真空冷冻干燥法制备无机功能纳米粉体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
真空冷冻干燥法制备纳米粉体是当今材料科学领域的前沿性课题之一,因其所制得的粉体具有微粒形状规则、粒径小而均匀、粒度分布窄、化学成分纯、粒子间无硬团聚、分散性好等特点,而受到关注。无机功能纳米粉体材料具有优秀的物理、化学等方面的特殊功能,作为高技术、高性能、高产值、高效益产品,而成为众多科研人员竞相研究开发的对象。所以本文选择采用真空冷冻干燥法制备无机功能纳米粉体作为研究主题。
     本文以制备高品质无机功能纳米粉体为目标,从理论和实验两方面开展了溶液冷冻干燥法制备纳米粉体技术研究。文中对溶液冷冻干燥制备纳米粉体的重要步骤:前驱体溶液制取、溶液冻结和冻结物冷冻干燥进行了实验探索和详细的理论分析。
     文中总结了溶液冷冻干燥法制备纳米粉体所使用的前驱体应具有的性能,从保证所制备粉体的品质、降低成本以及防止产生污染等角度出发,为所制备的氧化铝、氢氧化镍、氢氧化铜、氧化铜和银纳米粉体确定了理想的前驱体,并对以氨络合物为前驱体制备纳米粉体的所需工艺条件进行了理论计算和实验验证。文中还通过实验摸索出用于冷冻干燥制备纳米粉体的合适的前驱体溶液浓度,进而提出了选择前驱体的原则。
     文中选择次醋酸铝和金属氨络合物为前驱体,采用冷冻干燥法制备出了氧化铝、氢氧化镍、氢氧化铜、氧化铜和银等无机功能纳米粉体材料,给出了制备粉体的具体操作方法、工艺参数和制备过程中涉及到的化学反应原理。
     对所制备的各种粉体进行了X射线衍射分析、X射线能谱分析、差热和热重分析以及电镜观察等性能检测,对银纳米粉体还进行了细菌灭活实验检测。结果表明:所制备的粉体是颗粒细小、粒径均匀、团聚少、化学成分准确而纯净的纳米级粉体。
     在实验中采用了适合于制备纳米粉体的前驱体溶液冻结的三种冷冻方式,即直接冷冻、真空蒸发冷冻和喷雾冷冻。结合实验结果,讨论了前驱体溶液浓度、三种冻结方式等工艺条件对所制备粉体的颗粒尺度与分散程度等品质的影响。实验发现,冷冻干燥法所制备的纳米粉体都是非晶体。
     在实验研究的基础上,深入分析了溶液冻结阶段和冷冻干燥阶段的相变热力学过程与相变机制;针对溶质离析问题开展了传质理论研究,提出溶液冻结速率是影响造粒过程的最主要因素;依据热质传递理论,对三种冷冻方式分别建立了数学模型,求解得到了冰界移动速率、完成冻结所需时间等重要工艺数据;确定了溶质不离析的条件是:冰界面移动速率大于溶质的临界扩散速率,计算得到了直接冷冻方式保证溶质不离析的溶
Synthesis of nanopowder by fireeze-drying is one of the hot and forward position subject in material science field because the powder synthesized by this method has many excellent characteristics such as regular particle shape, shall and even diameter, narrow granularity distributing, pure chemical composition, weak agglomeration, easy dispersal and so on. Functionally inorganic nanometer materials are focused on since their particularly function in physics and chemistry. Therefore, the synthesis of functionally inorganic nanopowder by freeze-drying is chose as the research subject in this thesis.
    In order to obtain the functionally inorganic nanopowder with high property, the nanopowder synthesis technology by solution freeze-drying are studied in theory and experiments. The 3 most important steps in nanopowder synthesis process, i.e., precursor solution preparation, solution freezing and its freeze-drying, are studied in detail.
    The property requirements for precursor solution used in nanopowder synthesis by freeze-drying are concluded. For the purpose of high properties, low price and low pollution, the ideal precursor solutions are chose for synthesizing alumina, nickel hydrate, copper hydrate, copper oxide and silver nanopowders. The process conditions needed for using ammonia complex compounds as precursor solution to synthesize powder of nickel hydrate and so on are given by theoretical calculation and experimental test. The suitable concentration and choosing principle of precursor solution are suggested.
