苏云金杆菌晶体蛋白对猪蛔虫的作用及猪蛔虫重组As37蛋白的免疫保护研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪蛔虫病是仔猪常见的多发性寄生虫病,可导致仔猪的腹泻、消瘦、贫血,严重的导致仔猪死亡,严重危害养猪业。目前猪蛔虫病的防治以咪唑类药物驱虫为主,这些药物在治疗猪蛔虫的同时对动物机体均有不同程度的副作用,且不同程度的残留,危害人类健康、污染环境,所以需要寻找防治猪蛔虫病的一种新药。自1972年发现苏云金芽胞杆菌(Bacillus thuringiensis,Bt)对植物寄生线虫具有杀虫活性以来,随后发现Bt伴胞晶体毒素对蛇形毛圆线虫、捻转血矛线虫、日本血吸虫等动物寄生虫的毒性。本研究旨在寻找高毒力的Bt菌株对猪蛔虫进行有效治疗。另外,关于猪蛔虫的免疫研究近年来取得了一定的进展,国外先后报道了猪蛔虫重组抗原的免疫活性;国内在猪蛔虫的免疫上还是空白,尚未见到商用猪蛔虫疫苗。为了更好地防治猪蛔虫,本研究克隆了猪蛔虫rAs37基因,构建原核表达载体进行高效表达,并对表达蛋白的免疫活性进行了分析,为开发猪蛔虫亚单位疫苗打下基础。主要研究工作和结果如下:
     1.Bt伴胞晶体毒素对体外培养的猪蛔虫幼虫的毒力
     将感染性猪蛔虫卵对小白鼠进行人工感染,获得三期、四期蛔虫幼虫,经体外培养,用Bt YBT-1517,YBT-1518,YBT-1521,YBT-1532,YBT-1537,R_1,R2伴胞晶体毒素分别作用于幼虫,结果发现七种毒素均对猪蛔虫三期幼虫有毒杀作用。随着作用时间的延长,毒素浓度的增加,虫体运动缓慢,死亡率增加,其在24h、48h时的半数致死剂量分别为0.875mg/mL,0.434mg/mL;0.934mg/mL,0.452mg/mL;1.375mg/mL,0.843mg/mL;1.023mg/mL,0.623mg/mL;1.112mg/mL,0.674mg/mL;0.951mg/mL,0.458mg/mL;0.958mg/mL,0.460mg/mL。YBT-1517对猪蛔虫三期幼虫杀虫效果最好,YBT-1518与其毒力相当,而YBT-1521的半数致死量较其他菌株大。毒素含量越高,幼虫死亡率越高,毒素作用时间的延长,其半数致死剂量降低。
     YBT-1517,YBT-1518,R_1,R2四种菌株的晶体蛋白对四期幼虫有毒杀作用。其在24h、48h时的半数致死剂量分别为0.935mg/mL,0.452mg/mL;0.875mg/mL,0.415mg/mL;0.904mg/mL,0.453mg/mL;0.886mg/mL,0.448mg/mL。YBT-1518、YBT-1517、R_1、R_2四种晶体蛋白毒力相当,其中YBT-1518晶体毒素对猪蛔虫四期幼虫的杀虫效果略高于其它三种毒素。
     2.Bt伴胞晶体毒素对小鼠体内猪蛔虫幼虫不同作用方式的研究及其免疫定位
     感染猪蛔虫的小鼠经静脉注射、肌肉注射、灌胃、腹腔注射YBT-1517,YBT-1518晶体毒素,结果发现毒素均对小鼠体内蛔虫幼虫有显著驱杀效果,静脉注射减虫率最高,效果极显著,高于其它三种方式,而肌肉注射则次之,灌胃与腹腔注射无差异。YBT-1517减虫率分别为72.7%、19.1%、14.6%、14.36%;YBT-1518减虫率为70.87%、32.83%、19.10%、20.51%。YBT-1517与YBT-1518晶体蛋白毒力相当。
Ascaris roundworm are gastrointestial nematodes that widely distributed in both humans and animals wordwide. One of roundworms, Ascaris suum, was originally identified as a ubiquitous, pathogenic parasite of swine. It is a severe threat to the growing pigs which can cause diarrhea, anaemia even death. Despite the existence of efficient drugs such as Mebendazole, Ivermectin and Albendazole, but these drugs cause side effect, drug-resistence and drug-remaining. It is necessary to find a new drug to treating Ascaridasis. Bacillus thuringiensis (Bt) Insesticidal Crystal Proteins (ICPs) are highly toxic to a wide variety of animal and plant parasites such as Trichostrongylus colubriformis, Haemonchus contortus and Schistosoma japonicum. It is a new field treating A. suum with ICPs toxin, in this research, author studied on the effect of Bt ICPs toxin to A. suum. Furthermore, the immune on Ascaris suum were making progress these years. Recently, some Escherichia coli-expressed recombinant antigens from A. suum were reported to be suitable vaccine candidates for the control of Ascaris infection. Here we attempted to clone rAs37 gene by reverse transcription-polymerase chain reaction (RT-PCR) using primers based on the published cDNA sequence of As37 gene. The Escherichia coli-expressed recombinant protein showed highly immunoreactive by Western-blot analysis and can be considered as a potential vaccine candidate. The results of research are summarized as following: 1. Screening of Bt which are high toxic to A.suum larvae
