多功能含能结构材料冲击反应与细观特性关联机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多功能含能结构材料(Multifunctional Energetic Structural Materials, MESMs)是一类通常由铝热剂、金属间化合物、金属高分子化合物、以及一些亚稳态的金属化合物组成的混合物。因其同时具有结构强度和冲击反应释能特性,在高效毁伤与防护方面有着重要的应用前景。冲击载荷作用下含孔隙的MESMs颗粒间的碰撞形成热点进而发生化学反应,该过程受控于颗粒形状、尺寸、分布等细观特性。本文对这一涉及材料冲击空间宏细观尺度下热-力-化学多场响应的复杂问题,针对以Al/W/PTFE为代表的MESMs,通过数值模拟、理论计算及实验验证方法研究材料细观特性对其冲击反应的影响,建立了两者之间的关联机制。主要研究内容如下:
     (1)针对MESMs含孔隙多组分混合物特点,开展了MESMs冲击物态方程以及冲击温升控制的冲击反应热化学模型研究
     从现有密实态单质材料物态方程入手,基于零温混合物冷能叠加原理、Wu-Jing模型结合热力学关系建立了含孔隙多组分混合物的冲击物态方程。之后从等压路径出发,考虑自由电子项的贡献得到了MESMs的冲击温升计算方法。最后,将Arrhenius反应速率模型与反应动力学模型相结合,建立了基于冲击温升控制的MESMs冲击反应热化学模型。并利用该模型对典型的MESMs进行了冲击反应计算。
     (2)以MESMs类颗粒材料细观分布特性为基础,进行了可真实反映材料细观特性的细观模型生成方法研究
     首先,从材料细观结构入手,分别从颗粒形状、尺寸和分布三方面进行分析并引入相关参数。之后,利用随机生成方法从颗粒形状、尺寸两方面计算得到初步的材料细观模型。最后,采用智能优化算法,从颗粒位置分布角度对模型中颗粒位置进行更新,直至获得满足真实统计规律的模型。基于此方法,得到了Al/W/PTFE细观模型。
     (3)基于多物质欧拉算法,开展典型MESMs冲击压缩细观行为数值模拟研究
     利用动力学有限元软件AUTODYN,通过合适的算法、材料模型及初始、边界条件的选择和加载,在不考虑冲击反应的情况下实现MESMs冲击压缩过程的细观模拟。并以Al/W/PTFE为例,计算得到了不同材料组分及颗粒粒径尺寸下的冲击压缩Hugoniot参数及热力学响应情况。结果表明,Al/W/PTFE中材料组分配比、颗粒粒径尺寸在很大程度上影响着其冲击压缩Hugoniot参数以及热力学响应。经分析得到了材料组分、颗粒粒径尺寸对冲击压缩响应的影响规律。
     (4)以细观模拟动力学响应为输入参数,开展细观冲击响应与宏观反应行为关联机制研究
     采用宏细观方法将细观尺度上MESMs冲击压缩模拟结果与宏观冲击反应热化学模型相结合,将冲击压缩热-力学响应扩展至热-力-化学响应,实现了对冲击反应的模拟计算。并对不同冲击速度、组分配比及颗粒粒径尺寸下的Al/W/PTFE的进行冲击反应计算,得到相应的反应结果,进而分析得到冲击反应与细观特性的关联机制。
     (5)开展不同配方与颗粒级配关系MESMs冲击压缩动力学响应特性验证实验研究
     采用模压成型和真空烧结工艺方法制备了不同材料组分、颗粒级配关系的Al/W/PTFE试件,开展了准静态及低速动态冲击压缩实验。准静态压缩实验中,由材料应力-应变曲线,分析了材料组分和颗粒级配关系对材料宏观强度的影响规律。并用SEM拍摄实验前后的试件细观照片,直观获取了材料准静态压缩前后颗粒情况。低速动态冲击压缩实验中,利用PVDF压电传感器测量得到不同方案试件对应的冲击波参数。实验结果表明,Al/W/PTFE材料组分配比、颗粒粒径尺寸对材料宏观强度以及冲击压缩Hugoniot参数影响明显,验证了之前细观模拟所得结论。
Mulitifunctional Energetic Structural Materials (MESMs) are evolving as a new class of mixture which usually including thermites, intermetallics, metal-polymer mixture, metastable intermolecular composites. As the MESMs could provide dual functions of structural strength and energy release characteristics under intensive shock loading, there is a promising application in both efficient damage and protection field. The shock-induced chemical reaction (SICR) behavior of MESMs is significantly influnced by their mesostructure. During the shock compression process, particles of MESMs collide with each other, followed by temperature rising in the surface interface, hot spot formed and reaction initiation. Therefore, chemical reaction is controlled by the mesoscale characteristics, such as the mean particle size, the variation in particle size, shape and distribution of the particles. In this work, such a complex shock compression problem that refers the spatial from mesoscale to macroscale and couple thermal-mechanical-chemical response is investigated. Al/W/PTFE which is typical MESMs is seleted and mesoscale numerical simulation, theoretical analysis and experimental research are used to conducted on such the problem. The main contents could be summaried as follows:
     (1) Based on the multi-components with porosities mixtures characteristics of MESMs, the shock equation of state for MESMs and temperature controlled shock-induced chemical model were been investigated.
