基于数字图像的岩石类材料破裂过程分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩石与混凝土材料的破裂过程一直是力学、材料和工程等学科的研究热点和难点之一。研究岩石类材料的破裂过程,对于评价岩石工程的安全状态,了解岩土工程结构的稳定性及采取合理的支护措施,提高岩石和地下结构工程的设计水平,具有重要的理论意义和工程实用价值。
     岩石、混凝土类材料在破裂过程中表现出来的宏观力学行为的非线性,源于其细观结构的非均匀性。在基本相同的试验和加载条件下,试件的真实细观结构和内部各种细观介质的力学特性对试件的应力和变形响应起决定作用。因此,进一步研究能有效的测量岩石类材料内部各细观介质空间分布的方法,确定每种介质的本构关系和描述参数,并引入到数值模型中,这样能够更全面、更符合自然规律地研究和观测岩石类材料的力学性能和破坏规律。
     本文综合了数字图像处理理论、矢量化转化技术和有限元数值计算方法,并结合细观损伤力学理论和强度理论,建立了能比较真实的反映岩石类材料细观结构的破裂过程分析数值模型,并对岩石、混凝土材料细观结构对其断裂破坏力学行为的影响与相关问题进行了研究,主要研究工作总结为以下几个方面:
     1.分析岩石类材料数字图像在不同颜色空间表现出的图像特征,利用数字图像处理中的图像分割、边缘检测、图像识别等方法实现了对岩石类材料细观结构的数字图像表征。
     2.借助矢量转化技术,建立了数字图像表征的细观结构与有限元网格模型之间的映射关系;并结合细观损伤力学理论和强度理论,给出细观单元本构关系的损伤力学描述,建立能比较真实的反映材料细观结构的破裂过程分析数值模型。
     3.采用Visual C++语言,编制了岩石类图像的处理软件DIPS,实现了与有限元之间的模型数据接口,利用Fortan90编制了二维弹性有限元计算模块,并引入数字图像表征的材料非均匀性,在Microsoft Visual C++Studio环境下编制了基于数字图像的岩石类材料破裂过程分析系统RFPA2D-DIP。
     4.研究了花岗岩细观结构对其力学性能和破裂过程的影响,分析了强度和弹性模量对细观结构的敏感性,进一步揭示单轴压缩载荷作用下,花岗岩轴向劈裂破坏机理,从细观层次分析了花岗岩强度各向异性的产生机理和围压对花岗岩强度、变形和破断角的影响。
     5.利用边缘检测的数字图像处理方法表征混凝土中界面的形状和分布,并与多阈值分割表征骨料形状与分布方法相结合,实现了对混凝土三相复合细观结构的数字图像表征,研究了骨料的形状与分布对混凝土中应力的分布影响及对裂纹的萌生和扩展的影响。
     6.在一定的假设条件下,采用连续切片的方法,对材料实体每隔一定的厚度获取其切片图像,采用切片图像表征的细观结构叠加的方法,重建材料的三维细观结构,利用自主开发DIPS软件和岩石破裂分析RFPA3D,建立了比较能真实的反映材料细观结构的三维数值模型,并利用并行计算技术,进了初步应用,研究了界面对加载过程中裂纹扩展的影响。
Failure mechanism of rock and concrete materials is the focus and difficulty in mechanics investigations, material and engineering investigations. The investigations on failure process of rocklike materials are very important for evaluating the safe status and stability of geotechnical engineering and structures to take reasonable support measures and improving the designing level in rock engineering and underground engineering.
     Failure process of rock or concrete materials is a complicated non-equilibrium nonlinear progressive process. The nonlinear characteristic of macro-mechanical behaviors expressed in the process is derived from the heterogeneity of meso-struture. Under the same conditions, the overall stress and deformation of the specimen and the response of internal points are determined by the meso-structure and meso-material's properties. So how to measure the shape and distribution of meso-materials acutely should be studied. Only if these are integrated into numerical model and the parameters describing the constitutive law are determined, numerical study on mechanical performance and failure mechanism and criterion of geomaterials can be more overall and natural.
     In this thesis, digital image processing theory, the vector transformation method and the finite element method are integrated and microscopic damage mechanics theory and the theory of strength are synthesized to establish failure process analysis model based on realistic meso-scopic structures and study the realistic failure process of rocklike materials. The work in the present paper can be summarized as follows:
     1. Image feature of rocklike materials is analyzed in different color space and general-purpose digital image processing methods, including image segment, edge detection, image recognition and so on, are used to complete the characterization of the shape and distribution of meso-materials of rocklike materials.
     2. The relationship between the meso-structure characterized by digital image processing and the mesh of finite element method is determined in virtue of vector transformation. The damage evolution equations and constitutive law are formulated by integrating microscopic damage mechanics and the theory of strength, and numerical model based on the realistic meso-structure is established.