    A.suum L3 (third stage larvae) and L4 (fourth stage larvae), obtained from the livers and lungs of mice which were challenged with 2,500 infective eggs of A.suum, were cultivated at 37℃ with medium-RPIM1640 in 5% CO2 incubator. Different quantities of Bt YBT-1517, YBT-1518, YBT-1521,YBT-1532,YBT-1537, R1, R2 ICPs toxins were added in every hole of cell plate respectively. Seven kinds of ICPs were effective to L3 in vitro. The LD50 values of these toxins to L3 at 24h and 48h were about 0.875mg/mL and 0.434mg/mL;0.934 mg/mL and 0.452 mg/mL; 1.375 mg/mL and 0.843mg/mL; 1.023 mg/mL and 0.623 mg/mL;1.112 mg/mL and 0.674 mg/mL ;0.951mg/mL and 0.458 mg/mL;0.958 mg/mL and 0.460 mg/mL respectively. YBT-1517 ICPs was the most effective toxin as well as YBT-1518. The mortality of A.suum increased with the consistency of crystal protein increasing and the time prolonging. LD50 values decreased with treating time prolonging.
    Four strains such as Bt YBT-1517, YBT-1518, R1, R2 ICPs were effective to A.suum L4.The LD50 values of these toxins at 24h and 48h were 0.935mg/mL and 0.452mg/mL;0.875mg/mL and 0.415mg/mL; 0.904mg/mL and 0.453mg/mL;0.886
引文
1.白培胜.苏云金芽胞杆菌杀线虫基因的克隆及其表达. [硕士学位论文].华中农业大学,武汉,2002
    2.戴莲韵,王学聘.苏云金芽孢杆菌研究进展[M].北京:科学出版所,1997
    3.戴顺英,高梅英,李小刚.我国南北方土壤中苏云金芽孢杆菌的分布及杀虫特性.微生物学报,1996,36(41:295-302
    4.东北农业大学主编.兽医临床诊断学.第三版.北京:中国农业出版社,2000年,p189-250
    5.范秀华,冯书亮,刑建民.河北苏云金杆菌的分布与不同土壤类型及不同植被种类的关系.中国生物防治,1996,12(2):69-91
    6.关雄,黄志鹏,高日霞.苏云金芽胞杆菌杀虫品体蛋白基因工程菌的研究进展.福建农业大学学报,1995,24(2):167-173
    7.何昭阳,胡棒学,王春风主编.动物免疫学实验技术.长春:吉林科学技术出版社,2002,59-61
    8.黄必旺.苏云金芽胞杆菌对植物寄生线虫的毒性及其毒素.[硕士学位论文].华中农业大学,武汉,1997
    9.纪剑飞,张成刚.包涵体重组蛋白的纯化及复性.沈阳药科大学学报,1998,15(4):303-307
    10.孔繁瑶主编.家眚寄生虫学. (第二版).北京:农业出版社,1997
    11.李长友.对鳞翅目害虫高毒力Bt菌株B-Hm-16和B-Pr-88的分子生物学研究.[博士学何论文].东北农业大学,2001
    12.李荣森,陈涛,邓海凡.几种苏云金芽孢杆菌晶体的超微结构.微生物学报,1983,21(3):219-223
    13.李荣森,陈涛.几种苏云金杆菌的毒力及形态结构.微生物学报,1981,21(3):311-317
    14.李斯.兽医症状鉴别诊疗技术标准与处方用药规范实用手册.北京:世图音像电子出版社,2002,p 1595-1599
    15.林毅,黄志鹏,陈建武,黄必旺,关雄.苏云金芽孢杆菌ICP基因PCR鉴定的策略与进展.农业生物技术学报,2000,8(1):56-58
    16.凌明圣,许祥裕,丁树标. 以包涵体形式存在的重组蛋白的纯化和体外折叠.中国生化药物杂志,1995,16(3):135-138
    17.刘斌.苏云金芽胞杆菌对植物寄生线虫毒力生物测定方法的建立.[硕士学位论文]。华中农业大学,武汉,1999
    18.刘跃生,费枫,沈民君,张炳荣,陶维贤.猪蛔虫并发猪瘟的报告.上海畜牧兽医通讯,2003,2:48-49
    19.刘子铎,孙明,陈亚华等.苏云金芽胞杆菌以色列亚种20kDa蛋白质对CytA蛋白溶细胞作用的影响.遗传学报,1999,26(1):81-86
    20.刘子铎,喻子牛.苏云金芽胞杆菌及其杀虫晶体蛋白作用机理的研究进展.昆虫学报,2000, 43(2):207-213
    21.鲁松清.苏云金芽孢杆菌杀鳞翅目工程菌的构建.[博士学位论文].华中农业大学,1999
    22.马文宇,刘述先.编码肝片吸虫GST和猪蛔虫GST基因的测序及同源性分析.中国寄生虫学与寄生虫病杂志,1998,16(4):256-259
    23.马文宁,刘述先.肝片吸虫和猪蛔虫谷胱甘肽S转移酶免疫小鼠对日本血吸虫条蚴攻击感染的保护力.中国寄生虫学与寄生虫病杂志,2000,18(2):33-36
    24.南京农业大学主编.生物学基础.北京:中国农业出版社,1981.p142-147