    Taking basic aluminium acetate and metal ammonia complex compounds as precursor solution, the functional inorganic nanopowder of alumina, nickel hydrate, copper hydrate, copper oxide and silver, are successfully synthesized by freeze-drying. The operation method, process parameters and chemical reaction principle are given in concrete.
    All powders synthesized are detected by XRD, EDS, TEM and SEM. DTA and TG test are done for nickel hydrate and copper hydrate nanopowder to confirm their compounds. A bacteriostatic test is specially done for silver. The result shows that the powder synthesized are composed of small & even diameter, week agglomeration, pure chemical composition particles.
    Three kink of freezing styles of precursor solution - direct freezing, spray freezing and vacuum evaporation freezing - are used in the synthesis experiment. The influence of precursor solution concentration and freezing process parameters upon powder properties, such as particle size and dispersion degree, is discussed. It is found in experiments that all
引文
1.徐成海,邹惠芬,张世伟,真空冷冻干燥技术的现状和发展趋势[J],真空与低温,2000,6(2):71~74
    2.[德]G-W.厄特延,P.黑斯利著,徐成海,彭润玲,刘军等译,冷冻干燥[M],化学工业出版社,2005,4:345
    3.程江,涂伟萍,杨卓如,粉体真空冷冻干燥制备技术的应用与进展[J],真空,2001,2:21~24
    4.栾伟玲,高濂,郭景坤,纳米粉体干燥方法的研究[J],无机材料学报,1997,12(6):835~839
    5.田明原,施尔畏,郭景坤等,纳米陶瓷与纳米陶瓷粉末[J],无机材料学报,1998,13(2):129~137
    6.宋桂明,周玉,白后善,纳米陶瓷粉体的制备技术及产业化[J],矿冶,2001,10(2):55~60
    7.田春霞,纳米粉末制备方法综述[J],粉末冶金工业,2001,11(5):19~24
    8.[美]克莱邦德,陈建峰译,纳米材料化学[M],化学工业出版社,2004,7:10
    9.刘吉平,廖莉玲,无机纳米材料[M],科学出版社,2003,7:17
    10.张立德,牟季美著,纳米材料科学[M],,辽宁科学技术出版社,1994:3~6
    11.潘爱珍,朱从容,纳米技术与纳米材料的现状和展望[J],浙江海洋学院学报(自然科学版)1999,18(3):247~250
    12.张汝冰,列宏英,李凤生,纳米材料在催化领域的应用研究进展[J],化工新材料.1999:27(5):3~5
    13.刘晨明,刘军,李少松,化学基础,辽海出版社,2004:243
    14.张近,纳米粉体氧化镁的合成[J],化学工程,1999,27(2):34~37
    15. Ya-li Li, Yong Liang, Fen Zheng and Zhuang-qi Hu, Carbon dioxide Laser Synthesis of Ultrafine Silicon Carbide Powders from Diethoxydimethysilane[J], J. Am. Ceram. Soc., 1994, 77(6): 1662
    16. M. Cauchetier, O. Croix, Nanometric Si/C/N Conposite Powders: Laser Synthesis and IR Characterization[J], J. Eur. Ceram. Soc., 1991, 4: 215
    17. R. Alexandrescu, I. Morjan, Composite Ceramic Powders Obtained by Laser-Induced??Reactions of Silane and Amines[J], J. Mater. Res. 1991, 11: 2442
    18. J. David Casey, John Shaggerty, Laser-induced vapor-phase synthesis of titanium dioxide[J], J. Mater. Sci., 1987, 22: 4307
    19.贾殿赠,俞建群,夏熙等,一步室温固相化学反应法合成Cu0纳米粉体[J],科学通报,1998,43(2):172~174
    20.洪伟良,刘剑洪等,室温固相化学反应制各纳米Cu0粉体研究[J],深圳大学通报,2000,17(1):6669
    21.汪国忠,程素芳,何国良,纳米级Mg0粉体的合成[J],合成化学,1996,4(4):300~303
    22.彭子飞,汪国忠,张伟等,化学共沉淀法制备纳米级CaTiO_3粉体[J],功能材料,1996,27(5):429~430
    23.廉锐,尹民,张慰萍等,纳米级YPO_4-Pr~(3+)的化学制备、结构分析和光谱特征[J],发光学报,1999,20(2):102~105
    24.彭子飞,汪国忠,张立德等,纳米级Na_2TiO_3粉体的合成[J],合成化学,1996,4(2):99~101
