基于信号放大技术的压电生物传感器制备及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着分析科学的不断发展,生命科学领域中的各种分析和检测过程,越来越多地要借助于生物传感技术获取所需的信息。经过40多年的不断发展,随着现代测量技术、分子生物学、生物电子学和仿生学的迅猛发展及相互结合,生物传感技术在基础研究、应用研究、新产品开发和商品化等方面都取得了长足进展。各种新型生物传感器不断涌现,仪器性能不断提高,目前报道的生物传感器已有几百种,在医疗保健、食品卫生、环境监测、国防与安全等方面已逐步推广应用。本研究论文针对当前传感技术发展中的一些瓶颈问题,重点关注如何提高传感器信号等问题。结合压电免疫传感分析技术简便、快速、可实时输出数据的特点及电化学传感技术的灵敏度高的优点,利用纳米材料的优越性能及酶催化信号放大技术发展了几种新型的生物传感器,对黄曲霉毒素B1、人IgG、α-地贫突变基因、模拟DNA序列进行了定量测定,所得结果对比传统方法,在检测的灵敏度、线性范围方面都有所提高,并验证了技术的实用性。
     压电免疫传感器是结合了压电效应的高灵敏性和免疫反应的高特异性的一种生物传感器,具有简便、快速、灵敏、成本低、响应谱广、可实时数据输出等优点,在生物技术、临床诊断、环境监测、食品工业、医药和军事等领域具有广泛的应用前景。我们利用酶和纳米材料在生物传感器中的应用,结合有效的生物活性组分的固定方法,采用信号放大技术提高分析信号、降低检测下限,提出了三种新型的压电免疫传感器。同时,尝试用石英晶体微天平作为敏感元件,在其表面固定具有发夹结构的DNA探针,用于识别并结合目标DNA序列产生相应的信号构建一种简单有效的DNA检测方法。还提出了一种新的电化学检测DNA的方法,以二茂铁标记的寡核苷酸构建了一种简单通用的信号打开型的分子开关,实现了对DNA序列的无试剂检测。主要内容如下:
     (1)研制了一种简单、快速、灵敏的压电免疫传感器,用于黄曲霉毒素B1的检测。黄曲霉毒素B1是一种小分子物质,很难用压电法直接检测,本文采用间接竞争免疫法。纳米金标记羊抗鼠IgG抗体用于放大响应信号。在0.10~100 ng mL?1的范围内,该传感器的响应信号与AFB1浓度的对数呈现良好的线性关系。该传感器可以检测到AFB1的最低浓度为0.01 ng mL?1,定量能力与经典酶联免疫吸附法(ELISA)相接近。该传感器界面可用甘氨酸缓冲液可顺利再生,并可重复使用至少9次而其响应信号没有明显降低(第二章)。
     (2)发展了一种基于间接竞争免疫反应和酶催化沉积放大的黄曲霉毒素B1压电检测方法。先在石英晶振表面包被一层3-巯基丙酸自组装膜,再共价结合BSA-AFB1偶联抗原,接着待测物AFB1与BSA-AFB1偶联抗原竞争结合鼠抗AFB1抗体,然后结合辣根过氧化物酶(HRP)标记的羊抗鼠IgG抗体。在H2O2存在时,HRP酶催化氧化4-氯-1-萘酚生成不溶物4-氯-1-萘醌沉积在电极表面,引起显著的质量变化,从而导致明显的频率响应。该传感器可获得黄曲霉毒素B1的浓度检测范围为0.01~10 ng mL?1。通过对模拟样品的分析结果表明,该传感器能够有效地检测牛奶样品中AFB1的含量,可望用于实际样品检测(第三章)。
     (3)提出了一种简便的基于SiO2纳米颗粒免疫凝集反应的压电传感器对人IgG的直接检测方法。待测物人IgG会同时被晶振表面固定的羊抗人IgG抗体和检测体系中SiO2标记的羊抗人IgG抗体识别,引起检测体系中的SiO2在传感界面上特异性凝集,从而引起晶振表面的巨大质量变化和检测介质密度和粘度变化。实验结果表明,该方法修饰的探针不仅能充分地减少背景干扰,而且能显著地放大响应信号。实验中,采用扫描电镜(SEM)考察了探针表面在发生免疫凝集反应前后的形貌变化。此外,还考察了免疫凝集促进剂PEG及离子强度控制剂NaCl的使用对实验的影响。该传感器的频率变化与人IgG浓度为正相关关系,其检测下限为0.084μg mL-1(第四章)。
     (4)尝试用石英晶体微天平作为敏感元件,在其表面固定具有发夹结构的DNA探针,用于识别并结合目标DNA序列产生相应的信号构建一种简单有效的DNA检测方法。其特点在于结合使用限制性核酸内切酶ECoR I及纳米金标记的检测探针,能够很好的降低背景值并有效增强信号。方案如下:先在石英晶振表面通过巯基自组装固定一段具有发夹结构的DNA探针,其发夹部分能够被内切酶ECoR I特异性识别并切割。再用巯基己醇封闭,然后与目标DNA作用。如果待测体系中含有目标DNA,则DNA探针的发夹结构打开且随后的内切酶对其没有作用,并可以结合纳米金标记的检测探针而使信号放大。否则,在没有目标DNA时,发夹结构的DNA探针可被酶切,与纳米金标记的检测探针作用也不能产生任何信号。实验结果表明,此方法是一种简单实用、灵敏度高的适应于DNA分析检测的技术(第五章)。
     (5)在本工作中,我们提出了一种新的电化学检测DNA的方法,以二茂铁标记的寡核苷酸构建了一种简单通用的信号打开型的分子开关,实现了对DNA序列的无试剂检测。这一方法实际应用于基因突变导致α-地贫的分析检测中,用于检测染色体末端142编码子(Hb Constant Spring codon 142)单碱基突变(TAA→CAA)的存在,取得了较好的实验结果。目标DNA浓度在0.01到100 pM之间与电流信号具有较好的线性关系(R2=0.9777),该方法检测限为0.01 pM。该DNA传感器在1 M NaOH溶液中可顺利实现再生。所有这些表明,此方法是一种简单快速而且比较灵敏的适用于单碱基突变检测的技术,具有较强的通用性(第六章)。
With the continuous progress of the analytical science, a variety of analysis and testing process in life sciences, more and more with the aid of bio-sensing technology to obtain the required information. After 40 years the continuous rapid development and mutual integrationin modern measurement techniques, molecular biology, bio-electronics and bionics, biosensing technology has made remarkable progress in basic research, applied research, new product development as well as in commercialization. The current biosensors have been reported in hundreds of species and new types of biosensors are emerging, equipment performance continuously improving, have made a wide range of applications in health care, food hygiene, environmental monitoring, defense and security. This research paper concerns on a number of bottleneck problems for the current development of sensor technology, focusing on how to improve the sensor signals and so on. Combination of the advantages of simple, rapid, real-time output data with piezoelectric immunosensor sensing analysis and high sensitivity, characteristics of electrochemical sensing technology, using superior performance of nano-materials, and the enzyme-catalyzed signal amplification technology, the several new biological sensors for aflatoxin B1, human IgG,α-thalassemia mutations, the quantitative simulation of DNA sequence determination were developed and the results were compared with conventional methods, the detection sensitivity, linear range has improved and verified the practicality of the techniques.
     Piezoelectric immunosensor combines the high sensitivity of the piezoelectric effect and high specificity of immune response as a biological sensor, has the characteristics of simple, rapid, sensitive, low cost, to respond in a broad spectrum, real-time data output, etc., with wide application prospects in the biological technology, clinical diagnostics, environmental monitoring, food industry, medicine and military fields. We use enzymes and nano-materials in the biological sensor applications, combined with the effective fixed method of bio-active component in analysis using signal amplification technology to improve the signal, lower detection limit, has developed three new types of piezoelectric immunosensor. At the same time, try to use quartz crystal microbalance as a sensor on its surface fixed with a hairpin DNA probes used to identify and target DNA to produce a signal to build a simple and efficient DNA detection method. Also proposed a new method of electrochemical detection of DNA in order to ferrocene labeled oligonucleotide construct a simple general-purpose the type of signal opening molecular switch, realized its reagent-free detection of DNA sequences. The main contents are as follows:
     (1) A simple, rapid and highly sensitive piezoelectric immunosensor has been proposed and applied to detect aflatoxin B1 (AFB1). It is unlikely that direct binding of small molecules such like AFB1 to the piezoelectric sensor surface could result in a satisfactory detection limit and sensitivity. Thus, indirect competitive immunoassay technique had been used for the detection of the target and gold nanoparticles (GNP) been employed as a‘weight label’to the secondary antibody for amplifying the response. This method is proven in its ability to detect AFB1 down to a level of 0.01 ng mL-1 in artificially contaminated milk, which is comparable to or even exceeding the sensitivity of microtitre plate ELISA. Furthermore, the frequency responses of the immunoassay are linearly correlated to the logarithm of AFB1 concentration in the range of 0.10 ~ 100 ng mL-1. The sensor could be regenerated under very mild conditions simply by immersing the sensor into glycine buffer solution to desorb the combined antibody. It is found that the as-renewed sensor could be reused at least 9 runs without obvious loss of sensing sensitivity (Chapter 2).
