基于谱聚类的彩色图像分割算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像分割是图像识别领域需要解决的基本问题同时也是图像处理的难题之一。在计算机视觉领域,图像分割是将图像分别表达为不同对象的子区域的过程,图像分割的目的是简化或改变图像的表示形式,使得图像的分析和理解更为容易,它是从图像处理到图像分析的关键步骤。现有的彩色图像分割方法主要由灰度图像分割方法和颜色空间变换的组合构成,其中常见的灰度图像分割方法有:直方图阈值法、特征空间聚类法、基于区域的方法、边缘检测法、模糊方法、神经元网络、物理模型方法以及以上方法的组合,常见的颜色空间变换包括:RGB、YUV、LUV、HSI、LAB及以上空间的组合。而基于聚类的图像分割是近十几年来研究的热点问题,特别是谱聚类算法,因为它不但对于样本空间的分布没有限制而且收敛于全局最优解,并且在彩色图像的分割中也能取得较为理想的分割结果。但是谱聚类算法本身在参数定义、海量数据运算、聚类个数选取等方面还有许多没有解决的问题,因此对于谱聚类方法的研究还仅仅是一个开始。
     本文研究基于谱聚类的彩色图像分割算法,主要从上述灰度图像的分割方法和颜色空间的变换两方面对彩色图像的分割进行分析和研究,研究工作主要分为以下几点:(1)谱聚类算法的实质就是把高维空间映射到低维空间中去,并且获得了能够使同类分布更为紧致的新的数据表示。然而在如何自定义参数、如何处理大规模数据以及如何自动确定最终聚类个数等问题中,传统的谱聚类算法都没有给出很好的解决方法。针对这一问题,提出了基于多层次化结构Nystrom方法的自适应谱聚类算法,将谱聚类算法中基于多层次化结构的方法和基于Nystrom采样的方法结合起来,有效减少了运算时间、解决了数据量较大时计算过程中内存溢出的问题,并且在k均值聚类中通过对特征间隙(eigengap)的分析,自适应的选择k值的大小,解决了自动确定聚类数目的问题。实验证明,基于多层次化结构Nystrom方法的自适应谱聚类算法在运算时间和分割结果上都优于基于Nystrom方法的谱聚类算法(Spectral Clustering-Nystrom,SC-N)。
     (2)RGB颜色空间是非线性的,三个分量之间存在很强的相关性,并且由于色彩辨别阈(Just Noticeable Difference)的存在使得在RGB颜色空间上处理彩色图像很不方便。引入LUV颜色空间的目的是建立与人的视觉统一的颜色空间,LUV颜色空间具备一致性和均一性且各颜色分量之间不相关,因此它被广泛应用于计算机彩色图像处理领域,并获得了较好的效果。实验结果表明,在LUV颜色空间中进行图像分割,彩色图像的纹理、边缘区域取得了更好的分割效果。
     (3)随着图像分辨率的不断增大,传统的基于像素的彩色图像分割算法的运算时间越来越长,如何降低数据运算量变成了彩色图像分割中的一大难题。利用分水岭算法对图像进行过分割,虽然对图像进行了过分割,却很好的保存了图像的边缘信息,将分水岭算法过分割的劣势变成了优势;然后以保存了图像边缘信息的每一个小区域为对象采用谱聚类算法进行聚类,降低了谱聚类算法的数据运算量;同时引入must-link和cannot-link成对约束信息,在K均值算法中加入惩罚项来限制违反成对约束的样本,进一步提高了算法的分割精度。实验证明,基于区域的半监督谱聚类算法有效降低了图像分割的时间,进一步提高了图像分割的精度和稳定性。
Image segmentation is the basic unresolved problem in the field of image recognition, which is' also one of difficulties in the image processing. With regard to the domain of computer vision, image segmentation is a procedure that dividing the image into several sub-regions to express the different objects, which is intended to simplify or change the representation form of image so as to make it easier for the analysis and understanding of image. It is a key step from the image processing to image analysis. Current methods of colored images segmentation are mainly composed of the approaches of gray image segmentation and the combination of alternation of color space, there are several common methods of gray image segmentation, such as the histogram threshold, the clustering method of feature space, the approach based on area, the method of edge detection, fuzzy method, neural network, the method of physical model and combinations of the above-mentioned methods. The common transformation of color space includes the RGB, YUV, LUV, HSI, LAB and combinations of the former spaces. Image segmentation based on clustering is a hot issue in the past decades. In particular, the spectral clustering algorithm not only has no restriction towards the distribution of sample space and converges to the global optimal solution, but also obtains a relatively satisfying segmentation effect in the color image segmentation. However, there are several unresolved problems in the spectral clustering algorithm itself such as definition of parameters, computation of high-throughput data, selection of cluster number and so on. Therefore the study on spectral clustering method is just a start.