     In order to analyze the dynamic behaviour and temperature rise of MESMs, an equation of state for multi-components with porosities was developed by combining the equation of state for solid, cold energy mixture theory and Wu-Jing model. Then, the temperature rise under shock compression is calculated from isobaric path incorporate with thermodynamic relations, in which the contribution of free electrons was considered. Finally, the Arrhenius reaction rate and Avrami-Erofeev kinetic models that are controlled by shock temperature are used to calculate the extent of reaction of MESMs. A thermochemical model for shock-induced reactions, which includes the reaction efficiency, is given by combining shock temperature rise with chemical reaction kineties. Theoretical calculations are compared with experimental results for several typical MESMs.
     (2) According to the mesoscale distribution characterstics of MESMs, a method which could generate the mesoscale model of MESMs following the real mesoscale distribution was developed.
     Based on the mesoscale structural characteristics of the particles metal materials, several control parameters including particle shape, particle size and particle position were introduced to describe its meso-scale characteristics. Methods as random number generation method, intelligent optimization algorithm and relevant constraint were adopted, for the purpose of making the simulation model gradually approaching to the real particle distribution in meso-scale. It shows that the randomly generated simulation model which meets the statistical laws could reproduce the distribution of real particles. With the method, mesoscale model of Al/W/PTFE with different schemes were generated.
     (3) Based on the multi-materials Euler algorithm, the shock compression response of typical MESM were been investigated in mesoscale.
     By exploiting AUTODYN FEM software, after appropriate algorithm, material model, boundary and loading conditions were selected and loading, the shock compression of MESMs in mesoscale were simulated without considering the chemical reaction. Typical MESMs (Al/W/PTFE) was selected to investigate the effect of material component and particle size on the Hugoniot parameters and thermodynamic response under shock compression. The results show that the Al/W/PTFE material component ratio, particle size size to a large extent influence the impact of compression the Hugoniot parameters as well as the thermodynamic response.
     (4) The shock compression response of MESMs in mesoscale was associated with the shock reactions model in macroscale by consider the thermodynamic response from simulation as an input parameters.
     The shock compression responses of MESMs in mesoscale were incorporated with the shock-induced chemical reaction model in macroscale by multiscale method. Therefore, the shock compression responses were extent to themo-mechanic-chemical response. And the shock reaction results under different shock velocity, material component ratio, particle size were obtained.
     (5) The shock compression response of MESMs under different material component ratio, and particle size were investigated by experimental verification.
     Molding and sintering process were used to manufacture the Al/W/PTFE speciments with different material component ratio and particle size. Then, quasi-static and low-speed dynamich shock compression experiments were conducted on the speciments, the effect on the strength was acquired from strain-stress curve. Post-shock microstructural analysis of recovered material with SEM and comparison of calculated and measured product states is used to establish the criterion for reaction occurring in different granular or mesostructure characteristics At the same time the hypervelocity flyer plate impact experiment was carried out to investigate the reaction response of typical MESMs and time resolved stress measurement (using PVDF gauges) which is to be used to determine the shock state.
引文
[1]Hugh E. Reactive fragment [P]. United States Patent:3961576,1976.
    [2]National Research Council, Advanced energetic materials; 2004.p.32.
    [3]张先锋,赵晓宁.多功能含能结构材料研究进展[J].含能材料,2009,17(006):731-739.
    [4]Reding D. and Hanagud S. "Equation of state for multi-functional energetic structural material," in 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Material Conference, AIAA Paper 2007-2034 (2007).
    [5]Eakins D E, Thadhani N N. Shock compression of reactive powder mixtures[J]. International Materials Reviews,2009,54(4):181-213.
    [6]Nesterenko V F. Dynamics of heterogeneous materials[M]. Springer Verlag,2001.
    [7]Thadhani N N. Shock-induced and shock-assisted solid-state chemical reactions in powder mixtures[J]. Journal of Applied Physics,1994,76(4):2129-2138.
    [8]Austin R A, McDowell D L, Benson D J. Numerical simulation of shock wave propagation in spatially-resolved particle systems [J]. Modelling and Simulation in Materials Science and Engineering,2006,14(4):537.
    [9]Zhang X F, Shi A S, Zhang J, et al. Thermochemical modeling of temperature controlled shock-induced chemical reactions in multifunctional energetic structural materials under shock compression[J]. Journal of Applied Physics,2012,111(12):123501.
    [10]Qiao L, Zhang X F, He Y, et al. Mesoscale simulation on the shock compression behaviour of Al-W-Binder granular metal mixtures [J]. Materials & Design,2012.
    [11]Committee on Advanced Energetic Materials and Manufacturing Technologies. Advanced Energetics Materials[R].2004:20-23.
    [12]Baker E L. An application of variable metric nonlinear optimization to the parameterization of an extended thermodynamic equation of state[C]//Proceedings of the Tenth International Detonation Symposium.1993:394-400.
    [13]易建坤,贺五一,吴腾芳,等.高热剂在弹药销毁领域应用初探[J].工程爆破,2004,10(4):21-25.
