大跨越输电塔钢管节点承载力的试验研究与理论分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为输电线路钢管塔关键部分的节点,各种构件在此交汇,其应力状态十分复杂,应力集中现象非常明显。国内外针对这方面的试验研究和理论分析尚未充分展开。目前对于这类钢管节点大多采用有限元法和应力集中系数的方法来分析其受力性能,对管板节点及中空夹层钢管混凝土节点的受力直到破坏的机理还没有比较详细的研究。按现有的各国规范给定的分析方法,计算结果过于保守,不仅使设计人员无法准确把握结构的安全系数,而且对工程建设的经济性造成不利影响。同时,对节点在受力时可能引起管壁局部屈曲的问题以及加劲与未加劲的区别目前还没有专门的方法来估算,而国外各规范的经验公式给出的参考值未能全面准确的反映各种工况下的节点受力性能。因此对管板节点及中空夹层钢管混凝土节点的极限承载力做深入的试验与理论研究已成为目前需要尽快解决的问题。
     本文以某大跨越输电工程中的高耸钢管塔结构为工程背景,对K型管板节点及中空夹层钢管混凝土节点的受力性能进行了研究,具体包括以下几个方面的工作:
     (1)本文对钢管-插板连接的K型节点进行了足尺试验,通过试验探讨了节点在极限状态下的破坏现象和破坏机理。并以试验为参考,建立有限元分析模型。本文采用8结点实体单元进行有限元模拟,并考虑材料非线性及几何非线性,采用牛顿拉普森法进行求解,将试验结果与有限元分析结果及各国规范相应的计算公式进行对比分析,验证了有限元模型的有效性。
     (2)随后建立起适合本文研究内容的有限元模型进行节点参数分析,分析时考虑了主管轴力、加劲环板宽度、加劲环板高度、主管管径、主管壁厚以及节点板长度与厚度等因素的影响。通过研究,对管板连接节点的受力性能进行了总结。
     (3)考虑环形加劲板的影响,对理论公式进行了修正,并将修正后的计算公式值与试验值和有限元计算值做了比对分析。
     (4)本文对中空夹层钢管混凝土节点进行了足尺试验,通过试验探讨了节点在极限状态下的破坏现象和破坏机理。从试验结果来看,构件的承载能力较高,作为模型的中空夹层钢管混凝土节点构件能满足目标荷载的要求且有一定的安全储备。随后将试验结果与有限元分析结果进行了比较,验证了有限元模型的有效性。
     (5)本文对中空夹层钢管混凝土节点进行了大量的有限元计算,考察了节点各个参数。外钢管径厚比a=D/t、支管间隙与外钢管管径之比β=g/D、支管与外钢管壁厚之比γ=ti/t、支管与外钢管管径之比di/D以及主管轴向压应力与管材屈服强度之比η=σ/σv等参数对节点承载力的影响。同时也考察了支管与主管夹角θ及混凝土强度等级fcu的影响。计算结果表明,管径比、主管径厚比对于节点的承载能力有明显的影响;间隙比和混凝土强度的变化对节点承载力影响较小。运用多元回归方法得到了中空夹层钢管混凝土节点的极限承载力公式,为工程设计提供有意义的参考。
     (6)最后,对钢管节点的进一步研究工作进行了谈论。
The joints are the key parts of steel transmission towers. The joints are intersected by various components, which caused very complex stress states, and the stress concentration here is obvious. Experimental study and theoretical analysis have not yet fully developed at home and abroad.
     Most of the current research methods are using the finite element method and the stress concentration factor approach to analyze the mechanical properties of this type of steel tube connection. Detailed studies on the destruction mechanism of the tube-gusset plate and concrete-filled double skin steel tubular joints have not yet been carried out. According to the given analytical methods of the existing codes of many countries, the results are too conservative, hence the designers can not accurately grasp the safety factor of the structure, and it will also affect the economy of constructions adversely. At present, there is no specific way to estimate the local buckling of the tube walls and to estimate the difference between stiffened and unstiffened connections. The reference values given by empirical formulas of the codes of foreign countries can not accurately reflect mechanical properties of the joints under different conditions. Therefore, deeper experimental and theoretical research of the ultimate capacity of the tube-gusset plate joints and concrete-filled double skin steel tubular joints has become a key problem to be solved.