    25.李风生编著,超细粉体技术[M],北京,国防工业出版,1998:145~146
    26.谭斌源,刘继泉,潘伟超等,均相沉淀转化法制取纳米级氧化镍[J],青岛化工学院学报,1998,19(2):194195
    27.张近,王志奎,任跃辉等,纳米氧化镁的合成[J],陕西师范大学学报(自然科学版),1999,27(1):8284
    28.何捍卫,胡岳华,影响均相沉淀法制备高纯纳米氧化饵的因素及机理研究[J],稀土,2000,21(3):4~8
    29.袁铁锤,陈志飞,宁顺明等,纳米Zn0的制备[J],矿冶工程,2000,20(1):4551
    30.徐华蕊,叶明泉,沉淀转化法制备单分散超细碳酸铅粉体[J],南京理工大学学报,1998,22(1):10~14
    31.潘登余,王大志,刘皖育,纳米V_2O_5液相的制备与表征研究[J],材料科学与工程,2000,18(2):43~45
    32.孙璐薇,何永,付云德等,纳米氧化铋研究(J],传感器技术,2000,19(1):21~22
    33.张建成,周海丽,陈雅丽等,合成铌醇盐的条件、水解过程及其特性分析[J],上海大学学报(自然科学版),1998,4(1):38~44
    34. Yasushi Murakami, Shigeki Tsuchiya, Kiyochika Yahikozawa, Preparation of ultrafine??IrO_2-Ta_2O_5 binary oxide particles by a sol-gel process[J], Electrochimica Acta, 1994, 39(5): 651~654
    35. Takeyuki Yamaki, Hideaki Maeda, Katsuki Kusakabe, Control of the pore characteristics of thin alumina membranes with ultrafine zircoma particles prepared by the reversed micelle method[J], Journal of Membrane Science, 1993, 85(2): 167~173
    36. Toshiyuki Masui, Kazuyasu Fujiwara, Yumin Peng, Characterization and catalytic properties of Al_2O_3 ultrafine particles prepared by the microemulsion method[J], Journal of Alloys and Compounds, 1998, 268(1): 116~122
    37.田明原,施尔畏,郭景坤等,纳米陶瓷与纳米陶瓷粉末[J],无机材料学报,1998,13(2):129~137
    38.李革胜,静态冷冻干燥技术制备ZiO_2微粒子[D],沈阳,中国科学院金属研究所学位论文,1994,2
    39.高福成,冻干食品[M],中国轻工业出版社,1998:2~11
    40. F. J. Schnettler, F. R. Monforte, W. W. Rhodes, A Cryochemical Method for Preparing Ceramie Matedals[J|, Sci. Ceram., 1968, 4: 79
    41.徐成海,刘军,王德喜,发展中的真空冷冻干燥技术,真空,2003,5:1~7
    42. S. H. Gelles and F. K. Roehrig, freeze-drying metals and ceramics[J], Journal of Metals., 1972, 6: 23~24
    43. Fabio F., Machado, Eric J., Preparation of zinc oxide nanopowder by freeze-drying[J], Journal of Metastable and Nanocrystalline Matertals, 2001, 4: 71~76
    44. Chuei-Tang Wang, Lang-Sheng Lin and Sheng-Jenn Yang, Preparation of MgAl_2O_4 Spinel Powders via freeze-Drying of Alkoxide Precursors[J], J. Am. Ceram. Soc., 1992, 75(8): 2240~2243
    45.陈祖耀,钱逸泰,万岩坚等,低温冷冻干燥超微粉制备陶瓷超导材料[J],低温物理学报,1988年,3:8~11
    46. L. Mancic, Z. Marinkovic, O. Milosevic , Synthesis of Bi-based superconducting powders through the freeze drying[J], Materials Chemistry and Physics 2001, 67: 288-290
    47.杨卓如,程江,涂伟萍等,冷冻干燥制备超细磁粉实验研究[J],化学工程,1999,3:19~20
    48. WenmingZeng, AdrianoA, Rabelo, RobertoTomasi, Synthesis of Al_2O_3 Nanopowder by Sol-Freeze Drying Method[J], Key Engineering Materials, 2001, 1, 89: 16~2049.赵惠忠,葛山,张鑫等,Sol-Gel冷冻干燥法制备纳米莫来石[J],无机材料学报,2004,19:471~476
    50.连进军,李先国,冯丽娟,溶胶.凝胶.冷冻干燥技术制备纳米二氧化锡及其表征[J],化学世界,2004,4:171~174
    51.薛军民,李承恩,赵梅瑜,柠檬酸盐溶液冷冻干燥法制备Ba_2Ti_9O_(20)粉体[J],功能材料,1997,28(2):161~164
    52. M. A. Akbas, W. E. Lee, Synthesis and Sintering of PLZT Powder Made by Freeze/Alcohol Drying or Gelation of Citrate Solutions[J], Journal of the European Ceramic Society, 1995, 15: 57~63