    [14]Uzunov N, Ivanov R. Aluminothermic powder boriding of steel [J]. Applied Surface Science,2004,225(1):72-77.
    [15]Wieczorek-Ciurowa K, Gamrat K, Sawlowicz Z. Characteristics of CUAl2-CU9Al4/Al2O3 nanocomposites synthesized by mechanical treatment[J]. Journal of Thermal Analysis and Calorimetry,2005,80(3):619-623.
    [16]Zhe X, Dioka C A, Hendry A. Aluminothermic reduction of zirconia[J]. Journal of the European Ceramic Society,2005,25(5):695-702.
    [17]Ge C L, Ye R C. Research on self-propagating eutectic boriding[J]. Journal of Materials Processing Technology,2002,124(1):14-18.
    [18]Ross H. Plovnick, Elizabeth A. Richards. New combustion synthesis route to TiB2-Al2O3[J]. Materials Research Bulletin,2001,36:1487-1493.
    [19]Plovnick R H, Richards E A. New combustion synthesis route to TiB2-Al2O3[J]. Materials Research Bulletin,2001,36(7):1487-1493.
    [20]王毅,李凤生,姜炜,等.Fe2O3/Al纳米复合铝热剂的制备及其反应特性研究[J].火工品,2008,4:11-14.
    [21]王毅,姜炜,程志鹏.纳米Cu/Al-WO3亚稳态复合材料热反应机理分析[J].物理化学学报,2007,23(11):1753-1759.
    [22]Thadhani N N. Shock-induced chemical reactions and synthesis of materials[J]. Progress in Materials Science,1993,37(2):117-226.
    [23]Thadhani N N, Graham R A, Royal T, et al. Shock-induced chemical reactions in titanium-silicon powder mixtures of different morphologies:time-resolved pressure measurements and materials analysis[J]. Journal of Applied Physics,1997,82(3): 1113-1128.
    [24]张庆明,刘彦,黄风雷,吕中杰译.材料的动力学行为[M].北京:国防工业出版社.2006.
    [25]Eakins D E, Role of heterogeneity in the chemical and mechanical shock-response of nickel and aluminum powder mixtures[D]. Ph.D. thesis, Georgia Institute of Technology, 2007.
    [26]Psakhie S G, Skripnyak V A. US ARMY RESEARCH OFFICE. June 23-24 1996
    [27]Meyers M A. A Fundamental Study of Shock-Induced Chemical Reactions [R]. CALIFORNIA UNIV SAN DIEGO LA JOLLA DEPT OF APPLIED MECHANICS AND ENGINEERING SCIENCES,1994.
    [28]Thadhani N N, Chen E. Shock Synthesis of Materials Workshop Held in Atlanta[R]. ARO3315.1-MS-CF.1995
    [29]Merzhanov A G.Combustion and explosion processes in physical chemistry and technology of inorganic materials[J]. Russian Chemical Reviews,2003,72(4):289-310.
    [30]Batsanov S S, Doronin G S, Klochkov S V, et al. Synthesis reactions behind shock fronts[J]. Combustion, Explosion, and Shock Waves,1986,22(6):765-768.
    [31]Graham R A, Sawaoka A B. "High pressure explosive processing of ceramics," [R]. Technical Report,1987.
    [32]Song I, Thadhani N N. Shock-induced chemical reactions and synthesis of nickel aluminides[J]. Metallurgical Transactions A,1992,23(1):41-48.
    [33]Yu L H, Meyers M A. Shock synthesis and synthesis-assisted shock consolidation of suicides[J]. Journal of Materials Science,1991,26(3):601-611.
    [34]Boslough M B, Graham R A. Submicrosecond shock-induced chemical reactions in solids:First real-time observations[J]. Chemical Physics Letters,1985,121(4):446-452.
    [35]Boslough M B. Shock-induced solid-state chemical reactivity studies using time-resolved radiation pyrometry[J]. International Journal of Impact Engineering,1987,5(1): 173-180.
    [36]Boslough M B. A thermochemical model for shock-induced reactions (heat detonations) in solids[J]. The Journal of Chemical Physics,1990,92:1839.
    [37]Bennett L S, Horie Y. Shock-induced inorganic reactions and condensed phase detonations[J]. Shock Waves,1994,4(3):127-136.
    [38]Bennett L S, Horie Y, Hwang M M. Constitutive model of shock-induced chemical reactions in inorganic powder mixtures[J]. Journal of Applied Physics,1994,76(6): 3394-3402.
    [39]Zhang X F, Qiao L, Shi A S, et al. A cold energy mixture theory for the equation of state in solid and porous metal mixtures[J]. Journal of Applied Physics,2011,110(1): 013506-013506-10.
    [40]DO I P H, BENSON D J. Modeling shock-induced chemical reactions[J]. International Journal of Computational Engineering Science,2000,1(01):61-79.
    [41]Do I P H, Benson D J. Micromechanical modeling of shock-induced chemical reactions in heterogeneous multi-material powder mixtures[J]. International Journal of Plasticity, 2001,17(4):641-668.
    [42]Reding D J. Shock induced chemical reactions in energetic structural materials[D]. Ph.D. thesis, Georgia Institute of Technology,2008.