     (2) An ultrasensitive piezoelectric method for the detection of the aflatoxin B1 based on the indirect competitive immunoassay and the biocatalyzed deposition amplification has been developed. In this method, the quartz crystal surface was coated with a self-assembled monolayer of 3-mercaptopropionic acid (MPA) for covalently immobilization of the BSA-AFB1 conjugate, which could compete with the free AFB1 for binding to the anti-AFB1 antibody (MsIgG). After the competitive immunoreaction, the horseradish peroxidase (HRP) labeled goat anti-mouse IgG (G-Anti-MsIgG) was introduced into the detection cell to combine with the anti-AFB1 antibody on the crystal surface. The enzyme labeled G-Anti-MsIgG as a biocatalyst could accelerate the oxidation of 4-chloro-1-naphthol by H2O2 to yield the insoluble product benzo-4-chlorohexadienone on the surface of quartz crystal microbalance (QCM), resulting in a mass increase that was reflected by a decrease in the resonance frequency of the QCM. The proposed approach could allow for the determination of AFB1 in the concentration range of 0.01 ~ 10.0 ng mL-1. Furthermore, several artificially contaminated milk samples were analyzed with good recoveries obtained, which demonstrated the suitability of the proposed method for detecting AFB1 (Chapter 3).
     (3) A simple piezoelectric immunoagglutination assay technique with antibody-modified nanoparticles has been developed for direct quantitative detection of protein. The proposed technique is based on the specific agglutination of goat anti-hIgG-coated silica nanoparticles in the presence of human immunoglobulin G (hIgG),which causes a frequency change and is monitored by a piezoelectric device. The antibody modified on the probe surface would combine with antibody-coated nanoparticles in the presence of antigen (hIgG) when the surface agglutination reaction took place, which couples both the mass effect and viscoelastic effect acting on the probe. The results indicate that the background interference can be substantially minimized and the probe signal can be observably multiplied. In addition, the surfaces of the modified probe and that after combining the complex of immunoagglutination were imaged by scanning electronic microscopy (SEM). Moreover, an optimization of assay medium composition with the addition of poly(ethylene glycol) (PEG) serving as immunoagglutination enhancer and sodium chloride to control the ion-strength was investigated. The frequency responses of the immunoagglutination assay were found to correlate well with the hIgG concentration with a detection limit of 0.084μg mL-1 (Chapter 4).
     (4) Try to use quartz crystal microbalance as a sensor on its surface fixed with a hairpin DNA probes used to identify and target DNA to produce a signal to build a simple and efficient DNA detection method. It features combined with restriction endonuclease ECoR I and nano-gold-labeled detection probe that can reduce the background of a very good value and effective way to boost the signal. The program are as follows: first, the quartz crystal surface through the thiol-based self-assembly of a fixed period with a hairpin DNA probes can be part of its hairpin endonuclease ECoR I specifically recognize and cut. Mercapto-hexanol then closed, then the role of the target DNA. If the system under test contains a target DNA, the DNA probe of the hairpin turn and the subsequent enzyme is not their role, and can be combined with nano-gold-labeled detection probe making signal amplification. Otherwise, in the absence of target DNA, the hairpin DNA probe can be digested, and nano-Au labeled probes role can not produce any signal. The experimental results show that this method is a simple and practical, high sensitivity analytics adapting the detection of DNA (Chapter 5).
     (5) In the present approach, we revealed a new scheme for electrochemical detection the target DNA sequence using Fc-labeled oligonucleotide as a molecular switch, which is a signal-on sensor featuring both generalizability and simplicity in design toward reagentless detection of DNA. The present approach has been demonstrated with the identification of a single-base mutation in Hb Constant Spring codon 142 (terminating codon TAA→CAA) that is one of the major types ofα-thalassemia point mutations for clinical diagnosis. After reaction with various concentration of target DNA under the optimum experimental conditions, the calibration curve was plotted. The results showed that the current intensity was linear to the logarithm of the target concentration in the range from 0.01 to 100 pM with a detection limit 0.01 pM. The experiment found that the DNA sensor could be reused via immersed into NaOH solution to be easily and successfully regenerated. All these features revealed that the system is a promising candidate for single-base mutation discrimination, owing the advantages of both generalizability and simplicity toward reagentless detection of DNA with sensitivity and selectivity (Chapter 6).
引文
[1] Updike S J, Hicks G P. The enzyme eletrode. Nature, 1967, 214(5092): 986-988
    [2]许春向.生物传感器及其应用.北京:科学出版社, 1993, 1-12
    [3]蒋中华,马立人.化学传感器和生物传感器的研究进展.军事医学科学院院刊, 1995, 19(4): 306-309
    [4]王柯敏,肖丹.没有生命的感官-化学传感器揭密.湖南:湖南教育出版社, 1999, 94-108
    [5] Kuswandi B, Nuriman, Huskens J, et al. Optical sensing systems for microfluidic devices: A review. Analytica Chimica Acta, 2007, 601(2): 141-155
    [6]彭承琳.生物医学传感器原理及应用.北京:高等教育出版社, 2000, 60-62
    [7] Curie J, Curie P. An oscillating quartz crystal mass detector. Comptes Rendus, 1880, 91: 294-297
    [8]姚守拙.压电化学与生物传感.长沙:湖南师范大学出版社, 1997, 386-389
    [9] Lu C S, Czanderna A W. Applications of quartz crystal microbalances in analytical chemistry in methods and phenomena. London: Elsevier Publisher, 1984, 1-18
    [10] Sauerbrey G Z. Use of a quartz vibrator for weighing thin layers on a microbalance. Z Physik, 1959, 155: 206
    [11] Konash P L, Bastiaans G J. Piezoelectric crystals as detectors in liquid chromatography. Analytical Chemistry, 1980, 52(12): 1929-1931
    [12] Martin S J, Granstaff V E, Frye G C. Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading. Analytical Chemistry, 1991, 63(20): 2272-2281
    [13] Kanazawa K K, Gordon J G H. Frequency of a quartz microbalance in contact with liquid. Analytical Chemistry, 1985, 57(8): 1771-1772
    [14] Yao S Z, Zhou T A. Dependence of the oscillation frequency of a piezoelectriccrystal on the physical parameters of liquids. Analytica Chimica Acta, 1988, 212(1): 61-72
    [15] Turner A P F. Advances in biosensors. London:JAI Press Ltd, 1991, 264-273
    [16] Wang Z, Cheeke J D N, Jen C K. Sensitivity analysis for Love mode acoustic gravimetric sensors. Applied Physics Letters, 1994, 64(22): 2940-2942
    [17] Jakoby B, Venema A, Vellekoop M J. Design of love wave sensor devices for theoperation in liquid environments. Proceedings of the IEEE Ultrasonics Symposium 1, 1997, 375-379
    [18] Freudenberg J, Schelle S, Beck K, et al. Contactless surface acoustic wave biosensor. Biosensors and Bioelectronics, 1999, 14(4): 423-425
    [19] Harding G L, Du J, Dencher P R, et al. Love wave acoustic immunosensor operating in liquid. Sensors and Actuators, A: Physical. 1997, 61(1-3): 279-286
    [20]彭承琳.生物医学传感器原理及应用.北京:高等教育出版社, 2000, 146-153
    [21]蒋治良,刘庆业.压电生物传感器.传感技术学报, 1993, 6(1): 56-58
    [22]许春向.生物传感器及其应用.北京:科学出版社, 1993, 348-352
    [23] Bunde R L, Jarvi Eric J, Rosentreter J J. Piezoelectric quartz crystal biosensors. Talanta, 1998, 46(6): 1223-1236
    [24]陈令新,关亚风,杨丙成.压电晶体传感器的研究进展,化学进展, 2002, 14(1): 68-76
    [25]楚霞,沈国励.压电免疫传感器.化学传感器, 1996, 16(1): 1-8
    [26]晋晓勇,高志贤,陈慧.压电生物传感器及其研究进展.生命的化学, 2002, 22(4): 385-387
