Nanostructured materials: basic concepts and microstructure [J]. Acta mater, 2000, 48:1-29
    [2] JR Groza, JC Gibeling. Structural Nanomaterials. Dekker Encyclopedia of Nanoscience and Nanotechnology [M]. New York: 2004
    [3] J Eckert. Structure Formation and Mechanical Behavior of Two-Phase Nanostructured Materials [M]. In Naonostructured Materials; Koch, C.C., ED.; Noyes Publications: Norwich, NY.2002: 423-526
    
    [4] H.V. Gleiter. Nanocrystalline materials [J]. Prog in Mater Sci, 1989, 33:233
    [5] JA Eastman, MR Fitzsimmons, M Muller-Stach, et al. The elastic properties of nanostructured Ag measured by laser ultrasonictechnique [J]. Nanostructured Mater, 1992, 1:47
    [6] GW Nieman, JR Weertman, RW Siegel. Microhardness of nanocrystalline palladium and copper produced byinert-gas condensation [J]. Scripta Metall, 1989, 23:2013
    [7] GW Nieman, JR Weertman, RW Siegel, Cluster and Cluster-Assemlled Materials [M], in: Averback R S Berbhole J and Nelson D L. Mater,Res,Soc.Symp.Proc.206 Pittsburgh PA: Materials Research Society, 1991: 581
    [8] Lau, M.L.; Lavernia, E.J. Thermal Spray Processing of Nanocrystalline Materials [M]. In Nanostructrued Materials. In Nanostructured Materials; Koch, C.C., Ed.; Noyes Publications: Norwich, NY,2002:51-72
    [9] 田春霞,金属纳米块体材料制备加工技术和应用[J].材料科学与工程,2001,19(4):127-130
    
    [10] 刘珍,梁伟,许并社等.纳米材料制备方法及其研究进展[J].材料科学与工艺,2000,8(3):1033-107
    [11] 张振忠,宋广生,杨根仓等,块体金属纳米材料的制备技术进展及展望[J].兵器材料科学与工程,1999,22(3):46-50
    [12] P.G Sanders, J.A. Eastman, J.R. Weertman. Elastic and tensile behavior of nanocrystalline copper and palladium [J]. Acta Mater, 1997, 45:4019-4025
    [13] GW. Nieman, J.R. Weertman, R.W. Siegle. Mechanical behavior of nanocrystalline Cu and Pd [J]. J Mater Res, 1991,6:1012
    [14] Y.M Wang, M.W. Chen, F. Zhou, et al. High tensile ductility in a nanostructured metal [J]. Nature, 2002,419:912-914
    [15] W. David, Z. Lee, R. Rodriguez, et al. Al-Mg alloy engineered with bimodal grain size for high strength and increased ductility [J]. Scripta Mater, 2003,49:297-302
    [16] C.C. Koch. Ductility in Nanostructured and Ultra Fine-Grained Materials: Recent Evidence for Optimism [J]. J Metast Nanocryst Mater, 2003, 18:9
    [17] A.A. Karimpoor, U. Erb, K.T. Aust, et al. Tensile Properties of Bulk Nanocrystalline Hexagonal Cobalt Electrodeposits [J]. Mater Sci Forum, 2002, 415: 386-388
    [18] J.R. Weertman, C.C. Koch., editor. Nanostructured materials: processing, properties and applications [M]. Norwich: William Andrew Publishing, 2002: 397
    [19] P.G. Sanders, C.J. Youndahl, J.R. Weertman. The strength of nanocrystalline metals with and without flaws [J]. Mater Sci Eng. A, 1997, 234-236: 77-82
    [20] 梅本富,吴炳尧.开发新型合金材料的新:工艺——机械合金化法[J].材料科学与工程,1992,4:3-7
    [21] F. Ebrahimi, G. R. Bourne, M.S. Kelly, et ai. Mechanical properties nanocrystalline Nickel produced by electrodeposition [J]. Nanostructured Materials, 11 (3): 343-350
    [22] JR Groza. Nanocrystalline Powder Consolidation Methods [M]. In Nanostructured Materials; Koch, C.C.,Ed.; Noyes Publications: Norwich, NY,2002:179-222
    [23] 赵新奇,张俊宝,徐政等.累积叠轧焊制备超细晶IF钢微观组织与力学性能[J].上海有色金属,2002,23:107-110
    [24] 周果君,甘卫平.块体纳米材料的制备及性能研究[J].安徽化工,2002,3:19-21
    [25] C.C. Koch. The synthesis and structure of nanocrystalline materials produced by mechanical attrition: A review [J]. Nanostructured Materials, 1993, 2(2): 109-129
    [26] Y. M. Wang, E. Ma, M. W. Chen. Enhanced tensile ductility and toughness in nanostructured Cu [J]. Appl Phys Lett, 2002, 80(13): 2395-2397