     Based on the project of a long-span tall transmission tower, researches about the mechanical properties of K-shaped tube-gusset plate joints and concrete-filled double skin steel tubular joints were carried out, specifically including the following areas:
     (1) Through full scale tests of the tube-gusset plate joints, the limit states of damage and failure mechanism were studied. Finite element simulations using Newton-Raphson method with 8-node solid elements considering material nonlinearity and geometric nonlinearity has been undertaken. The results of the test and the finite element method together with the corresponding formulas of the codes of different countries are compared and analyzed.
     (2) Then established the finite element models to analyze the parameters of the connections, the analysis considered the influence of the axial forces, the widths and the heights of the stiffening rings, the diameters, the thicknesses of the tube walls, the lengths and thicknesses of the plates together with other factors. Mechanical properties of the joints are summarized through analysis.
     (3) A simplified formula of the ultimate bearing capacity of the K-shaped tube-gusset plate joints is established using the analytical-theoretical-method considering the influence of ring-stiffening plate.
     (4) Through full scale tests of the tube-gusset plate joints, the limit states of damage and failure mechanism were studied. According to the results of the test, the joints studied show great bearing capacity, which can meet the requirements of the target load and there is a certain security reserve. Then the results of the test and the finite element method are compared and the validity of the finite element model was verified.
     (5) Widely range of finite element analysis of concrete-filled double skin steel tubular joints was carried out to research the influence of joints parameters on ultimate strength. Results show among all the parameters such as:the ratio of chord diameter to thickness a, that brace-to-chord diameter ratioβ, the ratio of brace thickness to chord thicknessγ, the ratio of brace diameter to chord diameter di/D, and the ratio of the axial stress to yield stress of the steel tube, the brace-to-chord diameter ratio and the ratio of chord diameter to thickness has significant influence on the ultimate strength. However, gap factor B(g/D) changes and concrete strength fcu changes have slight influence. The formula of the ultimate strength of concrete-filled double skin steel tubular joints was obtained by the use of multiple regression methods, which provides a meaningful reference for the design of the engineers.
     (6) Finally, the problems about the steel tubular joints requiring further researches were discussed.
引文
[1]Packer J A, Henderson J E,空心管结构连接设计指南[M].北京:科学出版社,1997.
    [2]张朝,输电塔钢管—插板连接的节点板承载力研究.《重庆大学硕士论文》,2010.陈以一,陈扬骥.钢管结构相贯节点的研究现状[J].建筑结构,2002,32(7):52-55.
    [3]赵熙元.钢管结构设计.钢铁技术,1997,1(1):47-51.
    [4]吴耀华,吴文奇.钢管在结构工程中的应用与发展[J].钢结构,2005,2(2):45-49.
    [5]沃登尼尔著,张其林,刘大康译.钢管截面的结构应用[M].上海:同济大学出版社,2004,1-6.Wardenier J. Hollow sections in structural applications [M]. Translated by Zhang Qilin, Liu Dakang. Shanghai:Tongji University Ppress,2004. (In Chinese).
    [6]舒兴平.高等钢结构分析与设计[M].北京:科学出版社,2006,8-9.
    [7]郭健,孙炳楠,叶尹.高耸钢管塔的节点应力分析[J].Steel Construction,2002(6),17(62):30-32.
    [8]丁芸孙.圆管结构相贯节点几个设计问题的探讨[J].空间结构,2002,8(2):56-64.
    [9]贺东哲.空间管节点静力承载性能的非线性分析与研究:[硕士学位论文].北京:清华大学土木工程系,1999.
