新疆北山地区中坡山北和红石山层状岩体中花岗质岩脉岩石成因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中坡山北和红石山镁铁.超镁铁层状岩体中出露一系列与其有密切时、空联系的花岗岩脉,岩性主要为黑云母花岗岩脉、石英闪长玢岩、钾长花岗岩和花岗斑岩四种,前两种岩性分布于坡北岩体内,后两种岩性分布于红石山岩体内。
     黑云母花岗岩和钾长花岗岩同为过铝质,岩石化学属钾玄岩系列,稀土元素配分曲线为轻稀土元素富集型,并具有具明显的负Eu异常;富集大离子亲石元素,在多元素配分曲线上,Nb、K20表现为小的低谷,显著亏损P205、Ti02,均属A型花岗岩。黑云母花岗岩的εNd值为-4.54,ISr因低于0.7000而无使用意义,钾长花岗岩εNd值为.5.53,ISr为0.7090,在(207Pb/204Pb)i.(206Pb/204Pb)i相关图中,二者样品均落在EMⅡ和MORB之间。因此,它们应为古老地壳物质在幔源岩浆加热下部分熔融的产物,在形成过程中可能有少量幔源物质的加入。
     石英闪长玢岩中角闪石以褐色角闪石为主,Si/(Si+Ti+Al)小于0.765,属幔源角闪石,并与层状岩体中以斜长石为堆晶相的石英闪长岩地球化学特征相似,是较为少见的幔源M型花岗岩。在Haker图解中,石英闪长玢岩和石英闪长岩样品与镁铁.超镁铁岩石样品构成良好的分异演化趋势,说明二者均为镁铁质岩浆演化末期的产物。石英闪长玢岩的εNd值为.2.67和-2.61,而样品在(207Pb/204Pb)i.(206Pb/204Pb)i相关图中落在靠近BSE区域的位置,这可能是因为同化混染作用对Pb元素影响较小,而对Nd、Sr影响较大的缘故。
     花岗斑岩Si02含量较高,K20/Na2O比值均小于1,Ga/Al比值和Zr+Nb+Ce+Y值均低于A型花岗岩的下限值,且P205与Si02呈负相关关系,属Ⅰ型花岗岩。花岗斑岩的εNd值为.0.13-0.77,在Nd、Sr同位素相关图中,与红石山橄榄辉长岩样品和钾长花岗岩样品构成良好的演化趋势,且花岗斑岩样品在(207Pb/204Pb)i.(206Pb/204Pb)i相关图中落在MORB区域边缘,说明花岗斑岩应为幔源岩浆与其诱发的地壳物质部分熔融后形成的长英质岩浆均一混合的结果。
     综上所述,幔源岩浆不但可以提供花岗岩形成所需的热能,同时也可以在一定程度上为花岗岩提供物源,在同一环境、同一时间形成-M-A花岗岩共生组合。
Numerous Permian granitic dykes are spatially and temporally associated with the Zhongposhanbei and Hongshishan mafic-ultramafic layered intrusions. There are four types of granitic dykes totally, including biotite granite, quartz diorite porphyrite, moyite and granite porphyry. The former two are distributed in the Pobei intrusion and the latter two in the Hongshishan intrusion.
     Both biotite granite and moyite belong to the shoshonite series, they are enriched in LREE and LILE, obviously depleted in Eu, P2O5 and TiO2, relatively depleted in Nb and K2O, and both of them are A-type granites. TheεNd and Isr values of the biotite granite and moyite range from -4.54 to -5.53, and 0.6999 to 0.7090 respectively, but Isr value of the biotite granite is lower than 0.7000, and thus has no geological meaning. All the samples are distributed between EMⅡand MORB field in the (207Pb/204Pb)i vs. (206Pb/204Pb)i diagram, hence they should be the products of partial melting of old crust heated by mantle derived magmas, and there might be some mantle derived materials involved in this process.