    [27]王桦.新型压电免疫传感技术用于白血病等重大疾患诊断的研究: [湖南大学博士学位论文].长沙:大连理工大学, 2004, 6
    [28] Lucarelli F, Tombelli S, Minunni M, et al. Electrochemical and piezoelectric DNA biosensors for hybridisation detection. Analytica Chimica Acta, 2008, 609(2): 139-159
    [29]姚守拙.压电化学与生物传感.长沙:湖南师范大学出版社, 1997, 393-396
    [30] O’Sullivan C K, Vaughan R, Guibault G G. Piezoelectric immunosensors-theory and applications. Analytical Letters, 1999, 32(12): 2353-2377
    [31] Alvarez-Icaza M, Bilitewski U. Mass production of biosensors. Analytical Chemistry, 1993, 65(11): 525-533
    [32] Shons A, Dorman F, Najarian J, et al. An immunospecific microbalance. Journal of Biomedical Materials Research, 1972, 6(6): 565-570
    [33] Roederer J E, Bastiaans G J. Microgravimetric immunoassay with piezoelectric crystals. Analytical Chemistry, 1983, 55(14): 2333-2336
    [34] Calvo E J, Danilowicz C, Lagier C M, et al. Characterization of self-assembled redox polymer and antibody molecules on thiolated gold electrodes. Biosensors and Bioelectronics, 2004, 19(10): 1219-1228
    [35] Irwin E F, Ho J E, Kane S R, et al. Analysis of interpenetrating polymer networks via quartz crystal microbalance with dissipation monitoring. Langmuir,2005, 21(12): 5529-5536
    [36] Nunalee F N, Shull K R. Contact mechanics studies with the quartz crystal microbalance: Origins of the contrast factor for polymer gels and solutions. Langmuir, 2004, 20(17): 7083-7089
    [37] Su X D, Rebelek R, Wu Y J, et al. Detection of point mutation and insertion mutations in DNA using a quartz crystal microbalance and muts, a mismatch binding protein. Analytical Chemistry, 2004, 76(2): 489-494
    [38] Chong K T, Su X D, Lee E J D, et al. Polyethylene-co-acrylic acid as coating for biosensor application: A quartz crystal microbalance study. Langmuir, 2002, 18(25): 9932-9936
    [39] Ress B, Janshoff A, Steinem C, et al. Adhesion kinetics of functionalized vesicles and mammalian cells: A comparative study. Langmuir, 2003, 19(5): 1816-1823
    [40] Zuo B L, Li S M, Guo Z, et al. Piezoelectric immunosensor for SARS-associated coronavirus in sputum. Analytical Chemistry, 2004, 76(13): 3536-3540
    [41] Kurosawa S, Tawara E, Kamo N, et al. Latex piezoelectric immunoassay detection of agglutination of antibody-bearing latex using a piezoelectric quartz crystal. Chemical and Pharmaceutical Bulletin, 1990, 38(5): 1117-1120
    [42] Murataugu M, Kurosawa S, Kamo N. Detection of antistreptolysin O antibody: application of an initial rate method of latex piezoelectric immunoassay. Analytical Chemistry, 1992, 64(21): 2483-2487
    [43] Ghourchian H Q, Kamo N. Improvement of latex piezoelectric immunoassay: detection of rheumatoid factor. Talanta, 1994, 41(3): 401-406
    [44] Ghourchian H Q, Kamo N. Latex piezoelectricimmunoassay: effect of interfacial properties. Analytica Chimica Acta, 1995, 300(1): 99-105
    [45] Ebersole R C, Ward M D. Amplified Mass Immunosorbent Assay with a Quartz Crystal Microbalance. Journal of the American Chemical Society, 1988, 110(26): 8623-8628
    [46] Yan F, Sadik O A. Enzyme-Modulated Cleavage of dsDNA for Studying Interfacial Biomolecular Interactions. Journal of the American Chemical Society, 2001, 123(46): 11335-11340
    [47] Vattanaviboon P, Sangseekhiow K, Winichagoon P, et al. Detection and haplotype differentiation of Southeast Asian a-thalassemia using polymerase chain reaction and a piezoelectric biosensor immobilized with a singleoligonucleotide probe. Translational Research, 2008, 151(5): 246-254
    [48] Feng K, Li J, Jiang J H, et al. QCM detection of DNA targets with single-base mutation based on DNA ligase reaction and biocatalyzed deposition amplification. Biosensors and Bioelectronics, 2007, 22(8): 1651-1657
    [49] Reimhult K, Yoshimatsu K, Risveden K, et al. Characterization of QCM sensor surfaces coated with molecularly imprinted nanoparticles. Biosensors and Bioelectronics, 2008, 23(12): 1908-1914
    [50] Jin X, Jin X, Chen L, et al. Piezoelectric immunosensor with gold nanoparticles enhanced competitive immunoreaction technique for quantification of aflatoxin B1. Biosensors and Bioelectronics, 2009, 24(8): 2580-2585
    [51] Halámek J, Hepel M, Skladal P. Investigation of highly sensitive piezoelectric immunosensors for 2.4-dichlorophenoxyacetic acid. Biosensors and Bioelectronics, 2001, 16(4-5): 253-260
    [52]何春萍,沈国励.凝集液相压电免疫传感器用于人血清中IgG的测定.化学传感器, 1999, 19(4): 14-21
    [53] Harteveld J L N, Nieuwenhuizen M S, Wils E R J. Detection of Staphylococcal Enterotoxin B employing a piezoelectric crystal immunosensor. Biosensors Bioelectronics, 1997, 12(7): 661-667
    [54] Lu H C, Chen H M, Lin Y S, et al. A reusable and specific protein A-coated piezoelectric biosensor for flow injection immunoassay. Biotechnology Progress, 2000, 16(1): 116-124
    [55] Muramastu H, Kimura K, Ataka T. Computation of equivalent circuit parameters of quartz crystal in contact with liquid and study of liquid properties. Analytical Chemistry, 1988, 60(19): 2141-2146
    [56] Plomer M, Guilbault G. Development of a piezoelectric immunosensor for the detection of enterobacteria. Enzyme Microbial Technology, 1992, 14(3): 230-235
    [57]高志贤.压电免疫生物传感器的研究进展.军事医学科学院院刊, 1995, 19(4): 310-313
    [58] Carter R M, Mekalanos J J, Jacobs M B, et al. Quartz crystal microbalance detection of vibrio cholerae O139 serotype. Journal of Immunological Methods, 1995, 187(1): 121-125
    [59] Park I S, Kim N. Thiolated salmonella antibody immobilization onto the gold surface of piezoelectric quartz crystycal. Biosensors and Bioelectronics, 1998, 13(1): 1091-1097
    [60] Fung Y S, Wong Y Y. Self-assembled monolayers as the coating in a quartz piezoelectric crystal immunosensor to detect Salmonella in aqueous solution. Analytical Chemistry, 2001, 73 (21): 5302-5309
    [61] Wong Y Y, Ng S P, Ng M H, et al. Immunosensor for the differentiation and detection of Salmonella species based on a quartz crystal microbalance. Biosensors and Bioelectronics, 2002, 17(8): 676-684
    [62] Su X, Li S F Y. Serological determination of Helicobacter pylori infection using sandwiched and enzymatically amplified piezoelectric biosensor. Analytica Chim Acta, 2001, 429(1): 27-36
    [63] Minunni M, Tombelli S, Gullotto A, et al. Development of biosensors with aptamers as bio-recognition element: the case of HIV-1 Tat protein. Biosensors and Bioelectronics, 2004, 20(6): 1149-1156
    [64] Morita E H, Shimizu M, Ogasawara T, et al. A novel way of amino acid-specific assignment in 1H-15N HSQC spectra with a wheat germ cell-free protein synthesis system. Journal of Biomolecular NMR, 2004, 30(1): 37-45
    [65] K?nig B, Gr?tzel M. A novel immunosensor for herpes viruses. Analytical Chemistry, 1994, 6(3): 341-344
    [66] K?nig B, Gr?tzel M. A piezoelectric immunosensor for hepatitis viruses. Analytica Chimica Acta, 1995, 309(1-3): 19-25
    [67] Wu Z Y, Wu J, Wang S P, et al. An amplified mass piezoelectric immunosensor for schistosoma japonicum. Biosensnsors and Bioelectronics, 2006, 22(2): 207-212
    [68]吴朝阳,沈国励,俞汝勤,等.基于巯基自组装单层膜的日本血吸虫石英晶体微天平免疫传感器.高等学校化学学报, 2001, 22(4): 542-546
    [69] Wang H, Lei C X, Li J S, et al. A piezoelectric immunoagglutination assay for toxoplasma gondii antibodies using gold nanoparticles. Biosensnsors and Bioelectronics, 2004, 19(7): 701-709
    [70] Guilbault G G, Hock B, Schmid R. A piezoelectric immunobiosensor for atrazine in drinking water. Biosensors and Bioelectronics, 1992, 7(6): 411-419
    [71] P?ibyl J, Hepel M, Halámek J, et al. Development of piezoelectric immunobiosensors for competitive and direct determination of atrazine. Sensors and Actuators B: Chemical, 2003, 91(1-3): 333-341
    [72] Ruys D P, Andrade J F, Guimar?es O M, et al . Mercury detection in air using a coated piezoelectric sensor. Analytica Chimica Acta, 2000, 404(1):95-100