    25.彭国华,周宪民,袁铿,彭卫东,杨小军.三种人蛔虫卵培养方法的比较研究.Jiangxi Med.Lab.Sci.,2002,20(4):246-247
    26.彭卫东.人蛔虫和猪蛔虫同域种群DNA 多态性研究.动物学报,1999,45(1):112-113
    27.任改新,冯喜昌,冯维熊.苏云金杆菌伴孢晶体的形态及抗原特性.微生物学报,1983,23(1):57-62
    28.萨姆布鲁克 J, 弗里奇 E F, 曼尼阿蒂斯T著(金冬雁,黎孟枫译),分子克隆实验指南,1995
    29.邵宗泽.苏云金芽胞杆菌帮助蛋白对杀虫晶体蛋白表达的影响的研究.[博士学位论文].华中农业大学,武汉,1999
    30.王乾兰.苏云金芽胞杆菌对植物寄生线虫的毒性.[硕士学位论文].华中农业大学,武汉,1993
    31.王唯唯,陈传.猪蛔虫卵低温保存5年后的存活率及侵袭力.中国寄生虫学与寄生虫病杂志,2002,20(3):140
    32.王祥,姚宝安,夏雪山,赵俊龙,马丽华,孙明,喻子牛.苏云金芽胞杆菌伴胞晶体蛋白捻转血矛线虫第四期幼虫的毒杀作用.中国兽医科技,1999,29(6):32-33
    33.王祥,姚宝安.苏云金芽胞杆菌伴胞晶体毒素对捻转血矛线虫第2期幼虫的毒力.华中农业大学学报,1996,15(4):359-361
    34.王永样,徐贞光主编.英汉医学寄生虫学词汇.北京:人民卫生出版社,1983年,p12-13
    35.姚宝安,王乾兰,赵俊龙,马丽华,孙明,喻子牛.苏云金芽胞杆菌毒素对羊捻转血矛线虫.第三期幼虫毒力研究.畜牧兽医学报,1995b,26(4):358-361
    36.姚宝安,王乾兰,赵俊龙,马丽华,喻子牛.苏云金芽胞杆菌伴胞晶体对乳突类圆线虫丝虫型幼虫的杀灭作用.中国兽医科技,1995a,25(6):39
    37.姚宝安,赵俊龙,马利华等.苏云金芽孢杆菌晶体毒素对体外培养的日本血吸虫的作用.中国兽医学报.1997,17(3):268-269
    38.姚宝安,钟勤,王乾兰,赵俊龙,马丽华,喻子牛.对捻转血矛线虫幼虫有杀灭作用的苏云金芽胞杆菌的筛选.华中农业大学学报,1995,14(2):177-179
    39.姚江.高效广谱苏云金芽孢杆菌Ly30株的分子生物学研究.[博士学位论文],中国农业科学院,2002
    40.喻子牛,孙明.苏云金芽孢杆菌的酯酶型.华中农学院报,1983,4:55-63
    41.喻子牛等.重组杀虫细菌.见黄大防主编,农业微生物基因工程.北京:科学出版社 2001,175-246
    42.喻子牛主编.苏云金杆菌.北京:科学出版社,1990
    43.喻子牛主编.苏云金芽胞杆菌制剂的生产和应用.北京:中国农业出版社,1993
    44.张联珠,郭金虎,张银成.两种培养液三种培养方法体外蛔虫卵培养观察比较.长治医学院学报,1993,4:374-375
    45.张庶民,祁自柏.基因工程表达蛋白包涵体的形成和纯化.微生物学免疫学进展,1995,23(1):52-54
    46.张用梅,陈宗胜.苏云金杆菌的酯酶分析.微生物学报,1981,21(21):197-203
    47.张用梅,陈宗胜.与苏云金杆菌各H-血清型相同但不产生晶体的芽孢杆菌的生化特性、酯酶型和毒力的比较.华中农学院报,1983,2:42-47
    48.郑遐龄.猪蛔虫感染性幼虫对小鼠的感染试验.中国兽医科技,1997,27(6):30-31
    49.中国科学院微生物研究所.伯杰氏细菌鉴定手册[M].北京:科学出版社,1984
    50.周艳琴.苏云金杆菌伴胞晶体蛋白对日本分体吸虫作用机理的研究.[博士学位论文].华中农业大学图书馆,2003
    51.朱立平,陈学清主编.免疫学常用实验方法.北京:人民军医出版社,2000
    52.邹雪.苏云金芽胞杆菌对植物寄生线虫活性的测定.[硕士学位论文].华中农业大学,中国武汉,2002
    53. Abebe W, Tsuji N, Kasuga-Aoki H, Miyoshi T, Isobe T, Arakawa T, Matsumoto Y, Yoshihara S. Lung-stage protein profile and antigenic relationship between Ascaris lumbricoides and Ascaris suum. Parasitol, 2002, 88:826-828
    54. AbduI-Rauf M, Ellar D J.Toxicity and receptor binding properties of a Bacillus thuringiensis CryIC toxin active against both lepidoptera and diptera. J. Invertebr. Pathol, 1999, 73:52-58
    55. Anderson T J C, Komuniecki R, Komuniecki P R. Aremitochondria inherited paternally in Ascaris. Int J Parasitol, 1993, 25 (8): 1001-1004
    56. Aranda E, Sanchez J, Peferoen M, Guereca L, Brovo A. Interactions of Bacillus thuringiensis crystal proteins with the midgut epithelial cells of Spodopterafrugiperda (Lepidoptera:Noctuidae). J. Invertebr. Pathol, 1996, 68:203-212
    57. Arevalo J, Saz H J. Phospholipids and protein kinase C in acetyicholine-dependent signal transduction in Ascaris suum. Mol Biochem Parasito 1, 1991, 48 (2): 151-162
    58. Aronson A I, Wu D, Zhang C. Mutagenesis of specificity and toxicity regions of a Bacillus thuringiensis protoxin gene. Journal of Bacteriology, 1995, 177:4059-4065