    53.刘继富,吴厚政,谈家琪,冷冻干燥法制备Mg O-ZrO2超细粉末[J],硅酸盐学报,1996,2:105~108
    54. Nagai M., Nishino T. Alumina ceramics fabricated by the spray-froze/freeze-drying, method[J], Intemational Institute of Refrigeration 1985, 6: 186~190
    55. Torikai N., Mejuro T., Nakayama H, Preparation of fine particles of spineltype Mn-Co-Ni oxides by freeze-drying, Alumina ceramics fabricated by the spray-froze/freeze-drying, method[J], International Institute of Refrigeration 1985, 6: 177~183
    56. Nikolic N., Mancic L, Marinkovic Z., Preparation of fine oxide ceramic powders by freeze drying[J], Ann. Chim. 2001, 26: 35~41
    57. Milnes S. J., Mostaghaci H., The influence of different drying conditions on powder properties and processing characteristics[J], Mater. Sci. Eng. 1990, 130: 263~271
    58. Ito T., Kimura Y., Hiraki A., High-quality yttrium barium copper oxide ceramics prepared from freeze-dried nitrates[J], Appl. Phys., 1991, 30: 1253~1255
    59. Kimura T., Ito T., Toshikawa H., Growth and characterization of Homogeneous yttrium-barium-copper oxide powders prepared by freeze-drying method[J], Appl. Phys. 1990, 29: 1409~1411
    60. Kimura Y., Ito To, Yoshikawa H., Superconducting Yttrium barium copper osxide particles prepared from freeze-dried nitrates[J], Appl. phys., 1991, 30: 789~801
    61. Kondou S., Kakojawo K., Sasaki Y., Synthesis if Pb(Zr_xTi_(1-x))O_3 by freeze drying method[J], Nippon Kagaku kaishi, 1990, 7: 753~758
    62. Sofie S., Dogan F., Cermic shape forming by freeze-drying of aqueous and non-aqueous slurries[J], Ceram. Trans. 2000, 108, 235~24363.顾燕芳,胡黎明等,冷冻干燥法制备高活性的氧化铝超细粒子[J],硅酸盐通报,1994,(1):21~25
    64. Machado F F, Fodran E J, et al, Preparation of Zinc Oxide Nanopowder by Freeze-Drying[J], Journal of Metastable and Nanocrystalline Materials[J], 2002,, 14: 71~76
    65.张玉龙,王欢,邓景发,真空冷冻干燥法制备CuO-ZnO-Al_2O_3合成甲醇催化剂[J],燃料化学学报,1994,22(3):258~263
    66. Kelly J, Hibbert D B, Tseung A C C, A critical examination of a cryochemical method for the preparation of high surface area semiconducting powders[J], Journal of Materials Science, 1978,(13): 1053~1060
    67.曾文明,陈念贻,林归华等,无机盐制备氧化铝纳米粉及其物理化学的研究[J],无机材料学报,1998,13(6):887~892
    68.许国花,李先国,冯丽娟,溶胶.凝胶法与冷冻干燥技术结合制备纳米氧化铁[J],2003,24(4):354~357
    69.叶锡模,普通化学[M],浙江大学出版社,1993,5:473~474
    70.《化学工程手册》编委会,化学工程手册[M],北京:化学工业出版社,1989
    71.曾方允,真空冷冻干燥法制备纳米氧化铝粉体的研究,沈阳,东北大学,2004:2
    72.江东亮,精细陶瓷材料[M],北京:中国物资出版社,2000:55~70
    73.何巨龙,于栋利,刁利强,γ-Al_2O_3纳米粉对氧化铝、碳化硅陶瓷纤维烧结特性影响[J],复合材料学报,2000,17(4):80~82
    74.任冬梅,李德峰,姜玉敬,关于特种氧化铝发展的探讨[J],世界有色金属,2001(11):4~6
    75.陈元春,艾兴,黄传真,溶胶.凝胶法制作陶瓷涂层硬质合金刀具[J],硅酸盐学报,2000,28(4):352~356
    76.张贤利,李福生,方道腴,荧光粉层.氧化铝保护膜层光学特性的研究[J],照明工程学报,2001,12(1):9~12
    77.耿新玲,袁伟,纳米氧化铝的制备与应用进展[J],河北化工,2002,3:1~4