    [10]刘建平,郭彦林,陈国栋.K型方、圆管相贯节点的极限承载力非线性有限元分析[J].建筑科学,2001,17(2):50-53.
    [11]李少甫,王元清.钢结构的断裂与疲劳分析.清华大学土木工程系研究生试用讲义,1999.
    [12]Zhao XL, Al-Mahaidi R, Kiew K P. Longitudianal Fillet Welds in Thin-walled C450 R: HS Menbers[J]. Journal of CiVil Engineering,1999,25(8):821-828.
    [13]Korol R M. Shear Lag in Slotted HSS T. ension Menbers[J]. Canadian Journal of Civil Engineering,1996,23(3):1350-1354.
    [14]Cheng J J R, Kulak G L, Khoo H. Strength of Slotted Tubular Tension Menbers[J]. Canadian Journal of CiVil Engineering,1998,25(2):982-991.
    [15]张家元.钢管砼拱桥管一板节点承载力试验研究:[重庆交通学院硕士学位论文].重庆:重庆交通学院,2006,8-9.
    [16]陈铁云,陈伯真.弹性薄壳力学[M].武昌:华中工学院出版社,1993.
    [17]顾心愉,陈连达,倪志刚.一宗大悬挑空间钢结构的制作[J].造船技术,1999,(4):21-22.
    [18]Jubran J S, Cofer W F. Finite-element modeling of tubular joints. Ⅰ:numerical results[J]. Journal of Structural Engineering.1995,121(3):496-508.
    [19]Yura J A, Howell L E, Frank K H. Ultimate load tests on tubular connections[M].Civil Engineering Structural Research Laboratory, UniV. of Texas,1978,78(1):702-710.
    [21]Davies G, Roodbaraky K. Use of finite elements as a tool in evaluating the strength of joints in rectangular hollow sections. In:Niemi E, Makelainen P, eds.Tubular Structures, The Third International Symposium.Finland:1990.214-223.
    [22]EASTWOOD, W. and WOOD, A. A.,1970b, Recent research on joints in tubular structures, Canadian Structural Engineering Conference, Toronto, Ontario.
    [23]Packer JA, Henderson JE. Design guide for hollow structural section connections[S]. Canadian Inst Steel.
    [24]STELCO,1971, Hollow structural sections-design manual for connections,1st. ed., Stelco Inc., Hamilton, Ontario.
    [25]Mitri H S.Ultimate in-plane moment capacity of T and Y tubular joints.Journal of Constructional Steel Research.1989,12:69-80.
    [26]Marshall P W.Designing tubular connections with AWS D1.1. Welding [J]. Journal. 1989,68(3):45-52.
    [27]Lee Young-Shin, Kim Young-Wann, Nonlinear free vibration analysis of rotating hybrid cylindrical shells [J]. Computer and Structures,1999,70:161-168.
    [28]李明浩,马人乐.钢管塔塔柱与腹杆插板连接点的弹性受力分析[J].特种结构,2002,19(3):15-17.
    [29]吴静支管偏心对插板连接管节点承载力的影响分析[J].特种结构2009,26(3):54-57.
    [30]武振宇,高洋.K型间隙方管节点滞回性能的有限元分析[J].低温建筑技术,2009,127(1):32-34.
    [31]吴庆,周明智,张运涛.T、Y型方圆相贯管节点极限承载力有限元分析[J].淮南工业学院学报,2002,22(4):19-22.
    [32]谢孟,李少甫.T型、正交X型管节点局部柔度的参数公式[J].工程力学,1992,9(3):41-46.
    [33]吴龙升,孙伟民,张大长.U型插板钢管连接节点承载力特性的非线性有限元分析[J].南京工业大学学报,2008,30(1):92-96.
    [34]张巧珍,周洪彬,张明莉.插板加强型间隙圆钢管相贯节点的极限承载能力非线性有限元分析[J].钢结构,2006,21(1):54-57.