     3. Digital image processing software for the image of rocklike materials is developed in Visual C++ language on Microsoft Visual Studio and the data interface for finite element method is realized. Finite element method is applied to obtain the stress and strain of the model. A finite element program is developed in FORTRAN language on PowerStation. Digital image based failure process analysis code for rocklike materials is developed in Visual C++ language in Windows XP operation system by introducing the meso-structure characterized by DIP.
     4. The effect of meso-structure on mechanical performance and failure process is investigated in detail. The sensitivity of strength and elastic modulus on meso-structure is analyzed and the mechanism of axial splitting fracture subjected to uniaixal compressive load is revealed. The reason for part mechanical effect and the effect of confining pressure on fracture angle are studied.
     5. Three-phase composite meso-structure of concrete is measured by digital image processing methods combining edge detection and image segment. Edge detection method is used to measure the shape and distribution of interface transition zone and image segment method is used to measure those of aggregate. And further the effect of shape and distribution of aggregate on stress distribution and crack initiation and propagation is studied.
     6. On some hypothesis, by using serial sectioning method, section images of material are captured at intervals of some depth, and then two-dimensional meso-structure represented by section images is overlapped to reconstruct three-demensional realistic meso-structure of the sample. Three-dimensional numerical model based on realistic meso-structure is established by combining Digital Image Processing Software (abbreviated as DIPS) and three-dimensional rock failure process analysis code (abbreviated as RFPA3D). The effect of interfacial transition zone on crack propagation is primarily investigated by parallel computing technique.
引文
[1].中国力学学会.带缺陷物体流变学国际研讨会介绍[J].力学进展,1998.2:142.
    [2].蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002.
    [3].俞茂宏.双剪理论及其工程应用[M].北京:科学出版社,1996.
    [4].余天庆,钱济成.损伤理论及其应用[M].北京:国防工业出版社,1993.
    [5].尹双增.断裂判据与在混凝土工程中应用[M].北京:科学出版社,1996.
    [6].唐春安.岩石破裂过程中的灾变[M].北京:煤炭工业出版社[M],1993.
    [7]. Hudson, J. A., Practical Rock Engineering, Principal of rock engineering consultants,9, HK Polytechnic University,2001.
    [8]. Weibull, W.,1951. A statistical distribution function of wide applicability [J]. Appl. Mech.18, 293-297.
    [9].曹文贵,赵明华,唐学军.岩石破裂过程的统计损伤模拟研究[J].岩土工程学报,2003,25(2):184-187.
    [10].张明,李仲奎,苏霞.准脆性材料弹性损伤分析中的概率体元建[J].岩石力学与工程,2005,24(23):4282-4288.
    [11].岳中琦,陈沙,郑宏,谭国涣.岩土工程材料的数字图象有限元分析[J].岩石力学与工程学报,2004,23(6):889-897.
    [12].岳中琦.岩土细观介质空间分布数字表述和相关力学数值分析的方法、应用和进展[J].岩石力学与工程学报,2006,25(5):875-888.
    [13]. Hollister SJ, Kikuchi N. Homogenization theory and digital imaging:a basis for studying the mechanics and design principles of bone tissue [J]. Biotechnology and Bioengineering,1994, 43:586-596.
    [14]. Kwan AKH, Mora CF, Chan HC. Particle shape analysis of coarse aggregate using digital image processing [J]. Cement & Concrete Research 1999; 9:1403-10.
    [15]. Lee H, Chou E. Survey of image processing applications in civil engineering. In:Proceedings, EF/NSF Conference on Digital Image Processing:Techniques and applications in civil engineering.1993.p.203-10.
    [16]. Cook N. G. W., The failure of rock[J]. Int. J. Rock Mech. Min. Sci., Vol.2,389403,1965.
    [17].朱之芳.刚性试验机[M].北京:煤炭工业出版社,1985.
    [18].周思孟、吴玉山、林卓英.刚性试验机及其对岩石破坏后性质的研究[J].复杂岩石中的建筑物学术会议论文,1985.
    [19].周思孟.刚性试验机及其在岩石力学中的应用[J].岩石力学与工程学报,1987,6(2):125-138.
    [20]. Z. T. Bieniawski, H. C. Denkhaus, U. K. Volger, Failure of fracture rock [J], Int. J. Rock Mech. Min. Sci.,1969,6(3):323-341.
    [21]. W. R. Wawersik, C. Fairhurst, A study of brittle rock fracture in laboratory compression experiments [J], Int. J. Rock Mech. Min. Sci.,1970,7:561-575.
    [22]. Vutukuri V. S. Lama R. D. and Saluja S. S.. Handbook on mechanical properties of rocks. Trans Tech Publication,1974,1.