    78.赵海红,欧阳朝斌,刘有智,超细氧化铝粉体的制备工艺及其应用[J],化工科技,2003,11(1):45~48
    79. Borsella E, Botti S, et al, Laser-driven Synthesis of Nanocrysalline Alumina Powders from Gas-Phase Precuroros[J], Appl. Phys. Lett., 1993, 63(10): 1345~134780.林元华,张中太,黄传勇等,前驱体热解法制备高纯超细α-Al_2O_3粉体[J],硅酸盐学报,2000,28(3):268~271
    81. Savrun E, Toy C. The effect of sonication for precipitation of hydrated aluminum sulphate in aqueous Al_2(SO_4)_3-urea system[J], J Mar Sci Lett, 1997, 16: 164~166
    82.王雅娟,李春喜,王子镐,超声波化学沉淀法制备纳米氧化铝粒子[J],北京化工大学学报,2002,4:8~13
    83.李革胜,李华基,彭晓东,超声雾化制备超细氧化铝陶瓷粉体技术[J],重庆大学学报(自然科学版),1999,2:50~53
    84.王洪志,高濂,李炜群等,高分子网络凝胶法制备纳米α-Al_2O_3粉体[J],无机材料学报,2000,15(2):356~360
    85.唐浩林,潘牧,赵修建,溶胶等离子喷射合成法制备a-Al_2O_3纳米材料[J],陶瓷学报,2002,1:22~25
    86. Wenming Zeng, Adriano A. Rabelo, Roberto Tomasi, Synthesis of α-Al_2O_3 nanopowder by Sol-Freeze Drying Method[J], Key Engineering Materials, 2001, 189: 16~20
    87. Reinser D E, S alkind A J, Strutt P R, et al, Nickel hydroxide and other nanophase cathode materials for rechargeable batteries[J], Journal of Power Sources, 1997, 65: 231~234
    88.何平,计亚军,唐敏等,氢氧化镍结构及其复合电极电催化性能研究[J],南京航空航天大学学报,2005,5:664~668
    89. Ovshinsky S R, Fetcenko M A, Fierro C, Enhanced Nickelhydroxide positive electrode material for alkaline rechargeable electrochemical cell[P] US: 5523182, 1996, 6
    90. Feng I-M ing, Solid deposition and nonsacrifical boundary lubrication[J], ASLE Trans, 1963, 6: 60~66
    91. Yao J B, Dong J X, Antiwear synergism of berates and dibutyltin dilaurate[J], Lubr Eng, 1995, 52: 553~556
    92. West W W, Cerrito E, Stokely J M, et al, Oil dispersible inorganic borate in combination with EP agent as lubricating oil additives[P], USP 3565802, 1968-04- 30
    93. Sims M J, Framcisco S, Lubricant containing dispersed borate and a polyol[P], USP 3819521
    94.王晓峰,王大志,梁吉,超细氢氧化亚镍的溶胶凝胶法制备及其准电容特性[J],物理化学学报,2005,2:117~12295. Aurora M F, Erin M, Pieter S, Layerbylayer polymeric supra molecular structures containing nickel hydroxide nanoparticles and microcrystallites[J], Ind Eng Chem Res, 2002, 41(11): 2662~2667
    96.张红兵,浦坦,李道火,非晶纳米氢氧化镍电极材料的研究[J],电池工业,2004,1:30~32
    97.黄永攀,李道火,王锐,黄伟,化学沉淀法制备电极用纳米β-Ni(OH)_2粉体材料[J],中国粉体技术,2004,4:33~35
    98.ZHOU Gen-tao(周根陶),ZHOU Shuang-sheng(周双生),LI U Shuang-huai(刘双怀),et al,配位-沉淀法制备Ni(O H)_2和NiO超微粉[J],Chinese Journal of the Inorganic Chemistry(无机化学学报),1996,12(1):96~98
    99. Han X J, Xie X M, Xu C Q, et al, Morphology and electrochemical performance of nano-scale nickel hydroxide prepared by super sonic coordination7precipitation method[J], Optical Materials, 2003, 23: 465~470
    100.方国,刘祖黎,胡一帆等,CuO-SnO_2纳米晶粉料的Sol-Gel制备及表征[J],无机材料学报,1996,11(3):537~541
    101.李光,冯伟骏,李喜孟,功率超声作用下纳米氧化铜粉体的制备[J],材料导报,2003,(17):44~47
    102. M. Frietsch, F. Zudock, J. Goschnick, M. Bruns.[J], Sensors and Actuators B, 2000, 65: 379~381