    [27] S. Cheng, E. Ma, Y.M. Wang, et al. Tensile properties of in situ consolidated nanoerystalline Cu [J]. Acta Mater, 2005, 53: 1521-1533
    [28] D. Farkas, H.V. Swygenhoven, P.M. Derlet. lntergranular fracture in nanocrystalline metals [J]. Phys Rev B, 2002, 66: 060101
    [29] Q. Wei, D. Jia, K.T. Ramesh, et ai. Evolution and microstructure of shear bands in nanostructured Fe [J]. Appl Phys Lett, 2002, 81: 1240
    [30] 张立德,牟季美.纳米结构和纳米材料[M].北京:科学出版社,2001
    [31] J. Schiotz, T. Vegge, F.D. Di Tolla, et al. Atomic-scale simulations of the mechanical deformation of nanocrystalline metals [J]. Phys Rev, 1999, B60: 11971
    [32] R. Z. Valiev. Nanostructuring of metals by severe plastic deformation for advanced properties [J]. Nature Materials, 2004, 3
    [33] K. Lu, W.D. Wei, J.T. Wang. Microhardness and fracture properties of nanocrystailine Ni-P alloy [J]. Scripta Mater, 1990, 24: 2319
    [34] V Yamakov, D Wolf, SR Phillpot, et al. Dislocation process in the deformation of nanocrystalline aluminum by molecular-dynamics simulation [J]. Nature Mater. 1, 2002: 45-49
    [35] B.Q. Han, E.J. Lavernia. Improvement of ductility and toughness of cryomilled nanostructure Al alloys. 6~(th) Global Innovations Symposium: Trends in Materials and Manufacturing Technologies for Transportation Industries, Proceedings of the 2005 TMS meeting, San Francisco, CA, Feb.13-17, 2005:213-218
    [36] B.Q. Han, F.A. Mohamed, C.C. Bampton, et al. Improvement of Toughness and Ductility of a Cryomilled Al-Mg alloy via Microstructural Modification [J]. Metall.Mater.Trans.A, 2005, 36A:2018-2091
    [37] B.Q. Han, Z. Lee, D. Witkin, et al. Deformation Behavior of Bimodal Nanostructured 5083A1 alloys [J]. Metall.Mater.Trans.A, 2004, 36A :957-965
    [38] J.C. Ye, B.Q. Han, Z.H. Lee, et al. A tri-modal aluminum based composite with super-high strength [J]. Scripta Mater, 2005, 53:581
    [39] B.B. Sun,. M.L. Sui, Y.M. Wang, et al. Ultrafine composite microstructure in a bulk Ti alloy for high strength, strain hardening and tensile ductility [J]. Acta Materialia, 2006, 54:1349-1357
    [40] F.Q. Guo, H.J. Wang, S.J. Poon, et al. Metallic glass ingots based on yttrium [J]. Appl Phys Lett, 2005,86:091907
    [41] K.M. Youssef, R.O. Scattergood, K.L. Murty, et al. Ultrahigh strength and high ductility of bulk nanocrystalline copper [J]. Appl Phys Lett, 2005,87: 091904
    [42] L. Lu, et al. Ultrahigh strength and high electrical conductivity in copper [J]. Science, 2004, 304:422
    [43] E. Ma, et al. Strain hardening and large tensile elongation in ultrahigh-strength nano-twinned copper [J]. Appl.Phys.Lett, 2004, 85:4932
    [44] Y.H. Zhao, X.Z. Liao, S. Cheng, et al. Simultaneously increasing the ductility and strength of nanostructured alloys [J]. Adv.Mater, 2006, 18:2280-2283
    [45] X. Wu, et al. Gamma-epsilon Martensite Transformation and Twinning Deformation in FCC Cobalt during Surface Mechanical Attrition Treatment [J]. Scripta Mater, 2005, 52:547
    [46] E. Ma, et al. Effect of friction, backpressure and strain rate sensitivity on material flow during equal channel angular extrusion [J]. Scripta Mater, 2005, 52:1311
    [47] H. Rosner, J. Markmann, J. Weissmuller. Deformation twinning mechanisms in nanocrystalline Ni [J]. Philos.Mag.Lett, 2004, 84:321
    [48] E. Ma. Eight Routes to improve the tensile ductility of bulk nanostructured metals and alloys [J]. Nanostructured Materials, 2006:49-53
