Hopfield神经网络动力学分析与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文重点分析了连续时间和离散时间Hopfield网络的动力学行为,提出了设计各种神经记忆存储器的方法,并研究了神经记忆存储器在信息恢复、模式识别和系统评价等方面的应用.主要内容如下:
     本文的第二章研究了不对称连续时间Hopfield网络的动力学行为,给出了网络全局和局部稳定性的充分条件.进一步的,利用矩阵分解和单层前向神经网络的方法,提出了用于不对称Hopfield网络设计的新方法.另外通过仿真讨论了连续时间Hopfield网络在信息恢复和模式识别方面的应用.
     本文的第三章分析了不稳定的且具有不对称连接权值的Hopfield网络的动力学行为.研究发现网络的状态是有界的,而且网络是一个耗散系统.仿真发现一些Hopfield网络具有两个独立且关于原点对称的极限环或者混沌吸引子.基于此结果,本文提出了一个新的分段线性激活函数的混沌Hopfield网络.
     本文的第四章基于矩阵分解和连接权值删除策略,提出了一个简单且有效的设计稀疏对称离散时间Hopfield网络的方法.仿真表明,虽然大约80%的连接权值被删除了,但是所设计的稀疏网络仍然可以精确地恢复所存储的模式.
     本文的第五章分析了不对称离散时间Hopfield网络的动力学行为,给出了赋予网络记忆恢复能力的充分条件.另外基于权值删除策略和矩阵分解,提出了用于全连接和稀疏连接的不对称离散时间Hopfield网络设计的方法.仿真结果表明所设计的不对称离散时间Hopfield网络可以作为高效的记忆存储器来工作.
     本文的第六章基于一种退化的Cohen-Grossberg网络和连续时间Hopfield网络,研究了神经记忆存储器在彩色图像恢复中的应用.仿真发现所设计的神经记忆存储器可以有效地对灰度和真彩色图像进行记忆恢复.
     本文的第七章以顾客满意度测评及企业信用风险评测为例,探索了神经记忆存储器在系统评价等领域的应用.
In this dissertation, the dynamics of continuous-time and discrete-time Hopfieldneural networks (HNNs) are studied, and system designing procedures for construct-ing different neural associative memories are proposed. Furthermore, the applicationsof neural associative memories in information retrieval, pattern recognition and systemassessment are also discussed.
     In chapter 2, the dynamics of the asymmetric continuous-time Hopfield networksare discussed, and the sufficient conditions for the global and local stability of thenetwork are proposed. Furthermore, two system designing methods for endowing thenetwork with retrieval properties are proposed based on the matrix decomposition andsingle-layer feed forward method, respectively. And the applications of the networkin pattern recognitions and information retrieval are also studied by numerical simula-tions.
     In chapter 3, the dynamic of unstable continuous-time Hopfield networks is stud-ied. It is found that the solution of the HNN is bounded and the HNN is a dissipativesystem. In addition, some HNNs exhibit two independent limit cycles or chaotic at-tractors which are symmetric to each other with respect to the origin. Furthermore,based on these results, a new chaotic Hopfield network with piecewise linear activa-tion function is presented.
     In chapter 4, An efficient system designing method for endowing the diluted sym-metric discrete-time Hopfield networks with retrieval properties is proposed based onthe matrix decomposition and connection elimination method. Numerical simulationsshow that the blurred patterns can correctly retrieved, and about 80% wiring cost canbe reduced.
     In chapter 5, the dynamics of the asymmetric discrete-time Hopfield networks arestudied, and the sufficient conditions for endowing the network with retrieval proper-ties are proposed. In addition, a method for designing efficient diluted networks isproposed based on the matrix decomposition and connection elimination strategy. Nu-merical simulations show that the designed diluted network can act as efficient neural associative memories.
     In chapter 6, the applications of neural associative memories in color image re-trieval are studied based on a class of reduced Cohen-Grossberg neural networks andcontinuous-time Hopfield network. Numerical simulations show that the designed net-works can perform as efficient noise-reducing systems.
     In chapter 7, by taking customer satisfaction degree assessment and credit riskevaluation for example, some pioneer works about the applications of neural associa-tive memories in system assessment are presented.