    [73] Steegborn C, Skládal P. Constraction and characterization of the directpiezoelectric immunosensor for atrazine operating in solution. Biosensors and Bioelectronics, 1997, 12(1): 19-27
    [74] Yulaev M F, Sitdikov R A, Dmitrieva N M, et al. Development of a potentiometric immunosensor for herbicide simazine and its application for food testing. Sensors and Actuators B: Chemical, 2001, 75(1-2): 129-135
    [75] Fawcett N C, Evans J A, Chien L T. Nucleic acid hybridization detection by piezoelectric resonance. Analytical Letters, 1988, 21(7): 1099-1114
    [76] Okahata Y, Matsunobu Y, Ijiro K. Hybridization of nucleic acids immobilized on a quartz crystal microbalance. Journal of the American Chemical Society. 1992, 114(21):8299-8300
    [77] Okahata Y, Niikura K, Sugiura Y. Kinetic studies of sequence-specific binding of peptides to DNA strands immobilized on a 27-MHz quartz crystal microbalance. Biochemistry, 1998, 37(16): 5666-5672
    [78] Okahata Y, Kawase M, Niikura K, et al. Kinetic measurements of DNA hybridization on an oligonucleotide-immobilized 27-MHz quartz crystal microbalance, Analytical Chemistry, 1998, 70: 1288-1296
    [79] Yamaguch S, Shimomura T, Tatsuma T, et al. Adsorption, immobilization, and hybridization of DNA studied by the use of quartz crystal oscillitors. Analytical Chemistry, 1993, 65(14): 1925-1927
    [80] Ito K, Hashimoto K, Ishimori Y. Quantitative analysis for solid-phase hybridization reaction and binding reaction of DNA binder to hybrids using a quartz crystal microbalance. Analytica Chimica Acta, 1996, 327(1): 29-35
    [81] Su H, Yang M, Kallury K M R. Network analysis: acoustic energy transmission detection of polynucleotide hybridization at the sensor-liquid interface. The Analyst, 1993, 118(3): 309-312
    [82] Su H, Williams P, Thompson M. Platinum Anticancer Drug Binding to DNA Detected by Thickness-Shear-Mode Acoustic Wave Sensor. Analytical Chemistry, 1995, 67(5): 1010-1013
    [83] Su H, Thompson M. Kinetics of interfacial nucleic acid hybridization studied by acoustic network analysis. Biosensors and Bioelectronics, 1995, 10(4): 329-340
    [84] Su Hongbo, Kallury K M R, Thompson M, et al. Interfacial nucleic acid hybridization studied by random primer 32P labeling and liquid phase acoustic network analysis. Analytical Chemistry, 1994, 66(6): 769-779
    [85] Niikura K, Matsuno H, Okahata Y. Direct Monitoring of DNA Polymerase Reactions on a Quartz-Crystal Microbalance. Journal of the American ChemicalSociety, 1998, 120(33): 8537-8538
    [86] Wang J, Palecek E, Nielsen P E, et al. Peptide nucleic acid probes for sequence-specific DNA biosensors. Journal of the American Chemical Society, 1996, 118(33): 7667-7670
    [87] Wang J. DNA biosensors based on Peptide Nucleic Acid (PNA) recognition layers: A review. Biosensors and Bioelectronics, 1998, 13(7-8): 757-762
    [88]汪江华,府伟灵,王颖莹,等.组合靶基因自动检测仪快速检测人乳头瘤病毒.中华检验医学杂志, 2000, 23(5): 264-266
    [89]王颖莹,府伟灵,张伟,等.应用压电基因传感器芯片检测结核分枝杆菌DNA.中华医院感染学杂志, 2000, 10(6): 418-420
    [90] Lin L, Zhao H Q, Li J R, et al.. Study on Colloidal Au-Enhanced DNA Sensing by Quartz Crystal Microbalance. Biochemical and Biophysical Research Communications, 2000, 274(3): 817-820
    [91]李月娟,刘耀清,马立人. DNA生物传感器研究进展.国外医学.分子生物学分册, 1998, 20(2): 83-87
    [92]高志贤,晁福寰.压电式脱氧核糖核酸传感器的研究进展.分析化学, 28(11): 1421-1427
    [93]高志贤.检测葡萄球菌B型肠毒素基因的压电DNA传感器研究: [军事医学科学院博士学位论文].北京:军事医学科学院, 2000, 6
    [94]刘建辉,莫志宏,刘明华.基因传感器研究新进展.国外医学-临床生物化学与检验学分册, 2000, 21(5): 233-234
    [95] Marx K A, Zhou T, Montrone A, et al. A quartz crystal microbalance cell biosensor: detection of microtubule alterations in living cells at nM nocodazole concentrations. Biosensors and Bioelectronics, 2001, 16(9-12): 773-782
    [96] Wu T Z. A piezoelectric biosensor as an olfactory receptor for odour detection: electronic nose. Biosensors and Bioelectronics,, 1999, 14(1): 9-18
    [97]何春萍,吴朝阳.毛果芸香碱(PCC)液相压电传感器.化学传感器, 1999, 19(3): 11-18
    [98]何春萍,吴朝阳.压电传感技术用于盐酸小檗碱(BHC)的测定.化学传感器, 1999, 19(1): 36-41
    [99]聂利华,谭胜连.用压电传感器测定饮料中抗坏血酸.化学世界, 1992, 33(8): 359-361
    [100]王永生,李贵荣.酶催化压电-电导频移法测定血清中甘油三酯.分析试验室, 1999, 18(20: 1-4
    [101] Chuang C W, Shih J S. Preparation and application of immobilized C60-glucoseoxidase enzyme in fullerene C60-coated piezoelectric quartz crystal glucose sensor. Sensors and Actuators B: Chemical, 2001, 81(1): 1-8
    [102] Mao Y A, Wei W Z, Zhang J Z, et al. A new piezoelectric response model for protein adsorption kinetics at a solid-liquid interface. Microchemical Journal, 2001, 70(2): 133-142
    [103] Tomokazu A, Tetsuya T, Yoko K, et al. Mouse cloned from embryonic stem (ES) cells synchronized in metaphase with nocodazole. Journal of Experimental Zoology Part A, 2001, 289(2):139-145
    [104] Pastorino L, Caneva Soumetz F, Giacomini M, et al. Development of a piezoelectric immunosensor for the measurement of paclitaxel. Journal of Immunological Methods, 2006, 313(1-2): 191-198
    [105] Attili B S, Suleiman A A. A piezoelectric immunosensor for the detection of cocaine. Microchemical Journal, 1996, 54 (2):174-179
    [106] Mao Y, Wei W, He D, et al. Monitoring and kinetic parameter estimation for the binding process of berberine hydrochloride to bovine serum albumin with piezoelectric quartz crystal impedance analysis. Analytical Biochemistry, 2002, 306(1): 23-30
    [107] Long Y M, Li W F, Nie L H, et al. Ion-selective piezoelectric sensor for niacinamide assay in serum and urine. Journal Pharmaceutical and Biomedical Analysis, 2001, 24(3): 361-369
    [108]曹忠,林辉概.压电TSM声波吸附传感器.化学传感器, 1999, 19(2): 5-11
    [109]赵秀芝.一种新型迭片式压电传感器.压电晶体技术, 1991(2): 38-40
    [110]叶世雄.异军突起的压电塑料薄膜传感器.计测技术, 1989(1): 39-40
    [111]邵爱民.测量内部应变的新型压电传感器.仪表技术与传感器, 1994(3): 38-41
    [112]舒乃秋,毛慧和.双层压电结构超声波传感器的研究.应用声学, 1996, 15(5): 31-35
    [113] Zhang J Z,Xie Y T, Dai X Y, et al. Monitoring of Lactobacillus fermentation process by using ion chromatography with a series piezoelectric quartz crystal detector. Journal of Microbiological Methods, 44(2): 105-111
    [114]陈志敏,杨连生,刘仲明,等.压电生物传感器检测新进展.传感器技术, 2003, 22(8): 72-74
    [115]高志贤,张超,晁福寰,等.用于液相中检测的压电免疫传感器研究.分析测试学报, 1999, 18(3): 8-10
    [116] Zhang C, Feng G, Gao Z. Development of a new kind of dual modulated QCMbiosensor. Biosensors and Bioelectronics, 1997, 12(12): 1219-1225
    [117] Henne W A, Doorneweerd D D, Lee J, et al. Detection of folate binding protein with enhanced sensitivity using a functionalized quartz crystal microbalance sensor. Analytical Chemistry 2006, 78 (14): 4880-4884
    [118]陈鸣,府伟灵,吴蓉,等.肽核酸压电基因传感器新型生物信号放大系统的研究.中华检验医学杂志, 2005, 28(11):1193-1196
    [119]符婷,王桦,沈国励,等.基于酶催化沉积质量放大的压电免疫传感器的研究.高等学校化学学报, 2006, 27(6): 1032-1035
    [120] Hansen K M, Thundat T. Microcantilever biosensors. Methods, 2005, 37(1): 57–64
    [121] Muratsugu M, Ohta F, Miya Y, et al. Quartz crystal microbalance for the detection of microgram quantities f human serum albumin: relationship between the frequenccy change and the mass of protein adsorbed. Analytical Chemistry, 1993, 65(20): 2933-2937
    [122] Gomes M T, Rocha T A, Duarte A C, et al. Determination of Sulfur Dioxide in Wine Using a Quartz Crystal Microbalance. Analytical Chemistry, 1996, 68(9): 1561-1564
    [123] Minunni M, Skladal P, Mascini M. A piezoelectric quartz crystal biosensor as a direct affinity sensor. Analytical Letters, 1994, 27(8): 1475-1487
    [124] Guilbault G G, Luong J H, Prusak-Sochaczewski E. Immobilization methods for piezoelectric biosensors. Biotechnology, 1989, 7(2): 349-351
    [125] Carrigan S D, Scott G, Tabrizian M, et al. Real-time QCM-D immunoassay through oriented antibody immobilization using cross-linked hydrogel biointerfaces. Langmuir, 2005, 21(13): 5966-5973