    103. Toshiro Maruyama., Chemically and electrochemically deposited thin films for solar energy materials[J], Solar Energy Materials and Solar Cells, 1998, 56: 85~92
    104. Fierro G, Morpurgo S, Jacono M L., Thermochemistry of manganese oxides in reactive gas atmospheres[J], Applied Catalysis A: General, 1998, 166: 407~417
    105. Eastman J A, Choi U S, Li S, Enhanced thermal conductivity through the development ofnanofluids[A], Materials Research Society Symposium Procee-dings V[C], 1996
    106. Eastman J A, Choi U S, Li S, Novel thermal properties ofnanostructured aterials[A]. aterials Science Forum[C]. Switzerland: Trans Tech Publications, 1999
    107. Lee S, Choi S U, Li S, et al, Measuring thermal conductivity of fluids containing oxide nanoparticles [J]. ASME Journal of Heat Transfer, 1999, 121(2): 280~289
    108. Choi S U S, Enhancing Thermal Conductivity of Fluids with Nanoparticles, In:??Springer D A, Wang H. P, Developments and Applications of Non-Newtonian Fluids, New York, ASMEFED-Vol. 231/MD-Vol.. 1995, 66: 6~12
    109. Lee Shinpyo, Choi Stephen U S, Application of metallic nanoparticle suspensions in advanced cooling systems[A]. ASME, Pressure Vessels and Piping Division(Publication) PVPv342 1996, 227~234
    110. Osman Sezgen, Jonathan G .Koomey, Interactions between Lighting and space conditioning energy use in US commercial buildings[J], Energy, 2000, (25): 793~805
    111.邓超,史鹏飞,张森,纳米氧化铜掺杂对储氢合金电极性能的影响[J],物理化学学报,2005,8:920~924
    112.刘科辉,颜流水,罗国安,纳米氧化铜催化化学发光性能及其氨基酸检测[J],分析化学,2005,6:847~849
    113. Hui Wang, Jin-Zhong Xu, Jun-jie Zhu, Preparation of CuO nanmoparticles by microwave irradiation[J], Journal of Crystal Growth, 2002, 244: 88~94
    114.崔宝臣,马丽景,白守礼等,纳米CuO的制备、表征及其应用[J],化工进展,2004,5:541~544
    115.李东升,王文亮,王尧宇等,混合溶剂前体法制备纳米CuO粉体及其性能表征[J],无机化学学报,2004,5:617~621
    116. Zhong-shan Hong, Yong Cao, Jing-fa Deng, A convenient alcohothermal approach for low temperature synthesis of CuO nanoparticles[J], Materials letters, 2002, 52: 34~38
    117.吴新明,易求实,吴金平等,纳米氢氧化铜的均匀沉淀法制备及低温热容[J],材料科学与工艺,2001,1:71~74
    118.胡文斌,李凤仪,用制备的纳米氧化铜直接合成二乙氧基硅烷的研究[J],分子催化,2004,5:361~365
    119.朱琦瑜,李疏芬,微波法制备纳米CuO粉体[J],飞航导弹,2002,9:59~61
    120.李冬梅,夏熙,络合沉淀法合成纳米氧化铜粉体及其性能表征[J],无机材料学报,2001,6:1207~1210
    121. J. Bandara, I. Guasaquillo, P. Bowen, Photocatalytie Storing of O_2 as H_2O_2 Mediated by High Surface Area CuO, Evidence for a Reductive-Oxidative Interfacial Mechanism, American Chemical Society Published, 2005
    122.黄惠忠,纳米材料分析[M],北京,化学工业出版社,2003,3:253123.[日]神户博太郎编,刘振海译,热分析[M],化学工业出版社,1979:137
    124. SANG YOUNG YEO, HOON JOO LEE, SUNG HOON JEONG, Preparation of nanocomposite fibers for permanent antibacterial effect[J], JOURNAL OF MATERIALS SCIENCE2003(38)2143~2147
    125.张若愚,夏雪山,胡亮,等,Ag/Diatom ite复合材料及其对禽流感病毒的杀灭研究[J],贵金属,2004,25(2):28~32