    [49] M.A. Meyers, et al. Research report on shear localization of Fe-Cr-Ni monocrystals [J]. Acta Mater, 2005,49:4025
    [50] Y.M. Wang, E. Ma. Three strategies to achieve uniform tensile deformation in a nanostructured metal [J]. Acta. Mater, 2004, 52: 1699-1709
    [51] Y.W. Xun, F. A. Mohamed. Superplastic behavior of Zn-22%Al containing nano-scale dispersion particles [J]. Acta Mater, 2004, 52: 4401
    [52] V. Yamakov, D. Wolf, S.R. Phillpot, et al. Dislocation process in the deformation of nanocrystalline aluminum by molecular-dynamics simulation [J]. Nature Mater, 2002, 1: 45-49
    [53] R. Z. Valley, R.K. Islamgaliev, I.V. Alexandrov. Bulk nanostruetured materials from severe plastic deformation [J]. Progress in Materials, 2000, 45: 103-189
    [54] R.Z. Valiev. Nanostrueturing of metals by severe plastic deformation for advanced properties [J]. Nature Materials, 2004, 3
    [55] R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, et al. Paradox of strength and ductility in metals processed by severe plastic deformation [J]. J.Mater.Res, 2002, 17: 5-8
    [56] Y.R. Kolobov, et al. Grain boundary diffusion characteristic of nanostruc.tured nickel [J]. Scripta Mater, 2001, 44: 873-878
    [57] R. Wurschum, S. Herth, U. Brossman. Diffusion in nanocrystalline metals and alloys-a status report [J]. Adv.Eng.Mater, 2003, 5:362-372
    [58] 布鲁克斯著,丁夫等校译.有色合金的热处理组织与性能[M].冶金工业出版社:341-352
    [59] T.G. Langdon, M. Furukawa, M. Nemoto, et al. Using equal channel angular pressing for refining grain size [J]. JOM, 2004, 4: 30-33
    [60] T. Tanaka, K. Higashi. Mierostructure in Zn-Al Alloy after equal-channel angular extrusion [J]. Mater Trans, 2004, 45: 1261
    [61] A.P. Zhilyaev, G.V. Nurislamova, B.K. Kim, et al. Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion [J]. Acta Materialia, 2003, 51: 753-765
    [62] A.P. Zhilyaev, S. Lee, G.V. Nurislamova, et al. Microhardnees and microstructural evolution in pure nickel during high-pressure torsion [J]. Scr Mater, 2001, 44: 2753
    [63] T.G. Langdon, M. Furukawa, M. Nemoto, et al. Using equal channel angular pressing for refining grain size [J]. JOM, 2004, 4: 30-33
    [64] 列文.金属的显微镜研究[M].北京:中国工业出版社:41-511
    [65] 上海交通大学《金相分析》编写组.金相分析[M].国防工业出版社
    [66] 刘淑云.铜及铜台金热处理[M].北京:机械工业出版社:85-111
    [67] L.L.Gao, X.H.Cheng. Microstructure, phase transformation and wear behavior of Cu-10%Al-4%Fe alloy processed by ECAE [J]. Materials Science and Engineering A, 2007 (in press)
    [68] 沈焕祥,赵品.高强度锌铝合金研究[J].河北冶金,2001,124:4
    [69] 刘金水.谢贤清,蒋冰等.Ce对Zn-Al合金织织性能的影响[J].中国有色金属学报,1998,8:6-10
    [70] 刘永红,张忠明,刘宏昭,吴子英.锌铝合金的研究现状及应用概况[J].铸造技术,2001:42-44
    [71] 何景素,王燕文.金属的超塑性[M].北京科学出版社,1986:86-143
    [72] 王狂飞,白聿钦.热处理工艺对ZA27合金组织与性能的影响[J].机械工程材料,1999,23:2
    [73] 夏少华,王佳,田刚等,剪切应变模式下超细共析片层组织演变研究[J].兵器材料科学与工程,2006,29:5-9
    [74] 许晓磊,于志伟,刘莎 等,Zn-A140合金非连续脱溶沉淀微观组织特征[J].大连海事大学学报,2003,8:1-3
    [75] 许晓磊,于志伟,史雅琴等,ZnA140合金时效过程中组织结构变化的跟踪观察[J].电子显微学报,2002,21:442-445
    [76] 赵浩峰,王玲,铸造锌铝合金及其复合材料[M].北京:中国标准出版社,2002
    [77] S.H. Xia, J. Wang, J.T. Wang, et al. Improvement of room temperature superplasticity in Zn-22%Al. alloy [J]. Materials Science and Engineering A, 2007 (in press)
    [78] M. Furukawa, Y. Ma, Z. Horita, et al. Microstructure charateristics and superplastic ductility in a Zn-22%A! alloy with submicrometer grain size [J]. Materials Science and Engineering A, 1998, 241: 122-128

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700