     With regard to the segmentation methods of color images based on spectral clustering algorithm, this paper mainly analyzes and studies the color image segmentation from the two aspects of segmentation method of above-mentioned gray images and transformation of color space. The research work includes the following points:
     (l)Firstly, the essence of spectral clustering algorithm is to project the data from the higher dimensional space to lower dimensional space and obtain the novel data expression which makes the distribution of identical cluster much more compact. However, the traditional spectral clustering algorithm performs not well in dealing with the problems such as self defining parameters, processing the high-throughput data and automatically determining the cluster number. Therefore this paper proposes a self-adaptive spectral clustering algorithm based on the Nystrom method of multi-hierarchical structure, which combines the spectral clustering algorithm based on the method of multi-hierarchical structure with the approach based on the Nystrom sampling in order to effectively reduce the time consumed, solve the problem of out of memory during the computation procedure of high-throughput data, and automatically determine the cluster number by means of the k value of self-adaptive selection through analyzing the eigengap when executing the k-means clustering algorithm. The simulation experiment turns out that the self-adaptive spectral clustering algorithm based on the Nystrom method of multi-hierarchical structure is superior to spectral clustering method based on Nystrom approach in terms of time consumed and segmentation effect.
     (2)Secondly, the color space of RGB is non-linear and there are strong relationships among the three components. In addition, the existence of differential threshold of color makes it non-convenient for processing the color images in the RGB color space. Therefore the LUV color space is integrated to build up the coordinating color space with the human vision. Owing to that the LUV color space has the characters of consistency, homogeneity and irrelevances among the color components, it is widely applied to the field of color image processing of computer and obtains the better effect. The experiments prove that image segmentation in the LUV color space performs better from the perspective of both texture and marginal area of color images.
     (3)Finally, with the continuous increment of image resolution, the traditional segmentation algorithms of color images based on pixel consume too much time. So it is difficult for the color image segmentation to reduce the computation time of data. Although adopting the watershed algorithm to divide images generate the over segmentation, the marginal information can be better preserved, which transforms the drawback of over segmentation to the advantage in the watershed algorithm. Afterwards regards each small area which contains the marginal information as object to cluster by means of spectral clustering algorithm for the aim of reducing the computation time of data of spectral clustering method. Simultaneously, the coupled restriction information of must-link and cannot-link are introduced and adding the punishing item into k-means algorithm to confine the samples of disobeying the coupled restriction in order to further improve the segmentation accuracy of algorithm. The experiments turn out that the semi-supervising spectral clustering algorithm based on area can effectively reduce the consumed time of image segmentation and meantime improve the accuracy and stability of image segmentation.
引文
[1]Koss J.E, Newman FD, Johnson TK, etal. Abdominal organ segmentation using texture transforms and a Hopfield neural network [G].IEEE Transactions on Medical Imaging,1999,18(7):640-648.
    [2]Zhou Y, Bai J. Atlas based automatic identification of abdominal organs[C]. SPIEMed Imag2005:Image Process, San Diego, A.
    [3]B.Tian,M.A.Shaikh,S.Azimi,etal,A study of cloud classification with neural networks using special and textural features [J].IEEE Trans. Neural Networks,1999,10(1):138-151.
    [4]Zhang X.R., Jiao L.C., Liu F., etal. Spectral Clustering Ensemble Applied to SAR Image Segmentation [G].IEEE Transactions on Geosciences and Remote Sensing. 2008,46(7):2126-2136.
    [5]焦李成,王爽,侯飚.SAR图像理解与解译研究进展.电子学报2005.12A,126-137.周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999:11-13.
    [6]M.D.Jolly, S.Lakshmanan, A.K.Jain, Vehicle segmentation and classification using deformable templates [J].IEEE Trans.PAMI,1996,18(3):293-308.
    [7]陈寅鹏,丁晓青.复杂车辆图像中的车牌定位与字符分割方法[J],红外与激光工程,2004,33(1):1072-1077.
    [8]RobKoenen,MPEG-lOverview.http://drogo.cselt.it/mpeg/standards/mpeg-4/mpeg-4 .html.
    [9]Chung F R K. Spectral Graph Theory:CBMS Regional Conference Series in Mathematics [M]. American Mathematical Society, AMS Bookstore,1997.