    [35]张国栋,曲淑英,邵永波.TT管节点在轴向压力下的极限载荷分析[J].湘潭大学自然科学学报,2006,28(1):112-116.
    [36]朱正荣,舒兴平.搭接N型方圆钢管节点极限承载力研究[J].湖南大学学报,2008,35(1):11-15.
    [37]王元清,石永久,祝磊.方管圆管混合空间钢管节点承载性能的非线性分析[J].建筑结构学报,2004,25(4):72-75.
    [38]秦庚,王文达.钢管混凝土加劲板节点设计的关键问题探讨[J].华中科技大学学报,2005,25(4):321-324.
    [39]李正良 韩枫 白强 李茂华特高压输电线路钢管塔管插板节点受弯性能[J].土木建筑与环境工程,2009,31(2):18-28.
    [40]沈祖炎,陈扬骥,陈以一等.上海市八万人体育场屋盖的整体模型和节点实验研究[J].建筑结构学报,1998,19(1):2-10.
    [41]郭寓岷,刘广立.工程用冷弯方钢管材料与焊接性能试验研究[J].钢结构,1998,13(1):21-24.
    [42]陈以一,王伟,赵宪忠等.圆钢管相贯节点抗弯刚度和承载力实验[J].建筑结构学报,2001,22(6):25-30.
    [43]Lee M M K, Wilmshrust S R. Numerical modelling of CHS joints with multiplanar double-K configuration[J]. Journal of Constructional Steel deferrer Research.1995,32:281-301.
    [44]Chan T K,Soh C K,Fung T C.Experimental study of a full-scale multiplanar tubular XT-joint. In:Choo Y S,van der Vegte G J,eds.Proceedings of the Eighth International Symposium on Tubular Structures.Singapore:1998.131-138.
    [45]Scola S,Redwood R G, Mitri H S. Behaviour of axially loaded tubular V-joints[J]. Journal of Constructional Steel Research.1990,16:89-109.
    [46]张志良,沈祖炎,陈学潮.方管节点极限承载力的非线性有限元分析[J].土木工程学报,1990,23(1):12-22.
    [47]Davies G, Coutie M G, Bettison M. The behaviour of three dimensional rectangular hollow section tee joints under axial branch loads.In:Coutie M G,Davies G, eds.Proceedings of the Fifth International Symposium on Tubular Structures. Nottingham:1993.429-436.
    [48]Lee M M K. Strength,stress and fracture analyses of offshore tubular joints using finite elements[J]. Journal of Constructional Steel Research.1999,51:265-286.
    [49]Kang C T,Moffat D G,Mistry J.Strength of DT tubular joints with brace and chord compression.[J]. Journal of Structural Engineering.1998,124:775-783.
    [50]Zhao X L,Hancock G J.T-Joints in rectangular hollow sections subject to combined actions. [J]. Journal of Structural Engineering.1991,117(8):2258-2277.
    [51]舒兴平,朱绍宁,夏心红等.长沙贺龙体育场钢屋盖圆管相贯节点足尺试验研究.建筑结构学报,2004,25(3):8-13.
    [52]陈以一,沈祖炎,詹琛等.直接汇交节点三重屈服线模型及试验验证[J].土木工程学报,1999,32(6):26-31.
    [53]Makino Y,Kurobane Y,Tozaki T.Ultimate strength analysis of simple CHS joints.
    [54]王德禹,陈铁云.基于圆环模型的空间XX管接头轴压极限强度分析[J].上海交通大学学报,1997,31(11):116-120.
    [55]陈铁云,王德禹,刘普.T型和X型管接头在轴压下极限强度的半经验公式[J].上海交通大学学报,1996,30(1):56-59.
    [56]Soh C K,Chan T K,Yu S K.Limit analysis of ultimate strength of tubular X-joints[J]. Journal of Structural Engineering.2000,126(7):790-797.