    59. Arturo R R, Jorge E. Fingerprinting of Bacillus thuringiensis Type Strains and Isolates by Using Bacillus cereus Group-Specific Repetitive Extragenic Palindromic Sequence-Based PCR Analysis. Applied and Environmental Microbiology, 2005, 1346-1355
    60. Baere I, Liu L, Moens L. Polar zipper sequence in the high affinity hemoglobin of Ascaris suum: amino acid sequence and structural interpretation [J]. Proc Natl Acad Sci, USA, 1992, 89 (10): 4638-4642
    61. Batte E G, Mclamb R J D, Vestal T J. Swine parasites: Cause of liver condemndations.Vet Med Small Anim Ciin, 1975, 70:809-812
    62. Bone L W, Bottjer K P, Gill S S. Trichostrongylus colubriformis: Egg lethality due to Bacillus thuringiensis crystal toxin. EXP Parasitol, 1985, 60:314-322
    63. Bone L W, Bottjer K P, Gill S S. Trichostrongylus colubriformis: Isolation and characterization of ovicidal activity from Bacillus thuringiensis israelensis. EXP Parasitol, 1986, 62:247-253
    64. Bone L W, Bottjer K P, Gill S S. Alteraction of Trichostrongylus Colubriformis egg permeability by Bacillus thuringiensis israelensis toxin. J Parasitol, 1987, 73(2): 295-299
    65. Bone L W, Bottjer K P, Gill S S. Factors affecting the larvicidal activity of Bacillus thuringiensis israelensis toxin for Trichostrongylus colubriformis (nematoda). J Invertebr Pathol, 1988, 52(1): 102-107
    66. Borgonie G, Claeys M, Leyns F, Arnaut G, De W D, Coomans A. Effect of nematicidal Bacillus thuringiensis strains on free-living nematodes.l.Light microscopic observations, species and biological stage specificity and identification of resistant mutants of Caenorhabditis elegans. Fundam. Appl. Nematol, 1996a, 19(4): 391-398
    67. Borgonie G, Claeys M, Leyns F, Arnaut G, Waele D D, Coomans A. Effect of nematicidal Bacillus thuringiensis strains on free-living nematodes.2.Ultrastructural analysis of the intoxication process in Caenorhabditis elegans. Fundam Appl .Nematol, 1996b, 19(5): 407-414
    68. Borgonie G, Claeys M, Lenyns F, Arnaut G, Waele D D, Coomans A. Effect of nematicidai Bacillus thuringiensis strain on free-living mematodes.3.Characterization of the intoxincation process. Fundam Appl Nematol, 1996c, 19(6): 523-528
    69. Bottjer K P, Bone L W, Gill S S. Nematoda: susceptibility of the egg to Bacillus thuringiensis toxins. Exp Parasitol, 1985, 60(2): 239-244
    70. Bottjer K P, Bone, L W. Changes in morphology of Trichostongylus colubriformis eggs and juveniles caused by Bacillus thuringiensis israelensis. J Nematol, 1987, 19:282-286
    71. Bravo A, Sanchez J, Kouskoura T, Crickmore N. N-terminal activation is an essential early step in the mechanism of action of the B. thuringiensis CrylAc insecticidal toxin. Biol Chi, 2002, 277: 23985-23987
    