引文
[1] S. I. Amari. Characteristics of random nets of analog neuron-like elements.IEEE Trans. Syst. Man Cyb., 2(5):643–657, 1972.
    [2] S. I. Amari. Neural theory of association and concept-formation. Biol. Cybern.,26(3):175–85, 1977.
    [3] S. I. Amari and K. Maginu. Statistical neurodynamics of associative memory.Neural Networks, 1(1):63–73, 1988.
    [4] J. J. Hopfield. Neural networks and physical systems with emergent collectivecomputational abilities. Proc. Natl. Acad. Sci. USA, 79:2554–2558, 1982.
    [5] J. J. Hopfield. Neurons with graded response have collective computationalproperties like those of two-state neurons. Proc. Natl. Acad. Sci. USA, 81:3088–3092, 1984.
    [6] J. C. Eccles. The physiology of synapses. Academic Press, New York, 1964.
    [7] J. A. Hertz, G. Grinstein, and S. A. Solla. Memory networks with asymmetricbonds. In :AIP Conf. Proc. 151 on Neural Networks for Computing, pages212–218, Utah, United States, 1987.
    [8] A. N. Michel and D. L. Gray. Analysis and synthesis of neural networks withlower block triangular interconnecting structure. IEEE Trans. Circuits Syst.,37:1267–1283, 1990.
    [9] J. H. Li, A. N. Michel, and W. Porod. Analysis and synthesis of a class ofneural networks: Linear systems operating on a closed hypercube. IEEE Trans.Circuits Syst., 36:1405–1422, 1989.
    [10] A. N. Michel, J. A. Farrell, and W. Porod. Qualitative analysis of neural net-works. IEEE Trans. Circuits Syst., 36(2):229–243, 1989.
    [11]廖晓昕. Hopfield型神经网络的稳定性.中国科学A辑, 23(10):1025–1035,1993.
    [12]廖晓昕,肖冬梅.具有变时滞的Hopfield型神经网络的全局指数稳定性.电子学报, 28(4):87–90, 2000.
    [13] D. J. Amit, H. Gutfreund, and H. Sompolinsky. Spin glass models of neuralnetworks. Phys. Rev. A, 32:1007–1018, 1985.
    [14] T. Fukai and M. Shiino. Asymmetric neural networks incorporating the dalehypothesis and noise-driven chaos. Phys. Rev. Lett., 64:1465–1468, 1990.
    [15]李玉萍,张素庆,叶世伟.基于凸函数理论的Hopfield网络稳定性分析.计算机工程, 32(15):115–116, 2006.
    [16] J. J. Hopfield and D. W. Tank. Neural computation of decisions in optimizationproblems. Biol. Cybern., 52(3):141–52, 1985.
    [17]陈伯成,叶伟雄.用Hopfield神经网络求解一类Markov链的客户关系管理模型.清华大学学报(自然科学版), 45(12):1696–1699, 2005.
    [18] H. Sompolinsky and I. Kanter. Temporal association in asymmetric neural net-works. Phys. Rev. Lett., 57:2861–2864, 1986.
    [19]桂任舟,杨子杰.应用Hopfield神经网络抑制高频地波雷达中短波通信干扰.电波科学学报, 21(5):763–767, 2006.
    [20]谢洁锐,刘才兴,周运华.资源均衡问题的Hopfield解决方法.系统工程理论与实践, 26(3):83–87, 2006.
    [21] X. Z. Cheng, C. Dasgupta, and M. P. Singh. Retrieval properties of a Hopfieldmodel with random asymmetric interactions. Neural Comput., 12:865–880,2000.
    [22]季策,张化光.多时滞Hopfield神经网络的鲁棒稳定性及吸引域的估计.控制理论与应用, 22(4):538–542, 2005.
    [23] T. Jin and H. Zhao. Pattern recognition using asymmetric attractor neural net-works. Phys. Rev. E, 72:066111, 2005.
    [24] Z. B. Xu, G. Q. Hu, and C. P. Kwong. Asymmetric Hopfield-type networks:Theory and applications. Neural Networks, 9:483–501, 1996.
    [25] H. G. Zhang, Z. S. Wang, and D. R. Liu. Global asymptotic stability and ro-bust stability of a class of Cohen-Grossberg neural networks with mixed delays.IEEE Trans. Circuits Syst., 56(3):616–629, 2009.