    [126] Li J S, Wang H, Shen G L, et al. A plasma-polymerized film for capacitance immunosensing. Biosensors and Bioelectronics, 2004, 20(4): 841-847
    [127] Wang H, Liu Y L, Shen G L, et al. A protein A-based orientation-controlled immobilization strategy for antibodies using nanometer-size gold particles and plasma-polymerized film. Analytical Biochemistry, 2004, 324(2): 219-226
    [128] Carrigan S D, Scott G, Tabrizian M, et al. Reducing nonspecific adhesion on cross-linked hydrogel platforms for real-time immunoassay in serum. Langmuir, 2005, 21(26): 12320-12326
    [129] Wan Z H, Jin G. Covalent immobilization of proteins for the biosensor based on imaging ellipsometry. Journal of Immunological Methods, 2004, 285(2): 237-243
    [130] Karyakin A A, Presnova G V, Rubtsova M Y, et al. Oriented immobiliazation of antibodies onto the gold surfaces via their native thiol groups. Analytical Chemistry, 2000, 72(16): 3805-3811
    [131] Ulman A. Formation and structure of self-assembled monolayers. Chemical Reviews, 1996, 96(4): 1533-1554
    [132] Ebato H, Gentry C A, Herron J N, et al. Investigation of specific binding of antifluorescyl antibody and Fab to fluorescein lipids in Langmuir-blodgett deposited films using quartz crystal microbalance methodology. Analytical Chemistry, 1994, 66(10): 1683-1689
    [133] K?nig B, Gr?tzel M. Detection of viruses and bacteria with piezoimmunosensors. Analytical Letters, 1993, 26(8): 1567-1585
    [134] Suri C R, Jain P K, Mishra G C. Development of piezoelectric crystal based microgravimetric immunoassay for determination of insulin concentration. Journal of Biotechnology, 1995, 39(1): 27-34
    [135] Brogan K L, Wolfe K N, Jones P A, et al. Direct oriented immobilization of Fab antibody fragments on gold. Analytica Chimica Acta, 2003, 496(1-2): 73-80
    [136]李景虹,程广金,董绍俊.自组装膜技术在电分析化学中的研究与应用.分析化学, 1996, 9 (24): 1093-1099
    [137] Wink Th, Van Zuilen S J, Bult A, et al. Self-assembled monolayers for biosensors. Analyst, 1997, 122(4): 43R-50R
    [138] Muguruma H, Karube I. Plasma-polymerized films for biosensors. Trends in Analytical Chemistry, 1999, 18(1): 62-68
    [139] Nakanishi K, Muguruma H, Karube I. A novel method of immobilizing antibodies on a quartz crystal microbalance using plasmas-polymerized films for immunosensors. Analytical Chemistry, 1996, 68(10): 1695-1700
    [140] Wang H, Li D, Wu Z Y, et al. A reusable piezo-immunosensor with amplified sensitivity for ceruoplasmin based on plasma-polymerized film. Talanta, 2004, 62(1): 201-208
    [141] Decher G. Fuzzy nanoassemlies: Toward layered polymeric multicomposites. Science, 1997, 277(5330): 1232-1237
    [142] Wang Y, Caruso F. Mesoporous silica spheres as supports for enzyme immobilization and encapsulation. Chemical Materials, 2005, 17(5): 953-961
    [143] Wang Y, Yu A, Caruso F. Nanoporous polyelectrolyte spheres prepared by sequentially coating sacrificial mesoporous silica spheres. Angewandte Chemie International Edition. 2005, 44(19): 2888-2892
    [144] Dai Z H, Xu X X, Ju H X. Direct electrochemistry and electrocatalysis of myoglobin immobilized on a hexagonal mesoporous silica matrix. Analytical Biochemistry, 2004, 332(1): 23-31
    [145] Lvov Y, Ariga K, Ichinose I, et al. Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption. Journal of the American Chemical Society, 1995, 117(22): 6117-6123
    [146] Volodkin D V, Larionova N I, Sukhorukov G B. Protein encapsulation via porous CaCO3 microparticles templating. Biomacromolecules, 2004, 5(5): 1962-1972
    [147] Falini G, Fermani S, Gazzano M, et al. Oriented crystallization of vaterite in collagenous matrices. Chemistry-A European Joural, 1998, 4(6): 1048-1052
    [148]郑世昭,徐伟箭.聚酰胺-胺树形大分子的合成和应用.高分子通报, 2004, 24(1): 90-94
    [149] Khopade A J, Caruso F. Electrostatically assembled polyelectrolyte/dendrimer mutilayer films as ultrathin nanoreservoirs. Nano Letters, 2002, 2(4): 415-418
    [150] Manriquez J, Juaristi E, Munoz-muniz O, et al. QCM study of the aggregation of starburst PAMAM dendrimers on the surface of bare and thiol-modified gold electrodes. Langmuir, 2003, 19(19): 735-732
    [151] Shen L, Hu N F. Electrostatic adsorption of heme proteins alternated with polyamidoamine dendrimers for lay-by-layer assembly of electroactive films. Biomacromolecules, 2005, 6(3): 1475-1483
    [152] Chen S F, Yu Q M, Li L Y, et al. Detecting the adsorption of dye molecules in homogenous poly (propylene imine) dendrimer monolayers by surface plasman resonance sensor. Journal of the American Chemical Society, 2002, 124(13): 3395-3401
    [153] Xian Y Z, Hu Y, Liu F, et al. Glucose biosensor based on Au nanoparticles- conductive polyaniline nanocomposite. Biosensors and Bioelectronics, 2006, 21(10): 1996-2000
    [154] Zhang S X, Yang W W, Niu Y M, et al. Construction of glucose biosensor based on sorption of glucose oxidase onto multilayers of polyelectrolyte/nanoparticles. Analytical and Bioanalytical Chemistry, 2006, 384(3): 736-741
    [155]白春礼.纳米科技及发展前景.微纳电子技术, 2002, 1(1): 2-5
    [156]解思深.纳米生物和医药.纳米科技发展调研报告汇编.科学技术部基础研究司, 2002: 104-121
    [157] Ferrari M. Cancer nanotechnology: opportunities and challenges. NatureReviews Cancer, 2005, 5(3): 161-171
    [158]顾大勇,鲁未平,周园国.纳米级金颗粒在基因芯片检测技术中的研究进展.国外医学生物医学工程分册, 2005, 28 (2): 75-80
    [159] Faulk W P, Taylor G M. An immunocolloid method for the election microscope. Immunochemistry, 1971, 8(11): 1081-1083
    [160] Danscher G. Localization of gold in biological tissue: a photochemical method for light and electronmicroscopy. Histochemistry, 1981, 71 (1): 81-88
    [161] Liu T, Tang J, Jiang L. The enhancement effect of gold nanoparticles as a surface modifier on DNA sensor sensitivity. Biochemical and Biophysical Research Communication, 2004, 313(1): 3-7
    [162] Barth M, Oulmi Y, Ehrenreich H, et al. Pre-embedding immunogold labeling of TUNEL stain enables evaluation of DNA strand breaks and ultrastructural alterations in individual cells of neuronal tissue. Acta Neuropathologica, 2002, 104(6): 621-636
    [163]刘涛,唐季安,韩梅梅,等.纳米金颗粒在石英晶体微天平检测中的表面修饰作用.科学通报, 2003, 48(4): 342-344
    [164] Wang L, Wei Q, Wu C, et al. The Escherichia coli O157: H7 DNA detection on a gold nanoparticle-enhanced piezoelectric biosensor. Chinese Science Bulletin, 2008, 53(8): 1175-1184
    [165] Choi J W, Kang D Y, Jang Y H, et al. Ultra-sensitive surface plasmon resonance based immunosensor for prostate-specific antigen using gold nanoparticle-antibody complex. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 313-314(1): 655-659
    [166] Li T, Guo L, Wang Z. Microarray based Raman spectroscopic detection with gold nanoparticle probes. Biosensors and Bioelectronics, 2008, 23(7): 1125-1130
    [167] Cao C, Sim S J. Signal enhancement of surface plasmon resonance immunoassay using enzyme precipitation-functionalized gold nanoparticles: a femto molar level measurement of anti-glutamic acid decarboxylase antibody. Biosensors and Bioelectronics, 2007, 22(9-10): 1874-1880
    [168] Mirkin C A, Letsinger R L, Mucic R C, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 1996, 382(8): 607-609
    [169] Elghanian R, Storhoff J J, Mucic R C, et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of goldnanoparticles. Science, 1997, 277(22): 1078-1081
    [170] Murphy D, O'Brien P, Redmond G. Sub-picomole colorimetric single nucleotide polymorphism discrimination using oligonucleotide–nanoparticle conjugates. Analyst, 2004, 129(8): 970-974
    [171] Storhoff J J, lucas A D, Garimella V, et al. Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. Nature Biotechnology, 2004, 22(7): 883-887
    [172] Storhoff J J, Elghanian R, Mucic R C, et al. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. Journal of the American Chemical Society, 1998, 120(9), 1959–1964