    [43]Reding D J. Multiscale chemical reactions in reactive powder metal mixtures during shock compression[J]. Journal of Applied Physics,2010,108(2):024905.
    [44]Reding D J. Pore collapse in powder metal mixtures during shock compression[J]. Journal of Applied Physics,2009,105(8):083544.
    [45]Reding D J, Hanagud S. Chemical reactions in reactive powder metal mixtures during shock compression[J]. Journal of Applied Physics,2009,105(2):024912.
    [46]Lee R J, Mock Jr M, Carney J R, et al. Reactive material studies [C]. AIP Conference Proceedings.2006,845:169.
    [47]Turgutlu A, Al-Hasasni S T S, Akyurt M. Impact deformation of polymeric projectiles[J]. International Journal of Impact Engineering,1996,18(2):119-127.
    [48]Ames R G, Brennan B P. Measurements of the Effects of Target Skin Thickness on the Impact-Initiated Energy Release from PTFE-A1 Projectiles[C]. Warheads and Ballistics Classified Symposium, June 2003.
    [49]Ames R G, Garrett R K. Measurements of the Effects of Impact-Initiated Energy Release from Moderate-Density Reactive Materials[C]. Warheads and Ballistics Classified Symposium, June 2003.
    [50]Ames R G, Garrett R K, Brown L. Detonation-Like Energy Release from High-Speed Impacts of Polytetrafluoroethylene-Aluminum Projectiles[C].5th Joint Classified Bombs/Warheads and Ballistics Symposium, June 2002
    [51]Ferranti J L, Thadhani N N, House J W. Dynamic Mechanical Behavior Characterization of Epoxy-Cast Al+FeO Mixtures[C]. AIP Conference Proceedings.2006,845:805.
    [52]Ferranti J L, Thadhani N N. Dynamic Impact Characterization of Al+Fe2O3+30% Epoxy Composites Using Time Synchronized High-Speed Camera and VISAR Measurements[C]. Materials Research Society Symposium Proceedings. Warrendale, Pa, Materials Research Society.2005,896:197.
    [53]Eakins D E, Thadhani N N. Mesoscale simulation of the configuration-dependent shock-compression response of Ni+Al powder mixtures[J]. Acta Materialia,2008, 56(7):1496-1510.
    [54]Xu X, Thadhani N N. Investigation of Shock-Induced Chemical Reactions in Ni-Ti Powder Mixtures Using Instrumented Experiments[C]. AIP Conference Proceedings. 2002,620:1123.
    [55]Xu X, Thadhani N N. Investigation of shock-induced reaction behavior of as-blended and ball-milled Ni+ Ti powder mixtures using time-resolved stress measurements [J]. Journal of Applied Physics,2004,96:2000.
    [56]Jordan J L, Dick R D, Ferranti L, et al. Equation of State of Aluminum-Iron Oxide (FeO)-Epoxy Composite:Modeling and Experiment[C]. AIP Conference Proceedings. 2006,845:157.
    [57]Jordan J L, Herbold E B, Sutherland G, et al. Shock equation of state of multi-constituent epoxy-metal particulate composites[J]. Journal of Applied Physics,2011,109(1): 013531.
    [58]Eakins D E, Thadhani N N. Investigation of shock-induced reactions in a Ni+Al powder mixture[C]. AIP Conference Proceedings.2006,845:1153.
    [59]Eakins D E, Thadhani N N. Shock-induced reaction in a flake nickel+spherical aluminum powder mixture[J]. Journal of Applied Physics,2006,100(11):113521-113521-5.
    [60]Eakins D E, Thadhani N N. The shock-densification behavior of three distinct Ni+Al powder mixtures[J]. Applied Physics Letters,2008,92(11):111903.
    [61]Herbold E B, Nesterenko V F, Benson D J, et al. Particle size effect on strength, failure, and shock behavior in polytetrafluoroethylene-Al-W granular composite materials[J]. Journal of Applied Physics,2008,104(10):103903.
    [62]Cai J, Nesterenko V F, Vecchio K S, et al. The influence of metallic particle size on the mechanical properties of polytetraflouroethylene-Al-W powder composites[J]. Applied Physics Letters,2008,92(3):031903.
    [63]Cai J, Chen Y, Nesterenko V F, et al. Effect of strain rate on the compressive mechanical properties of aluminum alloy matrix composite filled with discontinuous carbon fibers[J]. Materials Science and Engineering:A,2008,485(1):681-689.
    [64]Cai J, Walley S M, Hunt R J A, et al. High-strain, high-strain-rate flow and failure in PTFE/Al/W granular composites[J]. Materials Science and Engineering:A,2008, 472(1):308-315.
    [65]Olney K L, Chiu P H, Lee C W, et al. Role of material properties and mesostructure on dynamic deformation and shear instability in Al-W granular composites[J]. Journal of Applied Physics,2011,110(11):114908.
    [67]Benson D J. Computational methods in Lagrangian and Eulerian hydrocodes[J]. Computer methods in Applied Mechanics and Engineering,1992,99(2):235-394.