    126. ZHANG Ruo-yu, XIA Xue-shan, HU Liang, et al, The Study on the Character of Diatomite Carrying Argent and Its Inactivation of AIV[C], The 18th Iupac International Conference on Chemical Thermodynamics and the 12th National Conference on Chemical Thermodynamics and Thermal Analysis, 2004, 17~21
    127. Korn D, Morsch A, Birringer R, et al, Measurements of the elastic constants, the specific heat and the entropy of grain boundaries by means ofultra7fine grained materials[J], J Phys Colloq, 1988, C5(49): 769~779
    128. Chokshi A H, Rosen A, Karch J, et al , On the validity of the hall-petch relationship in nanocrystalline material[J], Scripta Metall, 1989, 23: 1679~1684
    129. Nie man G W, Weertman J R and Siegel R W, Microhardness of nanocrystalline palladium and copper produced by inert-gas condensation[J], Scripta Metall, 1989, 23: 2013~2018
    130. Nie man G W, Weertman J R and Siegel R W, Tensilestrength and creep properties of nanocrystalline palladium[J], Scripta Metall Mater, 1990, 24: 145~150
    131. Gunther B, Baal man A and Weiss H, Preparation and mechanical properties of ultrafine grainedmetals[J], MaterRes See Syp Proc, 1990, 195: 611~615
    132. Nie man G W, Weert man J R and Siegel R W, Mechanical behavior of nanocrystalline CuandPd[J], J Mater Res, 1991, 6(5): 1012~1027
    133. Kizuka T, Ichinose H and Ishida H , Structure and hardness of nanocrystalline silver[J], J Mater Sci, 1997, 32(6): 1501~1507
    134.司民真,武荣国,张鹏翔,一种具有较强表面增强喇曼散射效应的纳米银粒子[J],光子学报,1999,9
    135.于伟,傅询,含纳米银有机流体的制备及其摩擦学性能研究[J],摩擦学学报,2004,5:425~428
    136.石川,程漠杰,曲振平等,纳米银催化的甲烷选择还原NO反应研究[J],复旦学报,??2002, 3: 269~273
    137. Q. F. ZHOU, Z. XU, The preparation ofnano-scale plate silver powders by visible light induction method[J], JOURNAL OF MATERIALS SCIENCE 39(2004)2487-2491
    138.宋永辉,兰新哲,张秋利,超声波强化制备超细银粉[J],稀有金属,2005,第29卷第4期:502~504
    139.周全法,徐正,包建春等,还原-保护法制备纳米级银粉的研究[J],精细化工2001,1:39~42
    140.张宗涛,赵斌,胡黎明等,高分子保护化学还原法制备纳米Ag粉[J],华东理工大学学报,1995,4:423~427
    141.顾大明,高农,程谨宁,次磷酸盐液相还原法快速制备纳米银粉[J],精细化工,2002,11:634~635
    142.周宇松,吴希俊,许国良等,大尺寸纳米铜和银的制备及其微观缺陷与力学性能[J],中国有色金属学报,2000,4:465~469
    143.路林波,陈建中,高绍康等,反相微乳液法制备纳米金属银粉[J],福州大学学报,2004,2:208~211
    144.徐成海,真空低温技术与设备[M],冶金工业出版社,1995,4:P118
    145.陆煜,程林,传热原理与分析[M],北京:科学出版社,1997
    146. McGrath P J, Laine R M. Theoretical Process Development for Freeze-Drying Spray-FrozenAerosols[J], J. Am. ceram. Soc., 1992, 75(8): 1223~1228
    147. Litchfield R. I., Liapis A. I., An Adsorption-Sublimation Model for a Freeze-Drying[J], Chemical Engineering Science, 1979, 34, 1085~1090
    148.齐锡龄,杜小泽,李惟毅,真空冷冻干燥非稳态热质传递模型的应用[J],高校化学工程学报,1997,11(2),201~205
    149.姚爱如,王进修,程尚模,冷冻干燥过程中非定常传热传质研究[J],华中理工大学学报,1988,16(6),131~135
    150.徐成海,邹惠芬,真空冷冻干燥技术的现状和发展趋势[J],真空与低温,2000,6(2),71~74
    151.郑文利,真空冷冻干燥理论及实验研究[D],沈阳:东北大学博士论文,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700