    [173] Huang C C, Huang Y F, Cao Z H, et al. Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Analytical Chemistry, 2005, 77(17): 5735–5741
    [174] Schofield C L, Field R A, Russell D A. Glyconanoparticles for the colorimetric detection of cholera toxin. Analytical Chemistry, 2007, 79(4): 1356-1361
    [175] Thanh N T, Rosenzweig Z. Development of an aggregation-based immunoassay for anti-protein A using gold nanoparticles. Analytical Chemistry, 2002, 74 (7): 1624-1628
    [176] Wang H, Wang C C, Lei C X, et al. A novel biosensing interfacial design produced by assembling nano-Au particles on amine-terminated plasma-polymerized films. Analytical and Bioanalytical Chemistry, 2003, 377(4): 632-638
    [177]贺全国,吴伟,陈洪.磁性纳米粒子在生物传感器中的应用研究进展.化学传感器, 2007, 27(1): 9-22
    [178] ?afa?ík I, ?afa?íkováM. Magnetic Nanoparticles and Biosciences. Monatshefte fur Chemie, 2002, 133(6):737-759
    [179] Weissleder R, Bogdanov A, Neuwelt E A, et al. Long-circulating iron oxides for MR imaging. Advanced Drug Delivery Reviews, 1995, 16(2-3):321-334
    [180] Jordan A, Scholz R, Wust P, et al. Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. Journal of Magnetics and Magnetic Materials, 1999, 201(1-3): 413-419
    [181] Rosi N L, Mirkin C A. Nanostructures in biodiagnostics. Chemical Reviews, 2005, 105(4): 1547-1562
    [182] Nam J M, Stoeva S I, Mirkin C A. Bio-bar-code-based DNA detection withPCR-like Sensitivity. Journal of the American Chemical Society, 2004, 126(19): 5932-5933
    [183] Nam J M, Thaxton C S, Mirkin C A. Nanoparticle-based bio–bar codes for the ultrasensitive detection of proteins. Science, 2003, 301:1884-1886
    [184] Fan A, Lau C, Lu J. Magnetic bead-based chemiluminescent metal immunoassay with a colloidal gold label. Analytical Chemistry, 2005, 77(10): 3238-3242
    [185]张盛龙,彭图治.石英晶体微天平的纳米微球质量放大技术及短序列DNA测定.高等学校化学学报, 2002, 23(6): 1022-1025
    [186] Martin C R, Mitchell D T. Nanomaterials in analytical chemistry. Analytical Chemistry, 1998, 70(2): 322A-327A.
    [187] Bangs L B. New developments in particle-based immunoassays: introduction. Pure and Applied Chemistry, 1996, 68 (10): 1873-1879
    [188] Santra S, Zhang P, Wang K, et al. Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Analytical Chemistry, 2001, 73(29): 4988-4993
    [189] Jin X Y, Jin X F, Ding Y J, Jiang J H, et al. A novel piezoelectric immunosensor based on agglutination reaction with amplification of silica nanoparticles. Chinese Journal of Chemistry, 2008, 26(12): 2191-2196
    [190] Wang H, Zhang Y, Yan B N, et al. Rapid, simple, and sensitive immunoagglutination assay with SiO2 particles and quartz crystal microbalance for quantifying schistosoma japonicum antibodies. Clinical Chemistry,2006,52(6): 2065–2071
    [191] Han M Y, Gao X H, Nie S M, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature biotechnology, 2001, 19(7): 631-635
    [192] Chan W C, Nie S M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281(25): 2016-2018
    [193] Bruchez Jr M, Morone M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, 281(25): 2013-2016
    [194] Dubertret B, Skourides P, Norris D J, et al. In vivo imaging of QDs encapsulated in phospholipid micelles. Science, 2002, 298(5599): 1759-1762
    [195] Yuan Y, Tang S L, Hong H, et al. Synthesis of nanoscaled hydroxyapatite and its anti tumor activity. Chinese journal of biomedical engineering, 2005, 24(1): 27-30
    [196] Yang L, Wei W Z, Gao X H, et al. A new antibody immobilization strategy based on electrodeposition of nanometer-sized hydroxyapatite for label-free capacitive immunosensor. Talanta, 2005, 68(1): 40-46
    [197] Manley M T. Hydroxyapatite coatings in orthopaedic surgery. Raven Press: New York, 1993, 1-23
    [198]袁媛,唐胜利,洪华,等.纳米羟基磷灰石的制备及其抗肿瘤活性的研究.中国生物医学工程学报, 2005, 24(1): 27-30
    [199]秦玉华,张袁健,徐修冬,等.细胞色素c在羟基磷灰石修饰玻碳电极上的直接电化学.化学学报. 2004, 62(9): 860-863
    [200] Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56-58
    [201] Wang J, Musameh M, Lin Y H. Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. Journal of the American Chemical Society, 2003, 125(9): 2408-2409
    [202] Zhang M G, Smith A, Gordki W. Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Analytical Chemistry, 2004, 76(17): 5045-5050
    [203] Yemini M, Reches M, Gazit E, et al. Peptide nanotube-modified electrodes for enzyme-biosensor applications. Analytical Chemistry, 2005, 77(16): 5155-5159
    [204] Wang J, Musameh M. Carbon nanotube/teflon composite electrochemical sensors and biosensors. Analytical Chemistry, 2003, 75(9): 2075-2079
    [205] Chen R S, Huang W H, Tong H, et al. Carbon fiber nanoelectrodes modified by single-walled carbon nanotubes. Analytical Chemistry, 2003, 75(22): 6341-6345
    [206] Yang M H, Qu F L, Lu Y S, et al. Platinum nanowire nanoelectrode array for the fabrication of biosensors. Biomaterials, 2006, 27(35): 5944-5950
    [207] Yang M H, Yang Y, Yang H F, et al. Layer-by-layer self-assembled multilayer films of carbon nanotubes and platinum nanoparticles with polyelectrolyte for the fabrication of biosensors. Biomaterials, 2006, 27(2): 246-255
    [208] Qu F L, Yang M H, Shen G L, et al. Electrochemical biosensing utilizing synergic action of carbon nanotubes and platinum nanowires prepared by template synthesis. Biosensors and Bioelectronics, 2007, 22 (8), 1749-1755
    [209] Qu F L, Yang M H, Jiang J H, et al. Novel poly (neutral red) nanowires as a sensitive electrochemical biosensing platform for hydrogen peroxide determination. Electrochemistry Communications, 2007, 9(10): 2596-2600
    [210] Qu F L, Shi A W, Yang M H, et al. Preparation and characterization of prussian blue nanowire array and bioapplication for glucose biosensing. Analytica Chimica Acta, 2007, 605(1): 28-33
    [211] Blonder R, Levi S, Tao G L, et al. Development of amperometric and microgravimetric immunosensors and reversible immunosensors using antigen and photoisomerizable antigen monolayer electrodes. Journal of the American Chemical Society, 1997, 119(43): 10467-10478
    [212] Alfonta L, Katz E, Willner I. Sensing of acetylcholine by a tricomponent-enzyme layered electrode using faradaic impedance spectroscopy, cyclic voltammetry, and microgravimetric quartz crystal microbalance transduction methods. Analytical Chemistry, 2000, 72(5): 927-935
    [213] Cui R, Huang H, Yin Z, et al. Horseradish peroxidase-functionalized gold nanoparticle label for amplified immunoanalysis based on gold nanoparticles/carbon nanotubes hybrids modified biosensor. Biosensors and Bioelectronics, 2008, 23(11): 1666-1673
    [214] Ambrosi A, Casta?eda M T, Killard A J, et al. Double-codified gold nanolabels for enhanced immunoanalysis. Analytical Chemistry, 2007, 79(14): 5232-5240
    [215] Abad J M, Pariente F, Hernández L, et al. A quartz crystal microbalance assay for detection of antibodies against the recombinant African swine fever virus attachment protein p12 in swine serum. Analytica Chimica Acta, 1998, 368(3): 183-189
    [216]夏涵,黄君富,姚春艳,等.基于HRP-DAB信号放大系统的压电石英晶体DNA传感器微阵列检测表皮葡萄球菌的研究.中华医院感染学杂志, 2008, 18(3): 316-319
    [217]伍林,曹淑超,易德莲,等.纳米颗粒增强酶生物传感器性能的研究进展.生物技术通报, 2006, (1): 30-32
    [218] Guesdon J L, Ternynck T, Avrameas S. The use of avidin-biotin interaction in immunoenzymatic techniques. Journal of Histochemistry and Cytochemistry, 1979, 27(8): 1131-1139
    [219] Chen L, Martin G B, Rechnitz G A. Microtiter plate binding assay for cholinergic compounds utilizing the nicotinic acetylcholine receptor. Analytical Chemistry, 1992, 64 (23): 3018-3023
    [220]高志贤,郑玉玲,晁福寰,等.生物素标记的DNA探针检测葡萄球菌肠毒素B基因.中华医学检验杂志, 1999, 22(5): 281-283
    [221]裴仁军,胡继明,刘栗加,等.生物素-亲和素系统在压电免疫传感器中质量放大作用研究.高等学校化学学报, 1999, 20(6): 879-880.