    [10]Donath W.E., Hoffman A.J.Lower Bounds for the partitioning of Graphs [J].IBM Journal of Research and Development,1973,17(5),420-425. Y Shi, R C Eberhart. Empirical study of particle swarm optimization [C]. The Congress on Evolutionary Computation Washington,1999.
    [11]Fiedler M.Algebraic connectivity of graphs [J].Czechoslovak Mathematical Journal, 1973,23(2),298-305.
    [12]Ng A.Y., Jordan M.I., Weiss Y.On spectral clustering:Analysis and an algorithm[C].In:Proc of NIPS 2001.
    [13]Meila M,Shi J.Learning segmentation by random walks.InNIPS,2000:873-879.
    [14]Perona P,Freeman W T.A factorization approach to grouping//H.Burkardt and B.Neumann, eds. Proc.ECCV.1998:655-670.
    [15]Shi J,Malik J.Normalized cuts and image segmentation.IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):888-905.
    [16]Ulrike L. A tutorial on spectral clustering [J]. Statistics and Computing,2007,17 (4):395-416.
    [17]Zelnik-manor L, Perona P. Self-tuning spectral clustering[C]//Proceedings of the Conference on Advances in Neural Information Processing Systems.Cambridge: MIT Press,2005:1601-1608.
    [18]Bo D Y, Zhang D Q. Adaptive spectral clustering algorithm [J]. Journal of Shandong University (Engineering Science),2009,39(5):22-26.
    [19]Gong Y, Chen C. Locality Spectral clustering [C].//Proc of the 21 st Australasian Joint Conference on Artificial Intelligence. Amsterdam, Netherlands:ELSEVIER, 2008:348-354.
    [20]Wang F, Zhang C. Label propagation through linear neighborhoods[C]. //Proceedings of the 23rd International Conference on Machine learning. Pennsylvania,2006:985-992.
    [21]Fowlkes C, Belongie S, Chung F,etal.Spectral grouping us in the Nystrom method [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004, 26(2):214-225.
    [22]Yan D., Huang L., and Jordan M.I. Fast approximate spectral clustering[C].In:Pro of the 15th ACM SIGKDD International Conference on Knowledge Discovery and data mining, Paris,2009,907-916.
    [23]Miao G., Song Y, Zhang D., etal.Parallel spectral clustering algorithm for large-scale community data mining[C].In:Proc of the 17th International World Wide Web, Beijing,2008.
    [24]Brand M, Kun H.A Unifying Theorem for Spectral Embedding and Clustering[C]//Proceeding of the 9th International Conference on Artificial Intelligence and Statistics. Key West, Florida,2003.
    [25]Chan P K,Schlag M,Zien J Y.Spectral k-way ratio-cut portioning and clustering[J].IEEE Transactions on CAD-Integrated Circuits and Systems,1994,13(9):1088-1096.
    [26]Luxburg U.A Tutorial on Spectral Clustering. Technical report.2006.
    [27]赵凤,焦李成,刘汉强等.半监督谱聚类特征向量选择算法[J].模式识别与人工智能,2011,24(1):48-56.
    [28]蔡世玉,夏战国,张文涛.时间序列相似性半监督谱聚类[J].计算机工程与应用,2011,47(31):116-143.
    [29]王娜,李霞.基于监督信息特性的主动半监督谱聚类算法[J].电子学报,2010,38(1):172-176.
    [30]龚声蓉,刘纯平,王强等.数字图像处理与分析[M].北京:清华大学出版社,2006.
    [31]Fu SK, Mui JK.A Survey of Image Segmentation [J].Pattern Recognition,1981, 13(1):3-16.
    [32]Spirkovska L.A summary of image segmentation techniques[R].NASA Technical Memorandum 104022, June 1993.
    [33]王晓峰.水平集方法及其在图像分割中的应用研究[D].合肥:中国科学技术大学.2009.
    [34]Gonzalez RC,Richard EW著,阮秋琦等译.数字图像处理(第二版)[M]北京:电子工业出版社,2002.
    [35]Carron T, Lambert P.Fuzzy color edge extraction by inference rules quantitative study and evaluation of performances [A].In:Proceedings of the 1995 International Conference on Image Processing[C].Washington DC, USA,1995,2:181-184.
    [36]Kurokawa Hiroaki,Kaneko Shuzo,Yonekawa Masato.A color image segmentation using inhibitory connected pulse coupled neural network[C].International Conference on Neural Information Processing.Auckland,New Zealand,2008:776-783.
    [37]薛景浩,章毓晋,林行刚.一种新的图像模糊散度阈值化分割算法[J].清华大学学报(自然科学版),1999,39(1):47-50.