    [23]. Hudson J. A., Brown E. T. and Fairhurst C.. Optimizing the control of rock failure in servocontrolled laboratory tests [J]. Rock Mechanics,1971,3:217-224.
    [24]. Rummel F. and Fairhurst C., Determination of the postfailure behavior of brittle rock using a servocontrolled testing machine [J]. Rock Mech,1970,2:189-204.
    [25]. Peng S. S., Timedependent aspects of rock behaviour as measured by servocontrolled hydraulic testing machine [J]. Int. J. Rock Mech. Min. Sci.& Geomech. Abstr.,1973,10: 235-246.
    [26].唐春安.测试系统的频率响应对岩石载荷位移全过程曲线测试结果的影响[J].岩石力学与工程学报,1987,6(3):265-276.
    [27].凌建明.压缩载荷条件下岩石细观损伤特征的研究[J].同济大学学报,1993,21(2):219-226.
    [28].尚嘉兰,孔常静,李廷芥等.岩石细观损伤破坏的观测研究[J].实验力学,1999,14(3):373-383.
    [29].黄明利,唐春安,朱万成.岩石单轴压缩下破坏失稳过程SEM即时研究[J].东北大学学报(自然科学版),1999,20(4):724-728.
    [30].李育枢,郑建国,李天斌.电站隧洞岩爆岩石的微观破坏力学机制分析.水力发电,2006,32(8):17-20.
    [31].丁卫华,仵彦卿,蒲毅彬等.X射线岩石CT的历史与现状.地震地质,2003,25(3):467-476.
    [32]. Okstuka K, Data H. Fracture process zone in concrete tension specimen [J]. Engineering Fracture Mechanics.2000,65:111-131.
    [33].杨更社,谢定义,张长庆等.岩石损伤扩展力学特性的CT分析.岩石力学与工程学报,1999,18(3):250-254.
    [34].杨更社,张长庆.岩体损伤及检测[M].西安:陕西科学技术出版社,1998.
    [35].葛修润,任建喜,蒲毅彬等.煤岩三轴细观损伤演化规律的CT动态试验[J].岩石力学与工程学报,1999,18(5):497-502.
    [36].仵彦卿,丁卫华,蒲毅彬等.压缩条件下岩石密度损伤增量的CT动态观测[J].自然科学进展,2000,10(9):830-835.
    [37].任建喜,葛修润等.岩石单轴细观损伤演化特征的CT实时分析[J].土木工程学报,2000,33(6):99-104.
    [38].任建喜.三轴压缩岩石细观损伤扩展特性CT实时检测[J].实验力学,2001,16(4):387-395.
    [39].任建新.单轴压缩下岩石蠕变损伤扩展细观机理CT实时试验[J].水利学报,2002,1:10-14.
    [40].任建喜,惠兴田.裂隙岩石单轴压缩损伤扩展细观机理CT分析初探.岩土力学,2005,26(增):48-52.
    [41].陈厚群,丁卫华,党发宁等.混凝土CT图像中等效裂纹区域的定量分析.中国水利水电科学研究院学报,2006,4(1):1-7.
    [42]. Suaris W, Van Mier JGM. Acoustic emission source characterization in concrete under biaxial loading [J]. Materials and Structures,1995,28:444-449.
    [43]. R.E Goodman. Subaudible noise during compression of rock [J]. Geo. Soc. Am. Bull.,1963, Vol.74:487-490.
    [44]. C. H. Scholz. Experimental study of the fracturing process in brittle rock [J]. J. Geophys. Res., 1968,74(4):1447-1454.
    [45].陈颙.岩石声发射技术在岩石力学研究中的应用[J].地球物理学报,1977,20(4):312-322.
    [46].吴刚,赵震洋.不同应力状态下岩石类材料破坏的声发射特性[J].岩土工程学报,1998,20(2):82-85.
    [47].李庶林,尹贤刚,王泳嘉.单轴受压岩石破坏全过程声发射特征研究.岩石力学与工程学报,2004,23(15):2499-2503.
    [48].纪洪广,张天森,蔡美峰等.混凝土材料损伤的声发射动态检测试验研究[J].岩石力学与工程学报,2000,19(2):165-168.
    [49].纪洪广,蔡美峰.混凝土材料断裂过程中声发射空间自组织演化特征及其在结构失稳预报中的应用[J].土木工程学报,2001,34(5):15-19.
    [50].纪洪广,蔡美峰.混凝土材料声发射与应力应变参量耦合关系及应用[J].岩石力学与工程学报,2003,22(2):227-231.
    [51].耿乃光等.热红外震兆成因的模拟实验研究[J],地震,1998,18(1):83-88.
    [52].吴立新、王金庄.煤岩受压红外热像与辐射温度特征实验[J],中国科学,1998,28(1):41-46.