    [57]陈铁云,顾孟迪.近海平台管状接头极限分析的半解析法[J].上海交通大学学报,1995,29(2):8-13.
    [58]Kosteski N,Packer J A.Experimental examination of branch plate-to-RHS member connection types.In:Puthli R,Herion S,eds.Proceedings of the Ninth International Symposium on Tubular Structures.Dusseldorf:2001.135-144.
    [59]Wang B,Hu N,Kurobane Y et al.Damage criterion and safety assessment approach to Tubular joints.Engineering Structures.2000,22:424-434.
    [60]Kosteski N,Packer J A.FEM evaluation of stiffened longitudinal branch Plate-to-RHS member connections.In:Puthli R, Herion S, eds.Proceedings of the Ninth International Symposium on Tubular Structures.Dusseldorf:2001.145-154.
    [61]Cao J J,Packer J A,Kosteski N.Parametric finite element study of connections between longitudinal plates and RHS columns.In:Choo Y S,van der Vegte G J, eds.Proceedings of the Eighth International Symposium on Tubular Structures. Singapore:1998.645-654.
    [62]Paul J C,van der Valk C A C,Wardenier J.The static strength of circular multiplanar X-joints.In:Niemi E, Makelainen P, eds.Tubular Structures, The Third International Symposium.Finland:1990.73-80.
    [63]Cofer W F,Jubran J S.Analysis of welded tubular connections using continuum damage mechanics[J]. Journal of Structural Engineering.1992,118(3):828-845.
    [64]Cao J J,Packer J A,Kosteski N.Experimental study of connections between longitudinal plates and RHS columns.In:Choo Y S,van der Vegte G J,eds[J]. Proceedings of the Eighth International Symposium on Tubular Structures. Singapore:1998.635-643.
    [65]傅振岐,何保康,顾强.矩形管间隙K型节点极限承载力的有限元分析[J].西安建筑科技大学学报,1996,28(4):428-432.
    [66]刘建平,郭彦林,陈国栋.圆管相贯节点极限承载力有限元分析[J].建筑结构,2002,32(7):56-59.
    [67]曹国峰.大跨度重型钢管相贯节点与典型加劲节点的试验与理论研究.《同济大学博士论文》,2006.
    [68]AIJ 2002.钢构造限界状态设计指针·同解说 2002.
    [69]CISC,1991, Handbook of Steel Construction 5th Edition., Canadian Institute of Steel Constructions. Willowdale, Ontario.
    [70]Woo-Bum Kim. Ultimate strength of tube-gusset plate connections considering eccentricity. [J]. Engineering Structures.2001,23(11).
    [71]日本铁塔协会.输电线路钢管塔制作基准[S].东京:丸善株式会社,1985.
    [72]祝磊,空间管节点承载力的非线性分析与试验研究.《清华大学硕士论文》,2004.
    [1]应建国,叶尹.大跨越输电线路钢管塔结点分析[J].电力建设,2003,24(9):30-32.
    [2]郭健,孙炳楠,叶尹.高耸钢管塔的节点应力分析[J].Steel Construction,2002(6),17(62):30-32.
    [3]杨铮,金伟良.Y型管节点应力集中系数有限元分析[J].中国海洋平台,2004,19(4):17-21.
    [4]王春光,李少甫,石永久.焊接钢管节点热点应力集中系数参数方程的实用性研究[J].工程力学,1999,16(6):44-53.
    [5]van Wingerde, A.M.,van Delft,D.R.V.,et al.Scale effects on the fatigue behavior of tubular structures.Dynamically Loaded Welded Struct,1997,35(3):123-135.
    [6]Sing-Ping Chiew, Chee-Kiong Soh,Members,et al.experimental and numerical SCF studies of multiplanar tubular XX-joint[J]. journal of structural engineering,2000,23 (5):1331-1338.
    [7]M.R.Morgan, M.M.K.Lee.Stress concentration factors in tubular K-joints under in-plane moment loading[J]. Journal of structural engineering,1998,23(2):282-290.