    [38]刘建龙.基于图论的图像分割算法研究[D].哈尔滨:哈尔滨工业大学,2006.
    [39]C Zahn. Graph Theoretical Methods for Detecting and Describing Gestalt[C]. IEEE Transactions on Computation,1971,20:68-86.
    [40]刘丙涛,田铮,周强峰,等.基于图论Gomory-Hu算法的快速图像分割[J].计算机应用研究,2008,25(9):2865-2867.
    [41]L Grady,E L Schwartz.Isoperimetric Graph Partitioning for Image Segmentation [C].IEEE Transactions on Pattern Analysis and Machine Intelligence.2006,28 (3):469-475.
    [42]Hopfield J J.Tank D W.Neural Computatation of Detection in Optimization Problems.Biological Cybernetics,1985,52:141-152.
    [43]沈定刚,戚飞虎.基于神经网络的自适应图像分割[J].上海交通大报,1994,28:39-45.
    [44]张月琴,胡斌.基于遗传神经网络的图像分割[J].电脑开发与应用2011,24(2):16-18.
    [45]解梅,顾德仁.使用小波变换的图像边缘检测算法[J].电子科技大学学报,1996,26(4):353-356.
    [46]唐慧明,叶红.二值图像分割的数学形态学方法[J].浙江大学学报(自然科学版),1993.05:53-59.
    [47]钟清流,蔡自兴.用于彩色分割的自适应谱聚类算法[J].计算机应用研究,2008.25(12):3697-3699.
    [48]朱峰,宋余庆,朱玉全,徐莉莉,金洪伟.基于多阶抽样谱图聚类彩色图像分割[J].计算机科学,2010,37(07):45-57.
    [49]张长帅.基于图的半监督学习及其应用研究[D].南京航空航天大学,2011.
    [50]尹芳,陈德运,吴锐.改进的谱聚类图像分割方法[J].计算机工程与应用,2011,47(21):185-187.
    [51]贾建华,焦李成.空间一致性约束谱聚类算法用于图像分割[J].红外与毫米波学报,2010.29(1):69-74.
    [52]Comaniciu D, Ramesh V, Meer P.Kernel-based tracking [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25 (5):564-577.
    [53]David R M, Charless C F, Jitendra M.Learning to detect natural image boundaries using local brightness, color, and texture cues[J].IEEE Transactions Pattern Analysis and Machine Intelligence,2004,26(5):530-548.
    [54]Coquin D B, Ionescu P B.Dissimilarity measures in color spaces[C]//I6th International Conference on Pattern Recognition, Quebec City, Canada,2002,1: 612-615.
    [55]Everitt,Brian.Cluster analysis[M].New York:Wiley,1974.
    [56]Bezdek C. Pattern Recognition With Fuzzy Objective Function Algorithms [M]. Norwell, MA:Kluwer Academic Publishers,1981.
    [57]Chung F R K. Spectral Graph Theory:CBMS Regional Conference Series in Mathematics [M]. American Mathematical Society, AMS Bookstore,1997.
    [58]Chung F R K. Spectral Graph Theory:CBMS Regional Conference Series in Mathematics [M]. American Mathematical Society, AMS Bookstore,1997.
    [59]蔡晓妍,戴冠中,杨黎斌.谱聚类算法综述[J].计算机科学,2008,35(7):14-18.
    [60]Von Luxburg U.A Tutorial on Spectral Clustering[J].Statistics and Computing, December 2007,17(4):395-416.
    [61]高琰,谷士文,唐琎等.机器学习中谱聚类方法的研究[J].计算机科学,2007,34(2):201-203.
    [62]Wu Z, Leahy R. An optimal graph theoretic approach to data Clustering:theory and its application to image segmentation [J].IEEE Trans on PAMI,1993, 15(11):1101-1113.
    [63]Hagen L, Kahng A B. New spectral methods for ratio cut partitioning and clustering [J].IEEE Trans. Computer Aided Design,1992, 11(9):1074-1085.
    [64]Meila M, Xu L. Multiway cuts and spectral clustering [G].Washington Tech Report.2003
    [65]Chan P K, Schlag M, Zien J Y. Spectral k-way ratio-cut portioning and clustering[J].IEEE Transactions on CAD-Integrated Circuits and Systems,1994,13(9):1088-1096.
    [66]Sarkar S, Soundararaian P. Supervised learning of large perceptual organization: Graph spectral partitioning and learning automata[C].IEEE Transaction on Pattern Analysis and Machine Intelligence,2000,22(5):504-525.