     Amphiboles in quartz diorite porphyrite are mainly brown amphiboles. These amphiboles have low Si/(Si+Ti+Al) values (lower than 0.765), indicating mantle origin. The geochemical characteristics of the quartz diorite porphyry are similar to the cumulus plagioclase bearing quartz diorite in the layered intrusion, and the quartz diorite should be M-type granite. Samples of quartz diorite porphyry, quartz diorite and mafic rocks compose a well fractionate trend on the Harker diagrams, which indicate that the quartz diorite porphyry and quartz diorite should be products formed at the end of the evolution of mafic magma. TheεNd values of the quartz diorite range from -2.67 to -2.61, indicating crustal contamination. But in the (207Pb/204Pb)i vs (206Pb/204Pb)i diagram, the samples lie near the BSE area, indicating insignificant involvement of crustal materials. This may be due to less effection of Pb isotopes than that of Nd and Sr isotopes in the process of crustal contamination.
     The granite porphyry belong to I-type granites evidenced by high SiO2 contents, low ratios (<1), low Ga/Al ratios and Zr+Nb+Ce+Y values and negative correlation between P2O5 and SiO2.TheεNd values of granite porphyry are 0.13~0.77, distributing near the MORB area, and composing a well fractionate trend in the Nd-Sr isotope diagram together with samples of olivine gabbro and moyite, which indicate that the granite porphyry may be generated by mixing of a mantle-derived magma and a felsic magma which originated from partial melting of ancient crust heated by underplating of mantle-derived magmas.
     In conclusion, the mantle-derived magma can not only provide the heat source for the granites, but also can provide materials for the granites to some extend, and thus I-M-A type granites can be formed in the same environment at the same time.
引文
[1]Anderson I.C., Frost C.D., Frost B.R.,2003. Petrogenesis of the Red mountain pluton Laramie anorthosite complex:implications for the origin of A-type granite[J]. Precambrian Research 124,243-267
    [2]Annen C., Sparks R.S.J.,2002. Effects of repetitive emplacement of basalitic intrusions on thermal evolution and melt generation in the crust[J]. Earth and Planetary Science Letters 203,937-955
    [3]Annen C., Blundy J.D., Sparks R.S.J.,2006. The genesis of Intermediate and Silicic Magmas in Deep Crustal Hot Zones[J]. Journal of Petrology 47,505-539
    [4]Arndr N.T, Chauvel C., Fedorenko V., Czamanske G.,1998. Two mantle sources, two plumbing systems:tholeiitic and alkaline magmatism of the Maymecha River basin, Siberian flood volcanic province[J]. Contributions to Mineralogy and Petrology 133,297-313
    [5]Bonin.2007. A-type granites and related rocks:Evolution of a concept, problems and prospects[J]. Lithos,97:1-29.
    [6]Campbell I.H., Czamanske GK., Fedorenko V., Hill R.I., Stepanov V.,1992. Synchronism of the SiberianTraps and the Permian-Triassic boundary[J]. Science 258,1760-1763
    [7]Chappell B.W.,1999. Aluminium saturation in I- and S- type granites and the characterization of fractionated haplogranites. Lithos 46,535-551
    [8]Chayes F.,1977. The oceanic basalt-trachyte relation in general and in the Canary Islands[J]. American Mineralogist 62,666-671
    [9]Chen J.F., Zhou T.X., Xie Z., Zhang X., Guo X.S.,2000. Formation of positive sNd(T) granitoids from the Alataw Mountains, Xinjiang, China, by mixing and fractional crystallization:implication for Phanerozoic crustal growth[J]. Tectonophysics 328,53-67
    [10]Clague D.A.,1978. The oceanic basalt-trachyte association:an explanation of the Daly Gap[J]. Journal of Geology 86,739-743
    [11]Clemens JD, Holloway JR and White AJR.1986. Origin of an A- type granite: Experimental constraints[J]. American Minerologist,71:317-324
    [12]Collins W.J., Beams S.D., White, A.J.R., Chappbell B.W.,1982. Nature and
    origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology 80,189-200
    [13]Creaser RA, Price RC and Wormald RJ.1991. A-type granites revisited: Assessment of a residual-source model[J]. Geology,19:163-166.