    [68]Benson D J. An analysis by direct numerical simulation of the effects of particle morphology on the shock compaction of copper powder[J]. Modelling and Simulation in Materials Science and Engineering,1994,2(3A):535.
    [69]Benson D J, Do I, Meyers M A. Computational Modeling of the Shock Compression of Powders[C]. AIP Conference Proceedings.2002,620:1087.
    [70]Austin R A, Numerical simulation of the shock compression of microscale reactive particle systems[D]. Masters thesis, Georgia Institute of Technology,2005.
    [71]Austin R A, Modeling shock wave propagation in discrete Ni/Al powder mixture[D]. Ph.D. thesis, Georgia Institute of Technology,2010.
    [72]Eakins D E, Thadhani N N. Mesoscale simulation of the configuration-dependent shock-compression response of Ni+Al powder mixtures[J]. Acta Materialia,2008,56(7): 1496-1510.
    [73]Eakins D E, Thadhani N N. Discrete particle simulation of shock wave propagation in a binary Ni+Al powder mixture[J]. Journal of Applied Physics,2007,101:043508.
    [74]Fredenburg D A, Vogler T J, Thadhani N N. Meso-scale simulation of the shock compression response of equiaxed and needle morphology 6061 Aluminum Powders[J]. Bulletin of the American Physical Society,2009,54.
    [75]Borg J P, Vogler T J. Aspects of simulating the dynamic compaction of a granular ceramic[J]. Modelling and Simulation in Materials Science and Engineering,2009,17(4): 045003.
    [76]Borg J P, Vogler T J. Rapid compaction of granular material:characterizing two-and three-dimensional mesoscale simulations [J]. Shock Waves,2013,23(2):153-176.
    [77]Borg J P, Vogler T J, Fraser A. A review of mesoscale simulations of granular materials[C].AIP Conference Proceedings.2009,1195:1331.
    [78]Tomar V, Zhou M. Molecular dynamics simulation of shock induced detonation[C]. AIP Conference Proceedings.2004,706:413.
    [79]Tomas V, Zhou M. An Empirical molecular dynamics potential for an Al+Fe2O3 reactive metal power mixture[R].45th AIAA/ASME/ASCE/AHS/ASC Structureal dynamics & Materials conference.2004.
    [80]Tomar V, Zhou M. Molecular dynamics simulations of shock-induced thermite reaction[C]. Materials Science Forum.2004,465:157-162.
    [81]Tomar V, Zhou M. A molecular dynamics simulation framework for an Al+Fe2O3 reactive metal powder mixture[J]. MRS Proceedings Vol.821 Nanoscale Materials and Modeling-Relations Among Processing, Microstructure and Mechanical Properties,2004: 319-325.
    [82]Tomar V, Zhou M. Analyses of tensile deformation of nanocrystalline a-Fe2O3+fcc-Al composites using molecular dynamics simulations[J]. Journal of the Mechanics and Physics of Solids,2007,55(5):1053-1085.
    [83]Tomar V. Atomistic modeling of the Al and Fe2O3 material system using classical molecular dynamics[D]. Ph.D. thesis, Georgia Institute of Technology,2005
    [84]徐松林,阳世清,徐文涛,等.PTFE/Al反应材料的力学性能研究[J].高压物理学报,2009,23(5):384-388.
    [85]阳世清,徐松林,张彤.PTFE/Al反应材料制备工艺及性能[J].国防科技大学学报,2008,30(6):39-42.
    [86]徐松林,阳世清,李俊玲,等.PTFE/Al含能复合材料的压缩行为研究[J].力学学报, 2009,41(5):708-712.
    [87]徐松林,阳世清,张炜,等PTFE/Al含能复合物的本构关系[J].爆炸与冲击,2010,30(4):439-444.
    [88]王海福,刘宗伟,等.活性破片能量输出特性实验研究[J].北京理工大学学报,2009,29(8):663-666.
    [89]Wang H, Zheng Y, Yu Q, et al. Impact-induced initiation and energy release behavior of reactive materials[J]. Journal of Applied Physics,2011,110(7):074904.
    [90]H. F. Wang, Z. W. Liu, H. Wang, and W. M. Yu, in Theory and Practice of Energetic materials-2007, edited by P. Huang, Y. Wang, and S. Li (Science Press, Beijing,2007) vol.7:429-432.
    [91]张先锋,赵晓宁,乔良.反应金属冲击反应过程理论分析[J].爆炸与冲击,2010,30(2):143-151.
    [92]Zhang X F, Shi A S, Qiao L, et al. Experimental study on impact-initiated characters of multifunctional energetic structural materials[J]. Journal of Applied Physics,2013, 113(8):083508.
    [93]黄亨建,黄辉,阳世清,等.毁伤增强型破片探索研究[J].含能材料,2007,15(6):566-569.
    [94]何源,何勇,张先锋,等.含能破片冲击起爆临界条件研究[J].弹道学报,2010,22(4):45-49.
    [95]何源,何勇,潘旭超.含能破片冲击薄靶的释能时间[J].火炸药学报,2010,33(2):25-28.
    [96]何源,何勇,潘旭超,等.含能破片冲击引爆屏蔽炸药研究[J].南京理工大学学报(自然科学版),2011,35(2):187-193.