    [8]郭健,孙炳楠.钢管塔中管-板连接节点的破坏全过程分析[J]. Industrial Construction,2006,36(12):83-85.
    [9]郭勇,孙炳楠,郭健.节点板连接K型钢管节点的应力集中[J].建筑结构,2004,34(6):51-54.
    [10]舒兴平,丁兆龙,陈方红,等.管板连接轴心受拉构件受拉极限承载力试验研究[J].建筑结构学报,2007,28(5):61-68.
    [11]余世策,孙炳楠,叶尹,应建国.高耸钢管塔结点极限承载力的试验研究与理论分析[J].工程力学,2004,21(3):155-161.
    [12]张汝清,詹先义.非线性有限元分析[M].重庆:重庆大学出版社,1990.
    [13]王焕定,吴德伦.有限单元法及计算程序[M].北京:中国建筑工业出版社,1997.
    [14]龚尧南,王寿梅.结构分析中的非线性有限元素法[M].北京:北京航空学院出版社,1986.
    [15]Bathe K. J. Finite Element Procedures [M].Prentice Hall, Englewood Cliffs, New Jersey,1996.
    [16]王勖成,邵敏.有限单元法基本原理和数值方法(第2版)[M].北京:清华大学出版社,1997.
    [17]朱伯芳.有限单元法原理与应用(第二版)[M].北京:中国水利水电出版社,1998.
    [18]Hill K. Mathematical Theory of Plasticity [M].Oxford University, Oxford, England,1950.
    [1]王小丽,翁雁麟,关富玲.x型圆管相贯结点极限承载力分析[J].市政技术,2006,24(1):34-36.
    [2]Choo Y S, Qian X D, Liew J Y R, Wardenier J. Static strength of thick-walled CHS X-joints-part I. New approach in strength definition. Journal of Constructional Steel Research.2003,59:1201-1228
    [3]肖又箐.K型管板节点极限承载力研究.《湖南大学硕士论文》,2008.
    [4]舒兴平.高等钢结构分析与设计[M].北京:科学出版社,2006,8-9.
    [1]Architectural Institute of Japan. Recommendations for the designand fabrication of tubular structures in steel,1990.
    [2]Kurobane Y.New developments and pratices in tubular joint design.Int Inst Welding,Annual Assembly,Doc XV-488-81,1981.
    [3]Wardeneir J.Hollow section joints.Delft:Delft UniversityPress,1982.
    [4]Ariyoshi M,Makino Y,Choo YS.Introduction to the database of gusset-plate to CHS tube joints[M].Proc.of 8th Int.Symposium onTubular Structures,Singapore 1998,4 (13)
    [5]Hiroshi.Ultimate strength of a main tube in tubular structures with eccentric joints[J]. J. Stuct.Constr.Eng.,AIJ,No.477,137-145.
    [6]Kim WB.A study on connections of circular hollow section with gusset plate [J]. Architectural Inst Korea 1997,13(3):263-271.
    [1]韩林海,陶忠,杨有福,尧国皇.新型钢管混凝土结构的力学性能与设计理论研究.第十三届全国结构工程学术会议特邀报告.工程力学,2004,12,30.
    [2]阳芳.矩形钢管混凝土柱框架节点域受力性能分析.《西安建筑科技大学硕士论文》.2003.
    [3]Load and Resistance Factor Design Specification for Structural Steel Buildings. American Institute of Steel construction, INC,1999.
    [4]ACI 318-02,318R-02 Building code requirements for structural concrete and commentary[S].2002.
    [5]BS5400:Steel, concrete and composite bridges Part4. Code of practice for design of concrete bridges.
    [6]AIJ 2002.钢构造限界状态设计指针·同解说.2002.
    [7]Eurocode4:Design of Composite Steel and Conerete Structures.1994.
    [8]叶尹,大跨越钢管塔采用复合构件时的节点试验研究.电力建设,2007,28(12):39-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700