    [53]. Wu L. X., Wang J. Z., Infrared radiation features of coal and rocks under loading [J]. Int. J. Rock Mech.Min. Sci.,1998,35(7):969-976.
    [54].崔承禹、邓明德、耿乃光:在不同压力下岩石光谱辐射特性研究[J],科学通报,1993,38(6):538-544.
    [55].吕琪琦等.张北6.2级地震前的卫星热红外异常[J].地震,1998,18(3):240-244.
    [56].李贺等.岩石断裂力学.重庆:重庆大学出版社,1988.
    [57].于骁中,谯常忻,周群力.岩石和混凝土断裂力学.长沙:中南工业大学出版社,1991.
    [58].郭少华.混凝土破坏理论研究进展.力学进展,1993,2(4):520-527.
    [59].唐辉明,晏同珍,岩体断裂力学理论与工程应用,武汉:中国地质大学出版社,1993
    [60]. Kesler C.E., Naus D.J. and Lott J.L., Fracture mechanics:its applicability to concrete, In Proc. Int. Conf. On the Mechanical behavior of Materials, Kyoto Soc. of Mat. Sci., Vol. Ⅳ, 1972:113-124.
    [61].高峰,钟卫平,关云飞.节理岩体强度的统计描述.矿山压力与顶板管理,2003,4:108-110.
    [62].高峰,钟卫平,黎立云.节理岩体强度的分形统计分析.岩石力学与工程学报,2004,24(21):3608-3612.
    [63].周维垣,杨强.岩石力学数值计算方法.北京:中国电力出版社,2005.
    [64].谢和平.岩石、混凝土损伤力学.徐州:中国矿业大学出版社,1998.
    [65].凌建明,节理岩体损伤力学研究中的若干问题,力学进展,1994,25(2):257-263.
    [66].孙钧,凌建明,三峡船闸高边坡岩体的细观损伤及长期稳定性研究,岩石力学与工程学报,1997,16(1):1-7.
    [67]. Bazant ZP, Chen EP.结构破坏的尺度律[J].力学进展,1999,29(3):383-433.
    [68]. Krajcinovic D. and Silva M. A. G.. Statistical aspects of the continuous damage theory, Int. J. Solids Structures,1982, Vol.18, No.7,551-562.
    [69].吴政,张承娟.单向荷载作用下岩石损伤模型及其力学牲研究[J].岩石力学与工程学报,1996,15(1):55-61.
    [70].秦跃平.岩石损伤力学模型及其本构方程的探讨[J].岩石力学与工程学报,2001,20(4):560-562.
    [71].徐卫亚,韦立德.岩石损伤统计本构模型的研究[J].岩石力学与工程学报,2002,21(6):787-791.
    [72].曹文贵,方祖烈,唐学军.岩石损伤软化统计本构模型之研究[J].岩石力学与工程学报,1998,17(6):628-633.
    [73].杨强,吴荣宗,周维垣.基于正则结构的各向异性损伤演化律[J].力学学报,2002,34(1):47-56.
    [74].李杰,张其云.混凝土随机损伤本构关系[J].同济大学学报(自然科学版),2002,29(10):1135-1141.
    [75].唐春安,王述红,傅宇方.岩石破裂过程数值试验[M].北京:科学出版社,2003.
    [76].傅宇方.脆性材料破裂过程的数值模拟研究[D].东北大学博士论文,2000.
    [77].宋文洲.新概念土木结构分析系统2D-σ和3D-σ简介.岩石力学与工程学报,1996,15(3):301-303.
    [78].冯夏庭.智能岩石力学导论.北京:科学出版社,2000.
    [79]. Wilins M L. Calculation of elastoplastic flow. Research Report UCRL7322, Rev. I. Lawrence Radiation Laboratory. University of California,1964.
    [80]. ITASCA Consulting Groups, Inc. FLAC Manuals,1993.
    [81].王永嘉,邢纪波著.离散单元法及其在岩土力学中的应用.沈阳:东北工学院出版社,1991.
    [82].石根华(著),裴觉民(译).数值流形元方法与非连续变形分析[M].北京:清华大学出版社.1987.
    [83]. Jan G. M. Van Mier. Fracture processes of concrete. New York:CRC press,1997.
    [84]. Malan D. F., Napier J. A. L.. Computer modeling of granular material micro fracturing. Tectonophysics,1995,248:21-37.
    [85]. Fairhurst C.. Geomaterials and recent development in micromechanical numerical models. News Journal,1997,4(2):11-14.
    [86].邢纪波.梁颗粒模型导论[M].北京:地震出版社,1999.
    [87].周辉,王泳嘉,谭云亮等.岩体破坏演化的物理细胞自动机(PCA)(Ⅰ)——基本模型.岩石力学与工程学报,2002,21(4):475-478.