    [222]司士辉.生物传感器.北京:化学工业出版社, 2003, 1-4
    [223] Alving C R. Liposomes as carriers of antigens and adjuvants. Journal of Immunological Methods, 1991, 140(1): 1-13
    [224] Bangham A D. Liposomes: the babraham connection. Chemistry and Physics of Lipids, 1993, 64(1-3): 275-285
    [225] Gregoriadis G., Florence A T. Liposomes in drug delivery. Clinical, diagnostic and ophthalmic potential. Drugs, 1993, 45(1): 15-28
    [226] Smith J G, Walzem R L, German J B. Liposomes as agents of DNA transfer. Biochimica et Biophysica Acta-Reviews on Biomembranes, 1993, 1154(3-4): 238-252
    [227] Alfonta L, Singh A K, Willner I. Liposomes labeled with biotin and horseradish peroxidase: a probe for the enhanced amplification of antigen-antibody or oligonucleotide-DNA sensing processes by the precipitation of an insoluble product on electrodes. Analytical Chemistry, 2001, 73(1): 91-102
    [228] Ahn-Yoon S, DeCory T R., Baeumner A J, et al. Ganglioside-liposome immunoassay for the ultrasensitive detection of cholera toxin. Analytical Chemistry, 2003, 75(10): 2256-2261
    [229] Baeumner A J, Schlesinger N A, Slutzki N S, et al. Biosensor for dengue virus detection: sensitive, rapid, and serotype specific. Analytical Chemistry, 2002, 74(6): 1442-1448
    [230] Patolsky F, Lichtenstein A, Willner I. Amplified microgravimetric quartz-crystal-microbalance assay of DNA using oligonucleotide- functionalized liposomes or biotinylated liposomes. Journal of the American Chemical Society, 2000, 122(2): 418-419
    [231] Yun K, Kobatake E, Haruyama T, et al. Use of a quartz crystal microbalance to monitor immunoliposome-antigen interaction. Analytical Chemistry, 1998, 70(2): 260–264
    [232]王丰,府伟灵,许雪青,等.阳离子多聚体信号放大方法应用于压电基因生物传感器检测铜绿假单胞菌的研究.中华医院感染学杂志, 2006, 16(11): 1201-1203
    [233] Wink T, Van Zuilen S J, Bult A, et al. Liposome-mediated enhancement of the sensitivity in immunoassays of proteins and peptides in surface plasmon resonance spectrometry. Analytical Chemistry, 1998, 70(5): 827-832
    [234] Chen H, Jiang J H, Li Y F, et al. A novel piezoelectric immunoagglutinationassay technique with antibody-modified liposome. Biosensors and Bioelectronics, 2007, 22(6): 993-999
    [235] Zheng Y, Chen H, Jiang J H, et al. An ultrasensitive chemiluminescence immunosensor for PSA based on the enzyme encapsulated liposome. Talanta, 2008, 77(2): 809-814
    [236] Chen H, Zheng Y, Jiang J H, et al. An ultrasensitive chemiluminescence biosensor for cholera toxin based on ganglioside-functionalized supported lipid membrane and liposome. Biosensors and Bioelectronics, 2008, 24(4): 684-689
    [237] Eaton D L, Groopman J D. The toxicology of aflatoxins. New York: Academic Press, 1994, 521-523
    [238] Garden S R, Strachan N J C. Novel colorimetric immunoassay for the detection of aflatoxin B1. Analytica Chimica Acta, 2001, 444(2): 187-191
    [239] Jaimez J, Fente C A, Vazquez B I, et al. Application of the assay of aflatoxins by liquid chromatography with fluorescence detection in food analysis. Journal of Chromatography A, 2000, 882(1-2): 1-10
    [240] Moss M O. Risk assessment for aflatoxin in foodstuffs. International Biodeterioration and Biodegradation, 2002, 50(3-4): 137-142
    [241] IARC Monographs on the evaluation of carcinogenic risks to humans. Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. Lyon: IARC Press, 1993, 245-362
    [242] Hussein H S, Brasel J M. Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology, 2001, 167(2): 101-134
    [243] Bullerman L B. Mycotoxins and food safety. Food Technology, 1986, 40(5): 59-66
    [244] Lee N A, Wang S, Allan R D, et al. A rapid aflatoxin B1 ELISA: development and validation with reduced matrix effects for peanuts, corn, pistachio, and soybeans. Journal of Agriculture and Food Chemistry, 2004, 52(10): 2746-2755
    [245] Fernandez A, Belio R, Ramos J J, et al. Aflatoxins and their metabolites in the tissues, faeces and urine from lambs feeding on an aflatoxin-contaminated diet. Journal of Science of Food and Agriculture, 1997, 74(2): 161-168
    [246] Garcia-Villanova R J, Cordon C, Paramas A M G, et al. Simultaneous immunoaffinity column cleanup and HPLC analysis of aflatoxins and ochratoxin A in Spanish bee pollen. Journal of Agriculture and Food Chemistry, 2004, 52(24): 7235-7239
    [247] Turner P C, Dingley K H, Coxhead J, et al. Detectable levels of serum aflatoxinB1-albumin in the United Kingdom populations: implications for aflatoxin Bl exposure in the United Kingdom. Cancer Epidemiology Biomarkers and Prevention, 1998, 7(5): 441-447
    [248] Pesavento M, Domagala S, Baldini E, et al. Characterization of an enzyme linked immunosorbent assay for aflatoxin B1 based on commercial reagents. Talanta, 1997, 45(1): 91-104
    [249] Kolosova A Y, Shim W B, Yang Z Y, et al. Direct competitive ELISA based on a monoclonal antibody for detection of aflatoxin B1 stabilization of ELISA kit components. Analytical and Bioanalytical Chemistry, 2006, 384(1): 286-294
    [250] Su X, Chew F T, Li S F Y. Self-assembled monolayer-based piezoelectric crystal immunosensor for the quantification of total immunoglobulin E. Analytical Biochemistry, 1999, 273(1): 66-72
    [251] Fu Y Z, Yuan R, Chai Y Q. Reagentless immunosensing assay via electrochemical impedance for hepatitis B surface antigen monitoring based on polypyrrole and gold nanoparticles as matrices. Chinese Journal of Chemistry, 2006, 24(1): 59-64
    [252] Sapsford K E, Ngundi M M, Moore M H, et al. Rapid detection of foodbome contaminants using an array biosensor. Sensors and Actuators B, 2006, 113(2): 599-607
    [253] Van der Gaag B, Spath S, Dietrich H, et al.. Biosensors and multiple mycotoxin analysis. Food Control, 2003, 14(4): 251-254
    [254] Janshoff A, Galla H J, Steinem C. Piezoelectric mass-sensing devices as biosensors-an alternative to optical biosensors? Angewandte Chemie International Edition. 2000, 39(22): 4004-4032
    [255] Masson M, Yun K, Haruyama T, et al. Quartz crystal microbalance bioaffinity sensor for biotin. Analytical Chemistry, 1995, 67(13): 2212-2215
    [256] Deng T, Li J S, Huan S Y, et al. Quartz crystal microbalance bioaffinity sensor for biotin based on mixed self-assembled monolayers and metastable molecular complex receptor. Biosensors and Bioelectronics, 2006, 21(8): 1545-1552
    [257] Grabar K C, Freeman R G, Hommer M B, et al. Preparation and characterization of Au colloid monolayers. Analytical Chemistry, 1995, 67(4): 735-743
    [258] Bennet J W, Klich M. Mycotoxins. Clinical Microbiology Reviews, 2003, 16(3): 497-516
    [259] Ellis W O, Smith J P, Simpson B K, et al. Aflatoxins in food: Occurrence,biosynthesis, effects on organisms, detection and methods of control. Critical Reviews in Food Science and Nutrition, 1991, 30(4): 403-439
    [260] Berg T. How to establish international limits for mycotoxins in food and feed? Food Control , 2003, 14(4): 219-224
    [261] European Commission. Commission Regulation (EC) No. 1525/98 of 16 July 1998 amending Regulation (EC) No 194/97 of 31 January 1997 setting maximum levels for certain contaminants in foodstuffs. Official Journal of European Communities, 1998, L 201: 43-46
    [262] Sargeant K, Sheridan A, O’Kelly J, et al. Toxicity associated with certain samples of groundnuts. Nature, 1961, 192(4793): 1095-1096
    [263] Gilbert J. Overview of mycotoxin methods, present status and future needs. Natural Toxins, 1999, 7(6): 347-352
    [264] Stroka J, Anklam E. Development of a simplified densitometer for the determination of aflatoxins by thin-layer chromatography. Journal of Chromatography A, 2000, 904(2): 263-268
    [265] Sapsford K E, Taitt C R, Fertig S, et al. Indirect competitive immunoassay for detection of aflatoxin B1 in corn and nut products using the array biosensor. Biosensors and Bioelectronics, 2006, 21(12): 2298-2305