    [14]Fernandez A.N., Barbarin B.,1991. Relative rheology of coeval mafic and felsic magmas:Nature of resulting interaction processes and shape and mineral fabrics of mafic microgranular enclaves. In:Didier J. and Barbarin B(eds.). Enclaves and Granite Petrology. Elsevier:Amsterdam,263-276
    [15]Frost C.D., and Frost B.R.,1997. Reduced rapakivi-type granites:the tholeiite connection[J]. Geology 25,647-650
    [16]Huppert H.E., Sparts R.S.J.,1988. The generation of granitic magmas by intrusion of basalt into continental crust[J]. Journal of Petroleogy 29,599-624
    [17]Jahn B.M., Wu F.Y. and Chen B.,2000. Massive granitoid generation in central Asia:Nd isotopic evidence and implication for continental growth in the Phanerozoic. Episodes 23,82-92
    [18]Kimura J.I., Manton W.I., Sun C.H., Iizumi S., Yoshida T., Stren R.,2002. Chemical diversity of the Ueno BSALTS, CENTRAL Japan:identification of mantle and crustal contributions to arcbasalts[J]. Journal of Petrology 43, 1923-1946
    [19]King P.L., White A.J.R., Chappell B.W.,1997. Characterization and origin of aluminous A type granites of the Lachlan Fold Belt southeastern Australia[J]. Journal of Petrology,36:371-391
    [20]Lightfoot P.C., Hawkesworth C.J., Herge J., Naldrett A.J., Gorbachev N.S., Fedorenko A., Doherty W.,1993. Remobilisation of the continental lithosphere by a mantle plume:major-, trace-element, and Sr-, Nd-, and Pb-isotope evidence from picritic and tholeiitic lavas of the Noril'sk District, Siberian Trap, Russia[J]. Contributions to Mineralogy and Petrology 114,171-188
    [21]Loiselle M.C., and Wones D.R.,1979. Characteristics and origin of anorogenic granites[J]. Geological Society of America Abstract with Programs 11,468
    [22]MacDonald R.,1987. Quaternary peralkaline silicic rocks and caldera wolcanoes of Kenya. In:Fitton J.G., Upton B.GJ.(Eds), Alkaline Igneous Rocks. Geological Society Special Publication, vol.30. pp,313-333
    [23]Martin RF,2006. A-type granites of crustal origin ultimately result from open-system fenitization-type reactions in an extensional environment. Lithos, 91:125-136
    [24]Miller C.F.,1985. Are strongly peraluminous magmas derived from politic sedimentrary sources? [J]. Journal of Geology 93,673-689
    [25]Patino Douce AE.1997. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology,25:743-746.
    [26]Peccerillo A., Barberio M.R., Yirgu G, Aua;ewD., Maraieri M., Wu T.U.,2003. Relationships between mafic and peralkaline silicic magmatism in continental rift settings:a petrological, geochemical and isotopic study of the Gedemsa volcano, Central Ethiopian Rift[J]. Journal of Petrology 44,2003-2032
    [27]Rajesh HM.2000. Characterization and origin of a compositionally zoned aluminous A-type granite from South India[J]. Geological Magazine,37 (3):291-318
    [28]Shellnut J.G, Bor-Ming Jahn, Zhou M.F.,2010. Crustally-derived granites in the Panzhihua region, SW China:Implications for felsic magmatism in the Emeishan large igneous province[J]. Lithos2010, doi:10.1016/j.lithos.2010.10.016.
    [29]Shellnut J.G., Zhou M.F.,2007. Permian peralkaline, peraluminous and metaluminous A-type granites in the Panxi district, SW China:Their relationship to the Emeishan mantle plume[J]. Chemical Geology 243,286-316
    [30]Skjerlie KP and Johnston AD.1992. Vapor-absent melting at 10 kbar of a biotite-and amphibole-bearing tonalitic gneiss:implications for the generation of A-type granites[J]. Geology,20:263-266.