    [88].王士民,冯夏庭,王泳嘉等.脆性岩石破坏的演化细胞自动机(ECA)研究.岩石力学与工程学报,2005,24(15):2634-2639.
    [89]. Hrennikoff A.. Solution of problem of elasticity by framework method. Journal Appllied Mechanics,1941,12:169-175.
    [90]. Herrmann H. J., Hansen H. Roux S.. Fracture of disorder elastic lattices in two dimension. Phys. Rev. B,1989,39:637-645.
    [91]. Schlangen E. and Graboczi E. J.. Fracture simulations of concrete using Lattice Models: computational aspects. Engineering Fracture Mechanics,1997,57(2):319-332.
    [92].陈惠发,余天庆等.土木工程材料的本构方程[M].武汉:华中科技大学出版社,2001.
    [93].杨强,程勇刚,张浩.基于格构模型的岩石类材料开裂数值模拟.工程力学,2003, 20(1):117-121.
    [94]. Faihurst C.. Geomaterials and recent development in micromechanical numerical motheds. News Journal,1997,4(2):11-14.
    [95].李明田.岩石破裂过程数值模拟的格构细胞自动机方法研究[D].武汉:中国院武汉岩土所,2004.
    [96]. Mohamed A. R. and Hansen W. Micromechanical modeling of concrete response under static loading—Part 1:Model development and validation. ACI Materials Journal,1999, Vol.96, No.2:196-203.
    [97].刘光廷,王宗敏.用随机骨料模型模拟混凝土材料的断裂[J].清华大学学报,1996,1:84-89.
    [98].唐春安,赵文.岩石破裂全过程分析软件系统RFPA2D[J].岩石力学与工程学报,1997,16(5):507-508.
    [99].陈永强,郑小平,姚振汉.三维非均匀脆性材料破坏过程的数值模拟[J].力学学报,2002,34(3):351-361.
    [100].梁正召.三维条件下的岩石破裂过程分析及其数值试验方法研究[D].沈阳:东北大学,2005.
    [101]. Z Q Yue, S Chen, L G Tham. Finite element modeling of geomaterials using digital image processing [J]. Computers and Geotechnics,2003, (30):375-397.
    [102].岳中琦,陈沙,郑宏等.岩土工程材料的数字图像有限元分析[J].岩石力学与工程学报,2004,23(6):889-897.
    [103].陈沙,岳中琦,谭国焕.基于数字图像的非均质岩土工程材料的数值分析方法[J].岩土工程学报,2005,27(8):956-964.
    [104].李晓军,张金夫,刘凯年.基于CT图像处理技术的岩土材料有限元模型[J].岩土力学,2006,27(8):1331-1334.
    [105].盛金昌,刘继山,赵坚.基于图像数字化技术的裂隙岩体非稳态渗流分析[J].岩石力学与工程学报,2006,25(7):1402-1407.
    [106].朱万成,康玉梅,杨天鸿等.基于数字图像的岩石非均匀性表征技术在流固耦合分析中的应用[J].岩土工程学报,2006,28(12):2087-2091.
    [107]. Paul Sardini, Stephane Sammartino, Etienne Tevissen. An image analysis contribution to the study of transport properties of lowpermeability crystalline rocks. Computers & Geosciences, 2001 (27):1051-1059.
    [108].徐文杰,胡瑞林,岳中琦等.土石混合体细观结构及力学特性数值模拟研究[J].岩石力学与工程学报,2007,26(2):300-311.
    [109].岳中琦.岩土细观介质空间分布数字表述和相关力学数值分析方法、应用和进展[J].岩石力学与工程学报,2006,25(5):875-888.
    [110].霍宏涛.数字图像处理[M].北京:北京理工大学出版社,2002.
    [111].李朝晖,张弘.数字图像处理及应用[M].北京:机械工业出版社,2004.
    [112].朱珍德,张勇,李术才等.用数字图像相关技术进行红砂岩细观裂纹损伤特性研究[J].岩石力学与工程学报,2005,24(7):1123-1128.
    [113].黄明利.岩石多裂纹相互作用破坏机制的研究[D].沈阳:东北大学,1999.
    [114].尹小涛,葛修润,党发宁等.基于CT试验的混凝土破损机理生态学研究[J].混凝土,2006,8:21-24.
    [115].林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图像图形学报,2005,10(1):1-10.
    [116].夏梦棼,韩闻生,柯孚久,白以龙.统计细观损伤力学和损伤演化诱致突变(Ⅰ)[J].力学进展,1995,25(2):145-173.
    [117].陶振宇.试论岩石力学的最新进展[J].力学进展,1992,22(2):161-172.