    [67]Ding C, He X, and Zha H, et al. Spectral Min-Max cut for Graph Partitioning and Data Clustering[C]//Proc. of the IEEE Intl Conf. on Data Mining.2001:107-114.
    [68]Verma D,Meila M.A comparison of spectral clustering algorithms.Technical report,2003.UW CSE Thchnical report 0305-01.
    [69]孙训方,方孝淑,关来泰.材料力学[M].北京:高等教育出版社.1994:249.
    [70]Wu Z, Leahy R. An optimal graph theoretic approach to data clustering:theory and its application to image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15 (11):1101-1113.
    [71]Xiong jianbin,Li zhenkun, Liuyijun. Research on the present Situation of Semi-Supervised Clustering Algorithm [J].Modern Computer(professional edition), 2009,12:61-65.
    [72]Wang ling,Bo liefeng,Jiao licheng. Density-Sensitive Semi-Supervised Spectral Clustering[J]. Journal Of Software 2007,18(10):2412-2422.
    [73]Hu yang,Wang jingdong,Yu nenghai,Hua weisheng.Pairwise Constrained Semi-supervised Maximum Margin Clusering[J]. Journal of Chinese Computer Systems,2010,31(5):932-936.
    [74]李宏宇.谱学习与聚类的研究与应用[D].上海,复旦大学,2008.
    [75]Charless Fowlkes,Serge Belongie, Fan Chung, Jitendra Malik. Spectral grouping using the Nystrom method [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26,(2):214-225.
    [76]Xu Sen, Lu Zhimao, Gu Guochang. Two spectral algorithms for ensembling document Clusters [J]. Acta Automatica Sinica,2009,35(7):997-1002.
    [77]Wu Z, Leahy R. An optimal graph theoretic approach to data clustering:theory and its application to image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15 (11):1101-1113.
    [78]Zhong Qingliu,Cai Zixing. Adaptive spectral clustering algorithm for color image segmentation [J]. Application Research of Computers,2008,25:3697-3699.
    [79]The Berkeley Segmentation Dataset and Benchmark [EB/OL]. [2010-12-28].http:/ /www. eecs. berkeley. edu/Research/Projects/CS/vision/grouping/segbench/.
    [80]Wang guoquan,Zhou xiaohong,Wei lilei, Image segmentation based on watershed algorithm [J]. Computer simulation,2009,26(5):255-258.
    [81]L Vincent, P Soille. Watersheds in digital space:An efficient algorithms based on immersion simulation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1991,13(6):583-598.
    [82]龚天旭,彭嘉雄.基于分水岭变换的彩色图像分割算法[J].华中科技大学学报(自然科学版),2003,31(09):74-76.
    [83]ZHU X J.Semi-supervised Learning Literature Survey[R].Madison:University of Wisconsin,2008.
    [84]周志华.半监督学习中的协同训练算法[M]//周志华,王珏.机器学习及其应用,北京:清华大学出版社,2007:259-275.
    [85]Basu S, Banerjee A, Mooney RJ. Semi-Supervised clustering by seeding [C]//Proceedings of the 19th International Conference on Machine Learning. Sydney:Morgan Kaufmann Publishers,2002.27-34.
    [86]Basu S, Banerjee A, Mooney RJ. Active semi-supervision for pairwise constrained clustering. [C]//Proceedings of the SI AM International Conference on Data mining. Cambridge:MIT press,2004.333-344.
    [87]Yan B, Domeniconi C. An adaptive kernel method for semi-supervised clustering[C] //Proceedings of the 17th European Conference on Machine learning,\Berlin: Sigma press,2006:18-22.
    [88]Yeung DY, Chang H. Extending the relevant component analysis algorithm for metric learning using both positive and negative equivalence constraints[J]. Pattern Recognition,2006,39(5):1007-1010.
    [89]Bilenko M, Basu S, Mooney RJ. Interating constraints and metric learning in semi-supervised clustering[C]//Proceedings of the 21st International Conference on Machine Learning. New York:ACM press,2004,81-88.
    [90]K.Wagstaff,C.Cardie,S.Rogers and S.Schroedl. Constrained K-means Clustering weith Background Knwledgep [C]//Proceedings of 18th International Conference on Machine Learning, PP,2001,577-584.
    [91]Klein D,KamvarSD,ManningCD.From instance-level constraints to space-level constraints:Making the most of prior knowledge in data clustering[C]//proceedings of the 19th International Conference on Machine Learning Sydney.Sydney:Morgan Kaufmann Publishers,2002.307-314

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700