    [26] Z. S. Wang, H. G. Zhang, and W. Yu. Robust stability of Cohen-Grossbergneural networks via state transmission matrix. IEEE Trans. Neural Networks,20(1):169–174, 2009.
    [27]王林山,徐道义. Hopfield型时滞神经网络的稳定性分析.应用数学和力学,23(1):59–64, 2002.
    [28]王占山,张化光,余文,张庆灵.基于LMI的时变时滞Cohen-Grossberg神经网络鲁棒稳定性.电子学报, 36(11):2220–2223, 2008.
    [29] J. Cao and J. Wang. Global asymptotic stability of a general class of recurrentneural networks with time-varying delays. IEEE Trans. Circuits Syst., 50(1):34–44, 2003.
    [30] Z. Zuo, C. Yang, and Y. Wang. A new method for stability analysis of re-current neural networks with interval time-varying delay. IEEE Trans. NeuralNetworks, 21(2):339–344, 2010.
    [31]张忠,李传东.具有时变时滞的递归神经网络的渐近稳定性分析.计算机研究与发展, 44(6):973–979, 2007.
    [32] S. Mou, H. Gao, J. Lam, and W. Qiang. A new criterion of delay-dependentasymptotic stability for Hopfield neural networks with time delay. IEEE Trans.Neural Netw., 19(3):532–535, 2008.
    [33] H. Yang and T. S. Dillon. Exponential stability and oscillation of Hopfieldgraded response neural network. IEEE Trans. Neural Networks, 5:719–729,1994.
    [34] K. Matsuoka. Stability conditions for nonlinear continuous neural networkswith asymmetric connection weights. Neural Networks, 5:495–500, 1992.
    [35] T. P. Chen and S. I. Amari. Stability of asymmetric Hopfield networks. IEEETrans. Neural Networks, 12:159–163, 2001.
    [36] X. W. Liu and T. P. Chen. A new result on the global convergence of Hopfieldneural networks. IEEE Trans. Circuits Syst., 49:1514–1516, 2002.
    [37] D. O. Hebb. The Organization of Behavior. Wiley, New York, 1949.
    [38] L. Personnaz, I. Guyon, and G. Drefus. Information storage and retrieval inspin-glass like neural networks. Journal Physique Letters, 46:359–366, 1985.
    [39] H. Zhao. Designing asymmetric neural networks with associative memory.Physical Rev. E, 70:066137, 2004.
    [40] D. Liu and A. N. Michel. Cellular neural networks for associative memories.IEEE Trans. Circuits Syst., 40(2):119–121, 1993.
    [41] D. L. Lee and T. C. Chuang. Designing asymmetric Hopfield-type associativememory with higher order hamming stability. IEEE Trans. Neural Networks,16:1464–1476, 2005.
    [42] X. Zhuang, Y. Huang, and F. A. Yu. Design of Hopfield content-addressablememories. IEEE Trans. Signal Processing, 42(2):492–495, 1994.
    [43] W. Krauth and M. Mezard. Learning algorithms with optimal stability in neu-ral networks. Journal of Physics A: Mathematical and General, 20(11):L745–L752, 1987.
    [44] S. Bornholdt and D. Graudenz. General asymmetric neural networks and struc-ture design by genetic algorithms. Neural networks, 5:327–334, 1992.
    [45] J. J. Hopfield and D. W. Tank. Computing with neural circuits: a model. Sci-ence, 233(4764):625–33, 1986.
    [46] L. F. Lago-Fernandez, R. Huerta, F. Corbacho, and J. A. Siguenza. Fast responseand temporal coherent oscillations in small-world networks. Physical ReviewLetters, 84(12):2758–2761, 2000.
    [47] Y. Y. Ahn, H. Jeong, and B. J. Kim. Wiring cost in the organization of a biolog-ical neuronal network. Physica A, 367:531–537, 2006.
    [48] D. Stauffer, A. Aharony, L. D. Costa, and J. Adler. Efficient Hopfield patternrecognition on a scale-free neural network. Eur. Phys. J. B, 32(3):395–399,2003.
    [49] N. Davey, L. Calcraft, and R. Adams. High capacity, small world associativememory models. Connection Science, 18(3):247–264, 2006.