    72. Bravo A, Gomez 1, Conde J, Munoz-Garay C, Sanchez J, Miranda R, Zhuang M, Gill S S, Soberon M. Oligomerization triggers binding of a Bacillus thuringiensis CrylAb pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. Biochim Biophys Acta. 2004, 1667(1): 38-46
    
    73. Bradfish G A. Mycogen corporation (patent), San Diego CA92121, 1992
    
    74. Bulla LA, Kramer J J, Davidaon L. Characterization of the entomocidal parasporal crystal of Bacillus thuringiensis. J Bacteriol, 1977, 130:375-383
    
    75. Chen X J, Curtiss A, Alcantara E, Dean D H. Mutations in domain I of Bacillus thuringiensis delta endotoxin CrylAb reduce the irreversible binding of toxin to manduca sexta brush border membrane vesicles. J Biol Chem, 1995, 270 (11): 6412-6419
    
    76. Cleland J L, Wang D I C. Cosolvent effects on refolding and ggregation. ASC Syymposium Ser, 1993,516:151-166
    
    77. Crickmore N, Zeigler D R, Feitelson J, Schnepf E, Van Rie J, Lereclus D, Baum J, Dean D H. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal protein.Microbiol Mol Biol Rev, 1998, 62(3): 807-813
    
    78. Crompton D W T. Ascaris and ascariasis.Adv. Parasitol, 2001,48: 285-375
    
    79. Darawshe S, Daniek E. Molecular symmetry and arrangement of subunits in extracellular hemoglobin from the nematode Ascaris suum. Eur J Biochem, 1991,201 (1): 169-173
    
    80. de Barjac. Mise an point surla classifications des Bacillus thuringiensis. Entomphage, 1973, 18(1): 5-17
    
    81. de Barjac. Indentification of H-serotypes of Bacillus thuringiensis, In "Microbial Control of pests and plant Diseases 1970-1980". Academic press, 1981, 19: 34-44
    
    82. Devidas P, Rehberger L.The effects of extoxin (Thuringiensis) from Bacillus thuringiensis on Meloidogyne incognica and Caenorhabditis elegans. Plant Soil, 1992,145:115-120
    
    83. Douvres F W, Tromba F G, Malakatis G M. Morphogenesis and migration of Ascaris suum larvae developing to fourth stage in swine. J Parasitol, 1969, 55: 689-712
    
    
    84. Dulmage, Collaborators. Insecticidal activity of isolates of Bacillus thuringiensis and their potential for pest control. Microbial control of pests and plant diseases, 1981, Academic press, London, P193-222
    
    85. Edwards, David L, Payne, Jewel, Soares, George G. Novel isolates of Bacillus thuringiensis having activity against nematodes. United States Patent 4, 948, 734, 1990
    
    86. Edwards D L. Payee J S. George G. Novel isolates of Bacillus thuringiensis having activity against nematodes. USP5093120, 1992
    
    87. Ensard J. Effects of three microbia broth cultures on growth and population of free living and plant-parasitic nematodeson banana. Eruopean Journa of Plant Pathology, 1998, 104(5): 457-463
    
    88. Feitelson J S, Payee J, Kim L. Bacillus thuringiensis: Insects and beyond. BioTech, 1992, 10: 271-275
    
    89. Ferry N, Gatehouse A M, Raemaekers R J. The case of the monarch butterfly: a verdict is returned. Trends Genet, 2002, 18(5): 249-251
    
    90. Gazit E, Bach D, Kerr I D, Sansom M S, Chejanovsky N, Shai Y.The alpha-5 segment of Bacillus thuringiensis delta-endotoxin: in vitro activity, ion channel formation and molecular modelling. Biochem J, 1994,304 (3): 895-902
    
    91. Gazit E, La Rocca P, Sansom M S, Shai Y.The structure and organization within the membrane of the helices composing the pore-forming domain of Bacillus thuringiensis delta-endotoxin are consistent with an "umbrella-like" structure of the pore. Proc Natl Acad Sci U S A, 1998, 95(21): 12289-12294
    
    92. Gill S S, Cowles E A, Francis V. Identification, isolation, and cloning of a Bacillus thuringiensis CrylAc toxin-binding protein from the midgut of the lepidopteraninsect Heliothis virescens. J Biol Chem, 1995, 270: 27277-27282
    
    93. Griffins J S, Feitelson J S, Aroian R V. Bacillus(Bt) toxin susceptibility and thuringiensis nematode Caenorhabditi of resistance mutants in the elegans. Genetics, 2000,155(4): 1693-1699
    
    94. Griffitts J S, Whitacre J L, Stevens D E, Aroian R V. Bt toxin resistace from loss of a putative carbohydrate-modifying enzyme. Science, 2001, 293: 860-864
    
    95. Griffitts J S, Huffman D L, Whitacre J L, Barrows B D, Marroquin L D, Muller R, Brown J R, Hennet T, Esko J D, Aroian R V. Resistance to a bacterial toxin is mediated by removal of a conserved glycosylation pathway required for toxin-host interactions. J Biol Chem, 2003, 278: 45594-45602
    
    96. Griffitts J S, Haslam S M, Yang T, Garczynski S F, Mulloy B, Morris H, Cremer P S, Dell A, Adang M J, Aroian R V. Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science, 2005, 307:922-925
    97. Hofte H, Whiteley H R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev, 1989, 53(2): 242-255
    