    [31]Smith D.R., Noblett, J, Wobus R.A, Unruh D., Douglass J., Beane R., Davis, C., Goldman, S., Kay G., Gustavason, B., Saltoun B., Stewart J.,1999. Petrology and geochemistry of the late stage intrusions of the A-type, mid-Proterzoic Pikes Peak batholith (Central Clolrado, USA):implications for petrogenetic models[J]. Precambrian Research 98,271-305
    [32]Spera F.J., Bohrson W.A.,2004. Open-system magma chamber evolution:an energy-constrained geochemical model incorporating the effects of concurrent eruption, recharge, variable assimilation and fractional crystallization(Ec-E'RAx FC)[J]. Journal of Petrology 45,2459-2480
    [33]Sun S.S. and McDonough W.F.,1989. Chemical and isotope systematics of oceanic basalts:Implication for mantle composition and processes. In:Saunder AD and Norry MJ (eds). Magmatism in the Ocean Basins. Geol.Soc.Spec.Publ., 42:313-315
    [34]Thorpe R.S., Francis P.W., O'Callagham L.,1984. Relative role of source compositions, fractional crystallization and crustal contamination in the petrogenesis of Andean volcanic rocks[J]. Philosophical Transactions of the Royal Society of London A310,675-692
    [35]Turner S.P., Foden J.D., Morrison R.S.,1992. Derivation of some A-type magmas by fractionation of basaltic magma:an example from the Padthaway Ridge, South Australia[J]. Lithos 28,151-179
    [36]Wu F.Y., Sun D.Y., Li H.M., Jahn B.M. Wilde S.,2002. A-type granites in northeastern China:age and geochemical constraints on their petrogenesis[J]. Chemical Geology,187:143-173
    [37]Xu Y.G., He B., Chung S.L., Menzies M.A., and Frey F.A.,2004. The geologic, geochemical and geophysical consequences of plume involvement in the Emeishan flood basalt province [J]. Geology 30,917-920
    [38]Xu Y.G., Luo Z.Y., Huang X.L., He B., Xiao L., Xie L.W., Shi Y.R.,2008. Zircon U-Pb and Hf isotope constraints on crustal melting associated with the Emeishan mantle plume[J]. Geochimica et Cosmohimica Acta 72,3084-3104
    [39]Yang S.F., Li Z.L., Chen H.L., Santosh M., Dong C.W., Yu X.,2001. Permian bimodal dyke of Tarim Basin, NW China:geochemical characteristics and tectonic implications[J]. Gondwana Research doi:10.10.16/j.gr.2007.10.018.
    [40]Yoder H.S.,1973. Contemporaneous basaltic and rhyolitic magmas. American Mineralogist 58,153-171
    [41]Zhang C.L., Li X.H., Li Z.X., Lu S.N., Ye H.M., Li H.M.,2007. Neoproterzoic ultramafic-mafic-carbonatite complex and granitiods in Quruqtagh of northeastern Tarim Block, western China:geochronology, geochemistry and tectonic implications. Precambrain Research 152,149-169
    [42]Zhang C.L., Li X.H., Li Z.X., Ye H.M., Li C.N.,2008. A Permian layered intrusive complex in the western Tarim Blok, northwestern China:Product of a ca.275Ma mantle plume? [J]. Journal of Geology 116,112-128
    [43]Zhang C.L., Xu Y.G., Li Z.X., Wang Y.H., Ye H.M.,2010. Diverse Permian magmatism in the Tarim Block, NW China:Genetically linked to the Permian Tarim mantle plume? [J]. Lithos 119,537-552