    [50] J. W. Bohland and A. A. Minai. Efficient associative memory using small-worldarchitecture. Neurocomputing, 38-40:489–496, 2001.
    [51] L. G. Morelli, G. Abramson, and M. N. Kuperman. Associative memory on asmall-world neural network. Eur. Phys. J. B, 38(3):495–500, 2004.
    [52] H. J. Zhou and R. Lipowsky. Dynamic pattern evolution on scale-free networks.Proc. Natl. Acad. Sci. U. S. A., 102(29):10052–10057, 2005.
    [53] H. Oshima and T. Odagaki. Storage capacity and retrieval time of small-worldneural networks. Phys. Rev. E, 76:036114, 2007.
    [54] A. Treves and D. J. Amit. Metastable states in asymmetrically diluted Hopfieldnetworks. J. Phys. A: Math. Gen., 21(14):3155–3169, 1988.
    [55] P. R. Krebs and W. K. Theumann. Categorization in the symmetrically diluteHopfield network. Phys. Rev. E, 60:4580–7, 1999.
    [56] P. N. McGraw and M. Menzinger. Topology and computational performance ofattractor neural networks. Phys. Rev. E, 68:047102, 2003.
    [57] N. Davey and R. Adams. High capacity associative memories and connectionconstraints. Connection Science, 16(1):47–65, 2004.
    [58] Z. Guan, G. Chen, and Y. Qin. On equilibria, stability, and instability of Hop-field neural networks. IEEE Trans. Neural Networks, 11(2):534–540, 2000.
    [59] X. B. Liang and J. Si. Global exponential stability of neural networks withglobally lipschitz continuous activations and its application to linear variationalinequality problem. IEEE Trans. Neural Networks, 12(2):349–359, 2001.
    [60] H. Qiao, J. Peng, and Z. B. Xu. Nonlinear measures: A new approach to expo-nential stability analysis for Hopfield-type neural networks. IEEE Trans. NeuralNetworks, 12(2):360–370, 2001.
    [61] H. Qiao, J. Peng, Z. B. Xu, and B. Zhang. A reference model approach tostability analysis of neural networks. IEEE Trans. Syst. Man Cyb., 33(6):925–936, 2003.
    [62] J. Peng, Z. B. Xu, H. Qiao, and B. Zhang. A critical analysis on global conver-gence of Hopfield-type neural networks. IEEE Trans. Circuits Syst., 52(4):804–814, 2005.
    [63] M. R. Guevara, L. Glass, M. C. Mackey, and A. Shrier. Chaos in neurobiology.IEEE Trans. Syst. Man Cyb., 13:790–798, 1983.
    [64] A. Babloyantz and C. Lourenco. Brain chaos and computation. Int. J. NeuralSyst., 7:461–471, 1996.
    [65] W. J. Freeman. The physiology of perception. Sci. Am., 264:78–85, 1991.
    [66] G. Costantini, D. Casali, and R. Perfetti. Neural associative memory storinggray-coded gray-scale images. IEEE Trans. Neural Networks, 14(3):703–707,2003.
    [67] G. Costantini, D. Casali, and R. Perfetti. Associative memory design for 256gray-level images using a multilayer neural network. IEEE Trans. Neural Net-works, 17(2):519–522, 2006.
    [68] R. A. Vazquez and H. Sossa. A bidirectional hetero-associative memory fortrue-color patterns. Neural Processing Letters, 28(3):131–153, 2008.
    [69] R. A. Vazquez and H. Sossa. Behavior of morphological associative memorieswith true-color image patterns. Neurocomputing, 73(1-3):225–244, 2009.
    [70] R. A. Vazquez and H. Sossa. A new associative model with dynamical synapses.Neural Processing Letters, 28(3):189–207, 2008.
    [71] M. E. Valle. A class of sparsely connected autoassociative morphological mem-ories for large color images. IEEE Trans. Neural Networks, 20(6):1045–1050,2009.
    [72] D. Liu and Z. Lu. A new synthesis approach for feedback neural networks basedon the perceptron training algorithm. IEEE Trans. Neural Networks, 8(6):1468–1482, 1997.
    [73] I. Salih, S. H. Smith, and D. Liu. Synthesis approach for bidirectional asso-ciative memories based on the perceptron training algorithm. Neurocomputing,35(1-4):137–148, 2000.