    [118].梁正召,王述红,唐春安等.非均匀性岩石破裂的网格效应[J].岩石力学与工程学报,2005,24(增1):5108-5112.
    [119]. Berthelot, J. M. and Robert, J. L.. Damage evalution of concrete test specimens related to failure analysis [J]. Journal of Engineering Mechanics, ASCE, Vol.116, No.3:587-604.
    [120].唐春安,朱万成.混凝土损伤与断裂—数值试验[M].北京:科学出版社,2003.
    [121].王助成,邵敏.有限单元法基本原理和数值方法[M].清华大学出版社,北京,1997:168-225.
    [122].朱万成.混凝土断裂过程的细观数值模型及其应用[D].东北大学博士学位论文,沈阳,2001.
    [123].黄明利.岩石多裂纹相互作用破坏机制的研究[D].东北大学博士学位论文,沈阳,2000.
    [124].唐春安,岩石声发射规律的数值模拟初探[J].岩石力学与工程学报,1997,16(4):368-374.
    [125].中华人民共和国水利部.水利水电工程岩石试验规程[M].北京:中国水利水电出版社,2001,32-33.
    [126]. Wang Q Z, Xing L. Determination of fracture toughness KIC by using the flattened Brazilian disk specimen for rocks[J]. Engng. Fract. Mech.,1999,64(2):193-201.
    [127].铁摩辛柯,古地尔.弹性理论[M].徐芝纶译.北京:高等教育出版社,1990.
    [128].尤明庆,苏承东.平台巴西圆盘劈裂和岩石抗拉强度的试验研究[J].岩石力学与工程学报,2004,23(18):3106-3112.
    [129].喻勇,陈平.岩石巴西圆盘试验中的空间拉应力分布.岩土力学,2005,26(12):1913-1916.
    [130].尤明庆苏承东.平台圆盘劈裂的理论和试验[J].岩石力学与工程学报,2004,23(1):170-174.
    [131].王启智,戴峰,贾学明.对“平台圆盘劈裂的理论和试验”一文的回复.岩石力学与工程学报,2004,23(1):175-178.
    [132].徐根陈枫肖建清.载荷接触条件对岩石抗拉强度的影响[J].岩石力学与工程学报,2006,25(1):168-173.
    [133].王启智贾学明.用平台巴西圆盘试样确定脆性岩石的弹性模量、拉伸强度和断裂韧度——第一部分:解析和数值结果[J].岩石力学与工程学报,2002,21(9):1285-1289.
    [134]. Westman, E. C.. Use of tomography for inference of stress redistribution in rock. IEEE Transactions on Industry Applications,2004,40(5):1413-1417.
    [135].杨圣奇,苏承东,徐卫亚.岩石材料尺寸效应的试验和理论研究[J].工程力学,2005,22(4):112-118.
    [136].刘宝琛,张家生,杜奇中等.岩石抗压强度的尺寸效应[J].岩石力学与工程学报,1998,17(6):611-614.
    [137].卢应发,田斌,余天堂等.不同加载路径饱和岩石力学特征的试验研究[J].岩石力学与工程学报,2005,24(增1):5065-5071.
    [138].田象燕,高尔根,白石羽.饱和岩石的应变率效应和各向异性的机理探讨[J].岩石力学与工程学报,2003,22(11):1789-1792.
    [139].席道瑛,张程远,刘小燕.储层砂岩的各向异性[J].石油地球物理勘探,2001,36(2):187-192.
    [140].梁正召,唐春安,李厚祥.单轴压缩下横观各向同性岩石破裂过程的数值模拟.岩土力学,2005,26(1):57-62.
    [141].于广明,张春会,赵建锋.初始节理对岩体内部沉陷范围的影响研究与实验验证[J].岩石力学与工程学报,2002,21(10):1478-1482.
    [142].杨万托,余天堂.一种新的节理裂隙岩体弹塑性模型[J].岩土力学,2003,24(2):270-272.
    [143].王士民,朱合华,冯夏庭等.细观非均匀性对脆性岩石材料宏观破坏形式的影响[J].岩土力学,2006,27(2):224-227.
    [144].傅宇方,梁正召,唐春安.岩石介质细观非均匀性对宏观破裂过程的影响[J].岩土工程学报,2000,22(6):705-710.
    [145].唐春安,刘红元,秦四清等.非均匀性对岩石介质中裂纹扩展模式的影响[J].地球物理学报,2000,43(1):116-121.
    [146].杨天鸿,谭国焕,唐春安.非均匀性对岩石水压致裂过程的影响[J].岩土工程学报,2002,24(6):724-728.
    [147].梁正召,王述红,唐春安等.非均匀性岩石破裂的网格效应[J].岩石力学与工程学报[J],2005,24(增1):5108-5112.
    [148].孙广忠.岩体结构力学[M].北京.科学出版社,1988.