    [44]Zhao X.F., Zhou M.F., Li J.W, Wu F.Y.,2008. Association of Neoproterozoic A-and I-type granites in South China:Implications for generation of A-type granites in a subduction-related environment[J]. Chemical Geology
    [45]Zhong H., Zhu W.G., Chu Z.Y., He D.F., Song X.Y.,2007. Shrimp U-Pb zircon geochronology, geochemistry, and Nd-Sr isotope study of contrasting granites in the Emeishan large igneous province, SW China[J]. Chemical Geology 236, 112-133
    [46]Zhong H., Zhu W.G., Hu R.Z., Xie L.W., He D.F., Liu F., Chu Z.Y.,2009. Zircon U-Pb age and Sr-Nd-Hf isotope geochemistry of the Panzhihua A-type syenitic intrusion in the Emeishan large igneous province, Southwest China and implications for growth of juvenile crust[J]. Lithos 110,109-128
    [47]Zhou M.F., Malpas J., Song X.Y., Kennedy A.K., Robinson P.T., Sun M., Lesher C.M., Keays R.R.,2002. A temporal link between the Emeishan large igneous province(SW China) and the end-Guadalupian mass estinction. Earth and Planetary Science Letters 196,113-122
    [48]Zhou M.F. Lesher C.M., Yang Z.X., Li J.W. and Sun M.,2004. Geochemistry and petrogenesis of 270Ma Ni-Cu-(PGE) sulfide-bearing mafic intrusions in the Huangshan district, eastern Xinjiang, northwest China:implications for the tectonic evolution of the Central Asian orogenic belt [J]. Chemical Geology,209: 233-257
    [49]Zhou M.F. Malpas J., Wang C.Y., Kennedy A.K.,2008. Two magma series and associated ore deposits types in the Permian Emeishan large igneous province, SW China[J]. Lithos 103,352-368
    [50]Zhou M.F., Zhao J.H., Jiang C.Y., Gao J.F., Wang W., Yang S.H.,2009. OIB-like, heterogeneous mantle source of Permian basaltic magmatism in the western Tarim Basin, NW China:imolications for a possible Permian large igneous province. Lithos 113,583-594
    [51]陈建林,郭原生,付善明.2004.花岗岩研究进展-ISMA花岗岩类分类综述,甘肃地质学报,13(1):67-73
    [52]郭芳放,姜常义,苏春乾,夏明哲,夏昭德,魏巍.2008.准噶尔板块东南缘沙尔德兰地区A型花岗岩构造环境研究[J].岩石学报,24(11):2778-2788
    [53]郭芳放,姜常义,卢荣辉,夏昭德,凌锦兰,郭娜欣.2010.新疆卡拉麦里地区黄羊山碱性花岗岩的岩石成因[J].岩石学报,26(8):2357-2373
    [54]姜常义,安三元.1984.论火成岩中钙质角闪石的化学组成特征及其岩石学意义[J].矿物岩石,3:1-7
    [55]姜常义,张蓬勃,卢登蓉,白开寅,王瑶培,唐索寒,王进辉,杨淳.2004.柯坪玄武岩的岩石学、地球化学、Nd、Sr、Pb同位素组成与岩石成因[J].地质论评,50(5):492-500
    [56]姜常义,程松林,叶书锋等.2006.新疆北山地区中坡山北镁铁质岩体岩石地球化学与岩石成因[J].岩石学报,22(1):115-126
    [57]洪大卫,王式洗,韩宝福,靳满元.1995.碱性花岗岩的构造环境分类及其鉴别标志[J].中国科学(B辑),25(4):418-426
    [58]李昌年,路凤香,陈美华.2001.巴楚瓦吉里塔格火成杂岩体岩石学研究[J].新疆地质,19(1):38.42
    [59]李华芹,陈富文,梅玉萍,吴华,程松林,杨甲全,代玉财.新疆坡北基性-超基性岩带Ⅰ号岩体Sm-Nd和SHRIMP U-Pb同位素年龄及其地质意义[J].矿床地质,2006,25(4):463469
    [60]李华芹,梅玉萍,屈文俊,蔡红,杜国民.新疆坡北基性-超基性岩带10号岩体SHRIMP U-Pb和矿石Re-Os同位素定年及其意义[J].矿床地质,2009,28(5):633-642
    [61]邱检生,B.I.A. McInnes,蒋少涌,胡建.2005.江西会昌密坑岩体的地球化学及其成因类型的新认识.地球化学,34(1):20.32
    [62]邱检生,肖娥,胡建,徐夕生,蒋少涌,李真.2008.福建北东沿海高分异Ⅰ花岗岩的成因:锆石U-Pb年代学、地球化学和Nd-Hf同位素制约.岩石学报,24(11):2468.2484
    [63]苏玉平,唐红峰.2005.A型花岗岩的微量元素地球化学[J].矿物岩石地球化学通报,24(3):245-251
    [64]肖渊莆,王道永,吴德超,邓江红,何政伟.2000.新疆北山构造带西段地质演化.新疆科技卫生出版社,四川科学技术出版社,pp 196
    [65]许保良,阎国翰,张臣,李之彤,何中甫,1998.A型花岗岩的岩石学亚类及其物质来源。地学前沿,5(3):113.124
    [66]张旗,周国庆.2001.中国蛇绿岩.北京:科学出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700