    [74] H. Weyl. Inequalities between the two kinds of eigenvalues of a linear transfor-mation. Proc. Natl. Acad. Sci. USA, 35(7):408–411, 1949.
    [75] M. F. Moller. A scaled conjugate gradient algorithm for fast supervised learning.Neural Networks, 6(4):525–533, 1993.
    [76] F. J. Pineda. Generalization of back-propagation to recurrent neural networks.Physical Rev. Lett., 59(19):2229, 1987.
    [77] F. J. Pineda. Recurrent backpropagation and the dynamical approach to adaptiveneural computation. Neural Computation, 1(2):161–172, 1989.
    [78] J. Bruck and V. P. Roychowdhury. On the number of spurious memories in theHopfield model. IEEE Trans. Information Theory, 36:393–397, 1990.
    [79] D. G. Kelly. Stability in contractive nonlinear neural networks. IEEE Trans.Biomed. Eng., 37(3):231–42, 1990.
    [80] M. Forti, S. Manetti, and M. Marini. Necessary and sufficient condition forabsolute stability of neural networks. IEEE Trans. Circuits Syst., 41(7):491–494, 1994.
    [81] J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems,and Bifurcations of Vector Fields. Springer, New York, 1997.
    [82] Q. D. Li, X. S. Yang, and F. Y. Yang. Hyperchaos in Hopfield-type neuralnetworks. Neurocomputing, 67:275–280, 2005.
    [83] X. S. Yang and Q. Yuan. Chaos and transient chaos in simple Hopfield neuralnetworks. Neurocomputing, 69:232–241, 2005.
    [84] Y. Huang and X. S. Yang. Hyperchaos and bifurcation in a new class of four-dimensional Hopfield neural networks. Neurocomputing, 69:1787–1795, 2006.
    [85] X. S. Yang and Y. Huang. Complex dynamics in simple Hopfield neural net-works. Chaos, 16:033114, 2006.
    [86] W. Z. Huang and Y. Huang. Chaos of a new class of Hopfield neural networks.Appl. Math. C., 206:1–11, 2008.
    [87] J. G. White, E. Southgate, J. N. Thomson, and S. Brenner. The structure ofthe nervous system of the nematode caenorhabditis elegans. Royal Society ofLondon Philosophical Transactions Series B, 314:1–340, 1986.
    [88] M. E. J. Newman. The structure and function of complex networks. SIAMReview, 45(2):167–256, 2003.
    [89] D. J. Watts and S. H. Strogatz. Collective dynamics of small-world networks.Nature, 393(6684):440–442, 1998.
    [90] A. Barrat and M. Weigt. On the properties of small-world network models. Eur.Phys. J. B, 13(3):547–560, 2000.
    [91] M. A. Cohen and S. Grossberg. Absolute stability of global pattern formationand parallel memory storage by competitive neural networks. IEEE Trans. Syst.Man Cyb., 13:815–826, 1983.
    [92] H. Lu. Global exponential stability analysis of Cohen-Grossberg neural net-works. IEEE Trans. Circuits Syst., 52(8):476–479, 2005.
    [93] W. Lu and T. Chen. New conditions on global stability of Cohen-Grossbergneural networks. Neural Comput., 15(5):1173–1189, 2003.
    [94] AT&T Laboratories Cambridge, The ORL Database of Faces,https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.
    [95] J. Anderson, J. Silverstein, S. Ritz, and R. Jones. Distinctive features, categor-ical perception, and probability learning: Some applications of a neural model.Psych. Rev., 84:413–451, 1977.
    [96] R. N. Dardozo. An experimental study of consumer effort, expectation, andsatisfaction. Journal of Marketing Research, 2(3):244–249, 1965.
    [97]蒂莫西·RV·福斯特.提高顾客满意度101法.中国宇航出版, 1998.
    [98]中国指数研究院.中国房地产顾客满意度指数系统理论与实践.经济管理出版社, 2005.
    [99]林盛.基于PLS结构方程模型的服务行业顾客满意度测评方法及应用研究.PhD thesis,天津大学,天津, 2002.
    [100]王曼怡.金融企业信用风险管理.中国经济出版社, 2003.
    [101]夏红芳.商业银行信用风险度量与管理研究. PhD thesis,南京航空航天大学,南京, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700