    [149]. Li L. Microscopic study and numerical simulation of the failure process of granite [D]. Department of Civil Engineering, University of Hong Kong, Hong Kong,2001.
    [150]. Jaeger, J. C. and N. G. W. Cook (1979). Fundamentals of Rock Mechanics[M], Chapman and Hall.
    [151]. Tapponnier P, Brace W F. Development of stressinduced microcracks in Westerly granite[J]. Int. J. Rock Mech. Min. Sci.& Geomech. Abstr.,1976,13(4):103112.
    [152]. Lajtai E Z. Microscopic fracture processes in a granite[J]. Rock Mech. Rock Engng,1998, 31(4):237-250.
    [153]. Moore D E, Lockner D A. The role of microcracking in shearfracture propagation in granite[J]. Journal of Structural Geology,1995,17(1):951-14.
    [154].李炼,徐钺,李启光.花岗岩板渐进破坏过程的微观研究[J].岩石力学与工程学报,2002,21(7):940-947.
    [155].吴刚,张磊.单轴压缩下岩石破坏后区的扰动状态概念分析[J].岩石力学与工程学报,2004,23(10):1628-1634.
    [156]. Dey T N, Wang C Y. Some mechanisms of microcrack growth and interaction in compressive rock failure[J]. Int. J. Rock Mech. Min. Sci.,1981,18(3):199-209.
    [157].F.拉梅尔.岩石的脆性破裂.岩石力学(L.米勒主编),煤炭工业出版社,1981.
    [158].白以龙,汪海英,夏蒙棼等.固体的统计细观力学——连接多个耦合的时空尺度[J].力学进展,2006,36(2):286-305.
    [159].吴刚,张磊.单轴压缩下岩石破坏后区的扰动状态概念分析[J].岩石力学与工程学报,2004,23(10):1628-1634.
    [160].杨更社,孙钧.中国岩石力学的研究现状及其展望分析闭.西安公路交通大学学报[J], 2001,21(3):5-9.
    [161].张少华,赵海云.岩石抗拉强度试验方法及其特征[J].矿山压力及顶板管理,1994(3):68-71.
    [162].张少华,缪协兴,赵海云等.试验方法对岩石抗拉强度测定的影响[J].中国矿业大学学报,1999,28(3):243-246.
    [163]. Pells P.J.N., Uniaxial strength testing, Comprehensive Rock Engineering [M], Ed. J.A. Hudson, Pergamon press, Oxford.1993.
    [164].金丰年.岩石拉压特征的相似性[J].岩土工程学报,1998,20(2):31-33.
    [165].宫能平,李炜.岩石类材料液压破裂抗拉强度测试理论的修正[J].煤炭学报,1996,21(3):271-274.
    [166]. Douglass, P. M. and Voight, B.. Anisotropy of granites:a reflection of microscopic fabric[J]. Geotechnique,1969,19:376-398.
    [167]. M.H.B. Nasseria, K.S. Rao, T. Ramamurthy. Anisotropic strength and deformational behavior of Himalayan schists. International Journal of Rock Mechanics & Mining Sciences,2003, Vol.40:3-23.
    [168]. Yong Ming Tien, Po Fong Tsao. Preparation and mechanical properties of artificial transversely isotropic rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, Vol.37:1001-1012.
    [169].梁正召,唐春安,李厚祥.单轴压缩下横观各向同性岩石破裂过程的数值模拟[J].岩土力学,2005,26(1):57-62.
    [170].杨强,张浩,吴荣宗.二维格构模型在岩石类材料开裂模拟中的应用[J].岩石力学与工程学报,2000,19(增):941-945.
    [171].张德海,朱浮声,邢纪波.岩石类非均质脆性材料破坏过程的数值模拟[J].石力学与工程学报,2005,24(4):571-575.
    [172].马志涛,谭云亮.岩石破坏演化细观非均质物理元胞自动机模拟研究[J].岩石力学与工程学报,2005,24(15):2704-2708.
    [173].朱万成.混凝土损伤与断裂数值试验[D].东北大学博士学位论文,沈阳,2001.
    [174].梁正召.三维条件下岩石破裂过程分析及其数值试验方法研究[D].东北大学博士学位论文,沈阳,2005.
    [175]. Bazant, Z. P. Tabbara, M. R.. Random particle models for fracture of aggregate or fiber composites [J]. Journal of Engineering Mechanics, ASCE,1990,116(8):1686-1705.
    [176]. Mohamed A R, Hansen W. Micromechanical modeling of concrete response under static loading-Part 1:Model development and validation [J]. ACI Materials Journal,1999,96(2): 196-203.
    [177].刘光廷,王宗敏.用随机骨料模型模拟混凝土材料的断裂[J].清华大学学报,1996,1:84-89.