    98. Haider M Z, Knowles B H, Ellar D J. Specificity of Bacillus thuringiemis varcolmeri insecticidal delta-endotoxin is determined by differential processing of the pretoxin by larval gut proteases. Eur J Biochem, 1986, 156(3): 531-540
    
    99. Herrnstadt C, Gilroy T E, Sobieski D A, Bennett B D, Gaertner F H. Nucleotide sequence and deduced amino acid sequence of a coleopteran-active delta-endotoxin gene from Bacillus thuringiensis subsp. sandiego. Gene, 1987, 57(1): 37-46
    
    100. Hill D E, Fetterer R H, Romanowski R D, Urban J.The effect of immunization of pigs with Ascaris suum cuticle components on the development of resistance to parenteral migration during a challenge infection. Vet. Immunol.Immunopathol, 1994,42: 161-169
    
    101. Hofrnann C, Luthy P, Hutter R, Pliska V. Binding of the delta endotoxin from Bacillus thuringiensis to brush-border membrane vesicles of the cabbage butterfly (Pieris brassicae). Eur J Biochem, 1988, 173(1): 85-91
    
    102. Horak C W, Brindley P J. Cloning and characterization of strain-specific transcripts encoding triosephosphate isomerase, a candidate vaccine antigen from Schistosoma japonica. Mo! Biochem Parasitol, 1996, 82(2): 265-269
    
    103. Huffman D L, Abrami L, Sasik R, Corbeil J, van der Goot F G, Aroian R V. Mintogen-activated protein kinase pathways defend against bacterial pore-forming toxins. Proc Natl Acad Sci, 2004, 101: 10995-11000
    
    104. Hussein A S. Purification and characterization of gomma-glutamylcysteine synthetase from Ascaris suum [J]. Mo 1 Biochem Parasitol, 1995, 72 (12): 57-64
    
    105. Hussein A S, Walter R D. Purification and characterization of gomma-glutamylcysteine synthetase from Ascaris suum [J]. Mol Biochem Parasitol, 1996, 77 (1): 41-47
    
    106. Islam M K, Miyoshi T, Tsuji N. Vaccination with recombinant Ascaris suum 24-kilodalton antigen nduces a Th1/Th2-mixed type immune response and confers high levels of protective against challenged Ascaris suum lung-stage infection in BALB/c mice. Int J Parasitology, 2005, 35(3): 1023-1030
    
    107. Islam M K, Miyoshi T, Yokomizo Y, Tsuji N. Molecular cloning and partial characterization of a nematode-specific 24-kDa protein from Ascaris suum. Parasitology, 2005, 130: 131-139.
    
    
    108. Ivanova T S. Efficiency of Bio preparation in control of gali nematodes protected soil. Agrochemical, 1996,3: 101-106
    109. Jerkins J L, Lee M K, Valaitis A P, Curtiss A, Dean D H. Bivalent sequential binding model of a Bacillus thuringiensis toxin to gypsy moth aminopeptidase N receptor. J Biol Chem. 2000, 275(19): 14423-14431
    
    
    110. Joel S, Griffitts. Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science 2005, 307: 922-925.
    
    111. Juan J, Gregory W, Warren, Marrth A, Mulhls. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against Iepidopteran insects. Agricultural Science, 1996, 93:5389-5394
    
    112. Kagan I G, Norman L, Allain D S. Studies on the serology of visceral larva migrans. I. Hemagglutination and flocculation tests with purified Ascaris antigens. J Immunol, 1959, 83:297-301
    
    113. Kalman S, Kiehne K L, Cooper N, Reynoso M S, Yamamato T. Enhanced production of insecticidal proteins in Bacillus thuringiensis strains carrying an additional crystal protein gene in their chromosomes. Appl Environ Microbiol, 1995, 61(8): 3063-3068
    
    114. Kaloshian I, Yaghoob J, Liharska T. Genetic and physical localization of the root-knot nematode resistance locus Mi in tomato. Mol.Gen.Genet, 1998, 57: 376-385
    
    115. Kennedy T J, Bruer D J, Marchiondo A A. Prevalence of swine parasites in major hog producing area of the United States. Agri-pract, 1988, 445-500
    
    116. Klingbeli M M, Walker D J, Arbette R. Identification of a novel dihydrlipoyl dihydrogenase - binding protein in the pyruvate dehydrogenase complex of the anaerobic parasitic nematode Ascaris suum [J]. J Biol Chem, 1996, 271 (10): 5451- 5457
    
    117. Kita K, Hirawake H, Takamiya S. Cytoch romes in the chain of helminth mitochondria [J]. Int J Parasitol, 1997, 27 (6): 617- 630
    
    118. Knight P J, Griclcmore N, Ellar D J. The receptor for Bacillus thuringiensis CryIA(c) delta-endotoxin in the brush border membrane of the lepidopteron Manduca sexta is aminopeptidase N.MoI Microbiol, 1994, 11: 429-436
    
    119. Knight P J, Knowles B H, Ellar D J. Molecular cloning of an insect aminopeptidase N that serves as a receptor for Bacillus thuringiensis CryIA(c) toxin. J Biol Chem, 1995, 270(30): 17765-17770
    