    [97]何源.含能破片作用机制及其毁伤效应实验研究[D].南京:南京理工大学,2011.12.
    [98]蒋建伟,王树有,等.复合反应破片对钢靶侵彻的实验研究[J].北京理工大学学报,2009,17(6):722-725.
    [99]叶小军.含能破片对带壳炸药的引燃机理及抛射强度研究[D].南京:南京理工大学,2008.
    [100]李旭峰.含能破片对模拟战斗部的引燃机理[D].南京:南京理工大学,2005.6.
    [101]李杰.可爆破片式反导技术研究[D].南京:南京理工大学,2006.6.
    [102]谢长友,蒋建伟,帅俊峰,等.复合式反应破片对柴油邮箱的毁伤效应试验研究[J].高压物理学报,2009,23(6):447-452.
    [103]郑建龙,李友云,钱国平译.多尺度计算方法:均匀化和平均化[M].北京:科学出版社,2010.
    [104]杨卫.细观力学和细观损伤力学[J].力学进展,1992,22(1):1-9.
    [105]张研,张子明.材料细观力学[M].北京:科学出版社,2008.
    [106]黄克智,黄永刚.固体本构关系(第一版)[M].北京:清华大学出版社,1999.
    [107]杜善义,王彪.复合材料细观力学[M].北京:科学出版社,1998.
    [108]吴晶,李文芳,蒙继龙.颗粒增强金属基复合材料微屈服行为的细观力学计算[J].材料科学与工程学报,2003,(01):21-25.
    [109]陈浩然,苏晓风.金属基复合材料弹塑性拉伸变形特征的细观力学研究[J].大连理工大学学报,1999,39(2):144-149.
    [110]侯敬春,胡更开.金属基复合材料损伤细观力学分析[J].复合材料学报,1996,(04):119-124.
    [111]刘先兰,张文玉,刘楚明.细观损伤力学及其在金属塑性加工中的应用[J].锻压技术,2008,(01):9-13.
    [112]杨庆生,唐立民,陈浩然.短纤维增强金属基复合材料的细观塑性变形与宏观性能[J].复合材料学报,1995,(03):76-82.
    [113]周储伟,杨卫,方岱宁.金属基复合材料的强度与损伤分析[J].固体力学学报,2000,(02):161-165.
    [114]王明章,林实,钱仁根,肖纪美Al/Al2Cu自生复合材料弹塑性变形的晶体细观力学模拟[J].金属学报,1995,(14):77-85.
    [115]夏晓舟.混凝土细观数值仿真及宏细观力学研究[D].南京:河海大学,2007.6.
    [116]杨慧,曹平,江学良.水-岩化学作用等效裂纹扩展细观力学模型[J].岩土力学,2010,(07):2104-2110.
    [117]袁小平.基于细观力学的岩石弹塑性损伤模型研究[D].北京:中国地质大学(北京),2012.
    [118]吴德伦,赵明阶.岩石细观力学参数的反演研究[J].岩石力学与工程学报,1996,(S1):433-439.
    [119]唐欣薇.基于宏细观力学的混凝土破损行为研究[D].北京:清华大学,2009.
    [120]陈升平,蒋俊玲,李四年.混凝土拉伸损伤演变的细观力学研究[J].工程力学,2003,(05):190-193.
    [121]唐欣薇,张楚汉.基于均匀化理论的混凝土宏细观力学特性研究[J].计算力学学报,2009,(06):876-881.
    [122]张子明,赵吉坤,倪志强.混凝土拉伸断裂的细观力学模拟[J].河海大学学报(自然科学版),2005,(03):287-290.
    [123]张德海,朱浮声,邢纪波.混凝土拉伸断裂的细观数值分析[J].计算力学学报,2006,(01):65-70.
    [124]马怀发,陈厚群,黎保琨.混凝土试件细观结构的数值模拟[J].水利学报,2004,(10):27-35.
    [125]胡更开,复合材料宏观性能的细观力学研究[J].力学与实践,1996,(06):7-12.
    [126]赵颖华.复合材料损伤细观力学分析[D].北京:清华大学,1996.
    [127]胡更开,侯敬春.复合材料力学性能细观预测[J].北京理工大学学报,1995,15(3):265-270.
    [128]Williamson R L. Parametric studies of dynamic powder consolidation using a particle-level numerical model[J]. Journal of Applied Physics,1990,68(3):1287-1296.
    [129]Benson D J. The calculation of the shock velocity-particle velocity relationship for a copper powder by direct numerical simulation[J]. Wave Motion,1995,21(1):85-99.
    [130]Benson D J, Conley P. Eulerian finite-element simulations of experimentally acquired HMX microstructures[J]. Modelling and Simulation in Materials Science and Engineering,1999,7(3):333.
    [131]Thompson S L, CSQⅡ-An Eulerian Finite Difference Program for Two-Dimensional Material Response, Report Number:SAND77-1339,1979.
    [132]McGlaun J M, Thompson S L, CTH:A three-dimensional shock wave physics code, International Journal of Impact Engineering,1990,10 (1-4):351-360.
    [133]Benson D J. A multi-material Eulerian formulation for the efficient solution of impact and penetration problems [J]. Computational Mechanics,1995,15(6):558-571.