    [178].杨强,张浩,周维恒.基于格构模型的岩石类材料破坏过程的数值模拟[J].水利学报,2002,4:46-50.
    [179].李芬,沈成武,杨吉新.沥青混凝土材料细观损伤的数值模拟[J].交通科技,2006,1:56-58.
    [180].陈惠苏,孙伟,Stroeven Piet.水泥基复合材料界面对材料宏观性能的影响[J].建筑材料学报,2005,8(1):51-62.
    [181]. Chen Sha. Digital Image-based Numerical methods for Mechanics of heterogeneous Geomaterials [Ph. D. Thesis][D]. Hong Kong:The University of Hong Kong,2005.
    [182]. Wittmann, F. H. Structure of concrete with respect to crack formation[C]. In:Fracture Mechanics of Concrete. Eds. By Wittmann, F. H.,1989, Elsevier Science Publishers.
    [183]. Jan G.M., van Mier, Marcel R.A.(2002).Fracture mechanisms in particle composites: statistical aspects in lattice type analysis[J]. Mechanics of Materials, Vol.34,705-724.
    [184]. Hussein, A. and Marzouk, H. (2000). Behavior of high-strength concrete under biaxial stresses[J]. ACI Materials Journal, V.97, No.1:27-3.
    [185].张树禄.粗骨料对混凝土性能影响的概述[J].山西建筑,2004,30(13):106-107.
    [186]. Goldman A. and Bentur A.. Effects of pozzolanic and non2reactive microfillers on the transition zone in high strength concretes[A]. Interfacial Transition Zone in Composites(RILEM Proceedings 18) [C]. London:E&FN SPON,1992.53-61.
    [187]. Wu K R and Zhou J H. The influence of the matrix2aggregate bond on the strength and brittleness of concrete[A]. Bonding in CementitiousComposites (MRS Vol 114) [C]. Pittsburgh:Materials Research Society,1988.29-34.
    [188]. Chen Z Y and Wang J G. Effect of bond strength between aggregate and cement paste on the mechanical behaviour of concrete[A]. Bonding in Cementitious Composites (MRS Vol 114) [C]. Pittsburgh:Materials Research Society,1988.41-48.
    [189]. Bentur A and Alexander M G. Review of the work of the RILEM TC 159-ETC:engineering of the interfacial transition zone in ce2mentitious composites[J]. Material Structure, 2000,33(226):82-87.
    [190]. Hillberborg, A., Modeer, M. and Petersson, P.E.. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research,1976, Vol.6:773-782.
    [191]. Bazant, Z.P., Oh B-H.. Crack band model for concrete[J]. Materials and Structures (RILEM), 1983, Vol.16:155-177.
    [192]. Mazars, J. and Pijaudier-Cabot, G.. Continuum damage theory—application to concrete[J]. Journal of Engineering Mechanics, ASCE,1987, Vol.115, No.2:345-365.
    [193]. Van Mier J.G.M, Fracture process of concrete [M], CRC Press, New York, p.253.1997.
    [194]. Schorn H. Numerical simulation of altering mechanical properties of concrete due to material bchaviour of the interfaces[A]. Interfacial Transition Zone in Composites[C]. London:E &FN Spon,1992.159-168.
    [195]. Itasca. PFC3D:User's Guide. Minnesota. Itasca. Consulting Group, Inc.1999.
    [196]. Liang Z Z, Tang C A, Li H X, et al. Numerical simulation of the 3D failure process in heterogeneous rocks[A]. In: Hudson J A, Feng X T ed. Proceedings of the ISRM SinoRock 2004 China[C]. [s.1.]:[s. n.],2004.66-72.
    [197]. Kawakata, H., Cho, A., Yanagidani, T., and Shimada, M. (2002).The observations of faulting in westerly granite under triaxial compression by xRay CT Scan[J]. Int J Rock Mech Min Sci. 34(34), pp.375-375.
    [198].李晓军,张肖宁.CT技术在沥青胶结颗粒材料内部结构分析中的应用[J].公路交通科技,2005,22(2):14-17.
    [199].陈沙,岳中琦,谭国焕.基于真实细观结构的岩土工程材料三维数值分析方法[J].岩石 力学与工程学报,2006,25(10):1951-1959.
    [200].大连力软件科技有限公司.RFPA3D用户手册[R].大连:大连力软件科技有限公司,2005.
    [201].张永彬,唐春安,梁正召等.岩石破裂过程分析系统并行计算方法研究[J].岩石力学与工程学报,2006,25(9):1795-1801.
    [202].刘绍鹏.并行有限元程序自动生成系统及其应用[D].中国科学院研究生院博士学位论文.北京,2004.
    [203].郁志辉.高性能计算之并行编程技术——MPI并行程序设计[M].北京:清华大学出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700