    [266] Sapsford K E, Charles P T, Patterson C H, et al. Demonstration of four immunoassay formats using the array biosensor. Analytical Chemistry, 2002, 74(5): 1061-1068
    [267] Bard A J, Faulkner L R. Electrochemical methods, fundamentals and applications. New York: Wiley, 1980, 37-42
    [268] Alfonta L, Willner I, Throckmorton D J, et al.. Electrochemical and quartz crystal microbalance detection of the cholera toxin employing horseradish peroxidase and GM1-functionalized liposomes. Analytical Chemistry, 2001, 73(21): 5287-5295
    [269] K?nig B, Gr?tzel M. Development of a piezoelectric immunosensor for the detection of human erythrocytes. Analytica Chimica Acta, 1993, 276(2): 329-333
    [270] Uda T, Hifumi E, Kobayashi T, et al. An approach for an immunoaffinity AIDS sensor using the conservative region of the HIV envelope protein (gp41) and its monoclonal antibody. Biosensors and Bioelectronics, 1995, 10(5): 477-483
    [271] Minunni M, Mascini M, Carter R M, et al. A quartz crystal microbalance displacement assay for Listeria monocyrogenes. Analytica Chimica Acta, 1996,325(3): 169-174
    [272] Chu X, Shen G L, Xie F Y, et al. Polymer agglutination-based piezoelectric immunoassayfor the detection of human serum albumin. Analytical Letters, 1997, 30(10): 1783-1796
    [273] Medcalf E A, Newman D J, Gorman E G, et al.. Rapid, robust method for measuring low concentrations of albumin in urine. Clinical Chemistry, 1990, 36(3): 446-449
    [274] Simo J M, Joven J, Cliville X, et al. Automated latex agglutination immunoassay of serum ferritin with a centrifugal analyzer. Clinical Chemistry, 1994, 40(4): 625-629
    [275] Zhu S G, Lu H B, Xiang J J, et. al.. A novel nonviral nanoparticle gene vector: Poly-L-lysine- silica particles. Chinese Science Bulletion, 2002, 47(8):654-658
    [276] Perez-Amodio S, Holownia P, Davey C L, et al. Effects of the ionic environment, charge, and particle surface chemistry for enhancing a latex homogeneous immunoassay of C-reactive protein. Analytical Chemistry, 2001, 73(14): 3417-3425
    [277] Holownia P, Perez-Amodio S, Price C P. Effect of poly(ethylene glycol), tetramethylammonium hydroxide, and other surfactants on enhancing performance in a latex particles immunoassay of C-reactive protein. Analytical Chemistry, 2001, 73(14): 3426-3431
    [278] Sachidanandam R, Weissman D, Schmidt S C, et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature, 2001, 409, 928-933
    [279] Venter J C, Adams M D, Myers E W, et al. The sequence of the human genome. Science, 2001, 291(5507): 1304-1351
    [280] Millan K M, Mikkelsen S R. Sequence-selective biosensor for DNA based on electroactive hybridization indicators. Analytical Chemistry, 1993, 65(17): 2317-2323
    [281] Takenaka S, Yamashita K, Takagi M, et al. DNA Sensing on a DNA probe-modified electrode using ferrocenylnaphthalene diimide as the electrochemically active ligand. Analytical Chemistry, 2000, 72(6): 1334-1341
    [282] Wang J, Liu G, Merkoci A. Electrochemical coding technology for simultaneous detection of multiple DNA targets. Journal of the American Chemical Society, 2003, 125(11): 3214-3215
    [283] Lapierre M A, O'Keefe M, Taft B J, et al. Electrocatalytic detection ofpathogenic DNA sequences and antibiotic resistance markers. Analytical Chemistry, 2003, 75(22): 6327-6333
    [284]张志毅,周涛,巩伟丽,等.荧光共振能量转移技术在生命科学中的应用及研究进展.电子显微学报, 2007, 26(2): 620-624
    [285] Didenko V V.Fluorescent energy transfer nucleic acid probes. New Jersey:Humana Press Inc,2006, 64-71
    [286] Daniel M-C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 2004, 104(1): 293-346
    [287] Liu S F, Li J R, Jiang L. Surface modification of platinum quartz crystal microbalance by controlled electroless deposition of gold nanoparticles and its enhancing effect on the HS-DNA immobilization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 257-258: 57-62
    [288] Gao H, Chidambaram N, Chen B C, et al. Double-Stranded Cyclic Oligonucleotides with Non-Nucleotide Bridges. Bioconjugate Chemistry, 1994, 5(5): 445-453
    [289] Yan F, Sadik O A. Enzyme-Modulated Cleavage of dsDNA for Studying Interfacial Biomolecular Interactions. Journal of the American Chemical Society, 2001, 123(46): 11335-11340
    [290] Yan F, Sadik O A. Enzyme-Modulated Cleavage of dsDNA for Supramolecular Design of Biosensors. Analytical Chemistry, 2001, 73(21): 5272-5280
    [291] Weizmann Y, Elnathan R, Lioubashevski O, et. al. Endonuclease-Based Logic Gates and Sensors Using Magnetic Force-Amplified Readout of DNA Scission on Cantilevers. Journal of the American Chemical Society, 2005, 127(36): 12666-12672
    [292] He F, Feng F, Duan X, et al. Selective and Homogeneous Fluorescent DNA Detection by Target-Induced Strand Displacement Using Cationic Conjugated Polyelectrolytes. Analytical Chemistry, 2008, 80(6): 2239-2243
    [293] Jin R C, Wu G S, Li Z, et al. What controls the melting properties of DNA-linked gold nanoparticle assemblies? Journal of the American Chemical Society, 2003, 125(6): 1643-1654
    [294] Markham N R, Zuker M. DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Research, 2005, 33(2): W577-W581
    [295] Livak K J, Marmaro J, Todd A J. Towards fully automated genome-wide polymorphism screening. Nature Genetics, 1995, 9(4), 341-342
    [296] Schmalzing D, Belenky A, Novotny M A, et al. Microchip electrophoresis: a method for high-speed SNP detection. Nucleic acids research, 2000, 28(9): E43
    [297] Mhlanga M M, Malmberg L. Using molecular beacons to detect single-nucleotide polymorphisms with real-time PCR. Methods, 2001, 25(4): 463-471
    [298] Wabuyele M B, Farquar H, Stryjewski W, et al. Approaching real-time molecular diagnostics: single-pair fluorescence resonance energy transfer (spFRET) detection for the analysis of low abundant point mutations in K-ras oncogenes. Journal of the American Chemical Society, 2003, 125(23): 6937-6945
    [299] Li J, Chu X, Liu Y, et al. A colorimetric method for point mutation detection using high-fidelity DNA ligase. Nucleic Acids Research, 2005, 33(19): e168
    [300] Wu Z, Jiang J, Shen G, et al. Highly Sensitive DNA Detection and Point Mutation Identification: An Electrochemical Approach Based on the Combined Use of Ligase and Reverse Molecular Beacon. Human Mutation, 2007, 28(6): 630-637
    [301] Fernando Patolsky, Amir Lichtenstein, and Itamar Willner. Electronic Transduction of DNA Sensing Processes on Surfaces: Amplification of DNA Detection and Analysis of Single-Base Mismatches by Tagged Liposomes. Journal of the American Chemical Society, 2001, 123(22), 5194-5205
    [302] Bonnet G, Tyagi S, Libchaber A, et al. Thermodynamic basis of the enhanced specificity of structured DNA probes. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(11), 6171-6176
    [303] Willner I. Biomaterials for Sensors, Fuel Cells, and Circuitry. Science, 2002, 298(20): 2407-2408
    [304] Fan C H, Plaxco K W, Heeger A J. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(16): 9134-9137
    [305] Immoos C E, Lee S J, Grinstaff M W. DNA-PEG-DNA triblock macromolecules for reagentless DNA detection. Journal of the American Chemical Society, 2004, 126(35): 10814-10815
    [306] Le Floch F, Ho H A, Leclerc M. Label-free electrochemical detection of protein based on a ferrocene-bearing cationic polythiophene and aptamer. Analytical Chemistry, 2006, 78(13): 4727-4731
    [307] Heinlein T, Knemeyer J P, Piestert O, et al. Photoinduced Electron Transferbetween Fluorescent Dyes and Guanosine Residues in DNA-Hairpins. Journal of Physical Chemistry B, 2003, 107(31): 7957-7964
    [308] Bang-ce Y, Zhuanfeng Z, Zhengson L. Oligonucleotide array for detection of common severe determinants of alpha thalassemia. Journal of Biotechnology, 2005, 115(1): 1-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700