    120. Knowles B H. Mechanism of Bacillus thuringiensis δ-endotoxins. Adv insect Physiol, 1994, 214: 275-308
    121. Lai C J, Harris B G, Cook P F. Mechanism of activation of the NAD-muscle enzyme from Ascaris suum by funarate [ J ]. Arch Biochem Biophys, 1992, 299 (2): 214-219
    
    122. Lenyns F, Borgonie G, Arnaut G, Waele D. Nematicidal activity of Bacillus thuringiensis isolates. Fundam Appl Nematol, 1995, 18(3): 211-218
    
    123. Levine N D. Nematode parasites of domestic animals and man.2ded. Minneapolis: Burgess Publishing Co, 1980, p47
    
    124. Lieban E, Ecjek t V H O , Wildenburg G. Structural and function analysis of a glutathione S2 transferase from Ascaris suum [J ]. Biol chem J, 1997, 324 (2): 659- 666
    
    125. Li J, Derbyshire D J, Promdonkoy B, Ellar D J. Structural implications for the transformation of the Bacillus thuringiensis delta-endotoxins from water-soluble to membrane-inserted forms. Biochem Soc Traps, 2001, 29(4): 571-577
    
    126. Logue A D, Chowdhury A B, Schiller E L. Comparative serological reactions of Ascris Lumbricoides and Ascaris Lumbricoides var.suum extracts in agar-gel. Bull Calcutta Sch Trop Med, 1963, 11:129-131
    
    127. Lukes S. Ascaris suum-vaccination of mice with liposome encapsulated antigen.Vet.ParasitoI, 1992,43: 105-113.
    
    128. Marroquin L D, Elyassnia D, Griffitts J S, Feitelson J S, Aroian R V. Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. Genetics, 2000, 155(4): 1693-1699
    
    129. Masashi Yamagawa, Teruo Amachi, Tohru Komano and Hiroshi Sakai.Functional Analysis of dipteran-specific insecticidal protein Cry4A.Biotechnology of Bacillus thuringiensis, 1999, 3:165-171
    
    130. Masson L, Mazza A, Brousseau R. Stable immobilization of lipid vesicles for kinetic studies using surface plasmon resonance. Anal Biochem, 1994, 218(2): 405-412
    
    131. Masson L, Mazza A, Brousseau R, Tabashnik B. Kinetics of Bacillus thuringiensis toxin binding with brush border membrane vesicles from susceptible and resistant larvae of Plutella xylostella. J Biol Chem, 1995,270(20): 11887-11896
    
    132. Masson L, Tabashnik B E, Mazza A, Prefontaine G, Potvin L, Brousseau R, Schwartz J L. Mutagenic analysis of a conserved region of domain III in the Cry 1Ac toxin of Bacillus thuringiensis. Appl Environ Microbiol, 2002, 68(1): 194-200
    
    133. Mata Z S, Bruyn B, Saz H J. Acetyl- CoA hydrolase activity and function in Ascaris suum muscle mitochondria. Comp Biochem Physiol Part B, Biochem MolBiol, 1997, 116B (3): 379- 383
    
    134. Ma Y C, Funk M, Dunham W R. Purification and characterization of electron - transfer flavop protein: rhodoquinone oxido rductase from anaerobic mitochondria of the adult parasitic nematode, Ascaris suum [J ]. J Bio 1 Chem, 1993, 268 (27): 20360- 20365
    
    135. Mizuki E, Ohba M, Akao T, Yamashita S, Saitoh H, Park Y S. Unique activity associated with noninsecticidal Bacillus thuringiensis parasporal inclusions: in vitro cell-killing action on human cancer cells. J Appl Microbiol, 1999, 86: 477-486
    
    136. Narva K E, Payne J M, Schwab G E, Hickle L A, Galasan T.Novel Bacillus thuringiensis microbes active against nematodes, and genes encoding novel nematode-active toxins from Bacillus thuringiensis isolates. EP 0462721A2, 1991
    
    137. Narva K E, Schwab G E, Galasan T, Payne J M.Nematode-active toxin from a Bacillus thuringiensis isolate. United States Patent 5322932, 1994
    
    138. Narva K E, Schwab G E, Payne J M. Gene encoding nematode-active toxin PS63B cloned from Bacillus thuringiensis isolate. United States Patent 5439881, 1995
    
    139. Osman G Y, Salem F M, Ghattas A. Bio-efficacy of two bacterial insecticide strains of Bacillus thuringiensis as a biological control agent in comparison with a mematicide, Nemacur, on certain parasitic nematoda. Anz Schacllingsk, PflSchutz UmwSchutz, 1988, 61:35-37
    
    140. Payne, Jewel M. Isolates of Bacillus thuringiensis that are active against nematodes. United States Patent 5270448, 1993
    
    141. Payne, Jewel, Narva, Kenneth E, Fu, Jenny. Bacillus thuringiensis genes encoding nematode-active toxins. United States Patent 5, 589, 382, 1996
    