    [134]Hill R. Elastic properties of reinforced solids:some theoretical principles [J]. Journal of the Mechanics and Physics of Solids,1963,11(5):357-372.
    [135]Kanit T, Forest S, Galliet I, et al. Determination of the size of the representative volume element for random composites:statistical and numerical approach[J]. International Journal of Solids and Structures,2003,40(13):3647-3679.
    [136]Drugan W J, Willis J R. A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites[J]. Journal of the Mechanics and Physics of Solids,1996,44(4):497-524.
    [137]Gusev A A. Representative volume element size for elastic composites:a numerical study[J]. Journal of the Mechanics and Physics of Solids,1997,45(9):1449-1459.
    [138]Nguyen V P, Stroeven M, Sluys L J, Multiscale continuous and discontinuous modeling of heterogeneous materials:A review on recent developments, Journal of Multiscale Modelling,2011, (3):1-42.
    [139]Christman T, Needleman A, Suresh S. An experimental and numerical study of deformation in metal-ceramic composites [J]. Acta Metallurgica,1989,37(11): 3029-3050.
    [140]Nakamura T, Suresh S. Effects of thermal residual stresses and fiber packing on deformation of metal-matrix composites[J]. Acta Metallurgica et Materialia,1993, 41(6):1665-1681.
    [141]Pettermann H E, Suresh S. A comprehensive unit cell model:a study of coupled effects in piezoelectric 1-3 composites[J]. International Journal of Solids and Structures,2000, 37(39):5447-5464.
    [142]Guedes J M, Kikuchi N. Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods[J]. Computer Methods in Applied Mechanics and Engineering,1990,83(2):143-198.
    [143]Fish J, Shek K, Pandheeradi M, et al. Computational plasticity for composite structures based on mathematical homogenization:Theory and practice[J]. Computer Methods in Applied Mechanics and Engineering,1997,148(1):53-73.
    [144]Fish J, Yu Q, Shek K L. Computational damage mechanics for composite materials based on mathematical homogenization[J]. International Journal for Numerical Methods in Engineering,1999,45(11):1657-1679.
    [145]Ghosh S, Lee K, Moorthy S. Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element model [J]. Computer Methods in Applied Mechanics and Engineering,1996,132(1):63-116.
    [146]Miehe C, Dettmar J, Zah D. Homogenization and two-scale simulations of granular materials for different microstructural constraints[J]. International Journal for Numerical Methods in Engineering,2010,83(8-9):1206-1236.
    [147]Smit R J M, Brekelmans W A M, Meijer H E H. Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling[J]. Computer Methods in Applied Mechanics and Engineering,1998,155(1):181-192.
    [148]Rankine W J M. On the thermodynamic theory of waves of finite longitudinal disturbance[J]. Philosophical Transactions of the Royal Society of London,1870: 277-288.
    [149]汤文辉,张若棋.物态方程理论及计算概论[M].北京:高等教育出版社,2008.
    [150]经福谦.实验物态方程导引[M].北京:科学出版社,1999.
    [151]胡金彪,经福谦.用冲击压缩数据计算物质结合能的一个简便解析方法[J].高压物理学报,1990,4(3):175-186.
    [152]Krueger B R, Vreeland T. A Hugoniot theory for solid and powder mixtures[J]. Journal of Applied Physics,1991,69(2):710-716.
    [153]Wu Q, Jing F. Thermodynamic equation of state and application to Hugoniot predictions for porous materials[J]. Journal of Applied Physics,1996,80(8):4343-4349.
    [154]Wu Q, Jing F. Unified thermodynamic equation-of-state for porous materials in a wide pressure range[J]. Applied Physics Letters,1995,67(1):49-51.
    [155]吴强,经福谦.用于预测疏松材料冲击压缩特性的热力学模型[J].高压物理学报,1996,10(1):1-5.
    [156]Herrmann W. Constitutive equation for the dynamic compaction of ductile porous materials[J]. Journal of Applied Physics,1969,40(6):2490-2499.
    [157]Carroll M M, Holt A C. Static and dynamic pore-collapse relations for ductile porous materials[J]. Journal of Applied Physics,1972,43(4):1626-1636.
    [158]Turetsky A L, Block F, Young G. High temperature thermal analysis of a Pyronol composition[J]. Thermochimica Acta,1992,212:197-207.
    [159]Pantoya M L, Dean S W. The influence of alumina passivation on nano-Al/Teflon reactions[J]. Thermochimica Acta,2009,493(1):109-110.
    [160]耿华运.极低初始密度疏松材料冲击响应特性理论研究[D].中国工程物理研究院,2001.
    [161]Wang H, Pring A, Ngothai Y, et al. A low-temperature kinetic study of the exsolution of pentlandite from the monosulfide solid solution using a refined Avrami method[J]. Geochimica et Cosmochimica Acta,2005,69(2):415-425.
    [162]Umbrajkar S M, Schoenitz M, Dreizin E L. Exothermic reactions in Al-CuO nanocomposites[J]. Thermochimica Acta,2006,451(1):34-43.
    [163]Avrami M. Kinetics of phase change. Ⅰ General theory [J]. The Journal of Chemical Physics,1939,7:1103.
    [164]Avrami M. Kinetics of phase change.Ⅱ transformation-time relations for random distribution of nuclei[J]. The Journal of Chemical Physics,1940,8:212.
    [165]Avrami M. Kinetics of phase change. Ⅲ. Granulation, phase change, and microstructure[J]. The Journal of Chemical Physics,1941,9(2):177.
    [166]Ortega A, Maqueda L P, Criado J M. The problem of discerning Avrami-Erofeev kinetic models from the new controlled rate thermal analysis with constant acceleration of the transformation[J]. Thermochimica Acta,1995,254:147-152.
    [167]McQueen R G, Marsh S P, Taylor J W, et al. High Velocity Impact Phenomena, ed. R. Kinslow[J]. Academic Press,1970,6:7.
    [168]Fan R H, Lu H L, Sun K N, et al. Kinetics of thermite reaction in Al-Fe2O3 system[J]. Thermochimica Acta,2006,440(2):129-131.
    [169]White J D E, Reeves R V, Son S F, et al. Thermal Explosion in Al-Ni System:Influence of Mechanical Activation[J]. The Journal of Physical Chemistry A,2009,113(48): 13541-13547.
    [170]Rodriguez M A, Adams D P, Tissot R G. Determination of activation energy of intermixing in textured metal-metal multilayer films via two-dimensional x-ray diffraction[J]. Powder diffraction,2009,24(2):82-84.
    [171]杨秀英,赵艳红,彭晓,等.Cr, Al颗粒尺寸对Ni-Cr-Al复合镀层氧化行为的影响[J].中国腐蚀与防护学报,2011,31(3):190-195.
    [172]Granqvist C G, Buhrman R A. Ultrafine metal particles [J]. Journal of Applied Physics, 1976,47(5):2200-2219.
    [173]Metropolis N, Rosenbluth A W, Rosenbluth M N, et al. Equation of state calculations by fast computing machines[J]. The Journal of Chemical Physics,1953,21:1087.
    [174]Kirkpatrick S, Jr. D G, Vecchi M P. Optimization by simulated annealing[J]. Science, 1983,220(4598):671-680.
    [175]邢文训,谢金星.现代优化计算方法[M].北京:清华大学出版社,2005.
    [176]石少卿AUTODYN工程动力分析及应用实例[M].北京:中国建筑工业出版社,2012.
    [177]Belytschko T, Liu W K, Moran B连续体和结构的非线性有限元[M].北京:清华大学出版社,2002.
    [178]Noh W F. CEL:A time-dependent, two-space-dimensional, coupled Eulerian-Lagrange code[R]. Lawrence Radiation Lab., Univ. of California, Livermore,1963.
    [179]张雄,陆明万,王建军.任意拉格朗日-欧拉描述法研究进展[J].计算力学学报,1997,14(1):91-102.
    [180]张锁春.光滑质点流体动力学(SPH)方法(综述)[J].计算物理,1996,13(4):385-397.
    [181]Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]. Proceedings of the 7th International Symposium on Ballistics. The Hague, Netherlands:International Ballistics Committee, 1983,21:541-547.
    [182]Steinberg D J, Cochran S G, Guinan M W. A constitutive model for metals applicable at high-strain rate[J]. Journal of Applied Physics,1980,51(3):1498-1504.
    [183]McQueen R G, Marsh S P, Taylor J W, et al. The equation of state of solids from shock wave studies[J]. High velocity impact phenomena,1970,293.
    [184]戴诚达,谭华,王道德,等.几种主要陨石类型的Hugoniot参数[J].空间科学学报,1999,19(4):368-374.
    [185]Rankine W J M. On the thermodynamic theory of waves of finite longitudinal disturbance[J]. Philosophical Transactions of the Royal Society of London,1870: 277-288.
    [186]谭华.实验冲击波物理导引[M].北京:国防工业出版社,2007.
    [187]Marsh S P. LASL Shock Hugoniot Data[M]. Univ of California Press,1980.
    [188]Williamson R L. Parametric studies of dynamic powder consolidation using a particle-level numerical model[J]. Journal of Applied Physics,1990,68(3):1287-1296.
    [189]Steinberg D. Equation of state and strength properties of selected materials[M]. Livermore, CA:Lawrence Livermore National Laboratory,1996.
    [190]Koch E C. Metal-fluorocarbon based energetic materials[M]. Wiley-VCH,2012.
    [191]郭伟国,李玉龙,索涛.应力波基础简明教程[M].西安:西北工业大学出版社,2007.
    [192]张建伟,叶京生,钱树德.工业造粒技术[M].北京:化学工业出版社,2009.
    [193]Nielson D B, Tanner R L, Lund G K. High strength reactive materials and methods of making[P]. U.S. Patent 7307117.2007.12.11.
    [194]朱宜,电子,张存珪,等.电子显微镜的原理和使用[M].北京:北京大学出版社,1983.
    [195]徐秉业,刘信声.应用弹塑性力学[M].北京:清华大学出版社,1995.
    [196]卓家寿,黄丹.工程材料的本构演绎[M].北京:科学出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700