    142. Payne, Jewel, Narva, Kenneth E, Fu, Jenny.Bacillus thuringiensis genes encoding nematode-active toxins. United States Patent 5, 959, 080, 1999
    
    143. Perlak F J, Obukowicz W G, Watrud L S. Development of genetically engineered microbial biocontrol agents[A]//Hedlin P A, Menn J J, Hollingworth R M. Biotechnology for crop protection.[C]. Washington: American Chemica Society, 1988
    
    144. Peng, W, Anderson, T J, Zhou, X., Kennedy, M W. Genetic variation in sympatric Ascaris populations from humans and pigs in China. Parasitology, 1998,117, 355-361
    
    145. Prasad S S V. Tilak K V B R, Gollakota K G. Role of Bacillus thuringiensis var on the larval survivability and egg hatching of meloidogyne spp., the causative agent of root-knot disease. J Invertebr Pathol, 1972,20: 377-378
    146. Rhodes M B, McCuIlough R A, Mebus C A, Klucas C A, Ferguson D L, Twiehaus M J. Ascaris suum: hatching of embryonated eggs in swine. Exp Parasitol, 1977, 42: 356-362
    
    147. Rhoads M L, Fetter R H. Purification and characterization of a secreted am iniopetidase from adult Ascaris suum [J]. Int J Parasitol, 1998, 28 (11): 1681- 1690
    
    148. Santoso H. Factors associated with asthma in urban school children in Denpasar, Bali. International Child Health, 1997, VIII (4): 23-30
    
    149. Santra A, Bhattacharya B, Chowdhury A. Serodiagnosis of Acsarisis with specific IgG4 antibody and its use in an epidemiological study. Trans R Soc Trop Med Hyg, 2001, 95(3): 289-292
    
    150. Saruta F, H irawake H, Takam iya S. Stage specific isoforms of complex II in mitochondria from the parasitic nematode, Ascaris suum [J]. J Bio 1 Chem, 1995,270 (2): 928-932
    
    151. Schnepf H E, Whiteley H R. Cloning and expression of the Bacillus thuringiemis crystal protein gene in Escherichia coli Proc NatlAcadSci USA, 1981, 78(5): 2893-2897
    
    152. Schnepf H E, Crickmore N, Van Rie J. Lereclus D, Baum J, Feitelson J, Zeigler D R, Dean D H.Bacillus thuringiemis and Its Pesticidal Crystal Proteins. Microbiol Mol Biol Rev, 1998a, 62: 775-806
    
    153. Schnepf H E, Ernest S, George E, Payne J, Narva K E, Foncerrada L. Genes encoding nematode- active toxins from Bacillus thuringierrsis strains. United States Patent 5,753,492, May 19, 1998b
    
    154. Schwartz J L, Juteau M, Grochulski P, Cygler M, Prefontaine G, Brousseau R, Masson L. Restriction of intermolecular movements within the CrylAa toxin molecule of Bacillus thuringiemis through disulfide bond engineering. FEBS Lett, 1997a, 410(2-3): 397-402
    
    155. Schwartz J L, Potvin L, Chen X J, Brousseau R, Laprade R, Dean D H. Single-site mutations in the conserved alternating-arginine region affect ionic channels formed by CrylAa, a Bacillus thuringiemis toxin. Appl Environ Microbiol, 1997b, 63(10): 3978-3984
    
    156. Serrano F J, Reina D, Frontera E, Roepstorff A, Navarrete I. Resistance against migrating Ascaris suum larvae in pigs immunized with infective eggs or adult worm antigens. Parasitology, 2001, 122(6):699-707
    
    157. Sharma R D. Bacillus thuringiemis: a bio control agent of Meloidogyne incognica on bareley. Nematologia-Brasiieria, 1994, 18:79-84
    
    157. Sharma R D. Efficiency of Bacillus spp.toxin to control Heterodera glycines on soybean. Nematologia Brasileria, 1995, 19: 1-2,72-80
    158. Sharma R D. Biological control of the soyabean cyst nematode Heterodera glycines. Documentors -EMBRAPA-Centro-de-Pesquisa-Agropecuaria-do-Oeste, 1997, 12:26-31
    
    159. Sick A J, Schwab G E, Payne 3 M. Genes encoding nematode-active toxins cloned from Bacillus thuringiensis isolate PS 17. United States Patent 5281530, 1994
    
    160. Sick A J, Schwab G E, Payne J M. PS 176 Gene encoding nematode-active toxin cloned from a Bacillus thuringiensis isolate. United States Patent 5426049, 1995
    
    161. Smith G P, Ellar D J. Mutagenesis of two surfaces exposed loops of the Bacillus thuringiensis Cry1CS-endotoxin affects insecticidal specificity. Biochem J, 1994, 302: 611-616
    
    162. Song H, Komunieck i R. Novel reguration of pyruvate dehydrogenase phosphatase purified from anaerobic muscle mitochondria of the adult parasitic nematode, Ascaris suum. J Biol Chem, 1994, 269(50): 31573-31578
    
    163. Souza V M O, Faquim Mauro E L, Macedo M S. Extracts of Ascaris suum egg and adult worm share similar immunosuppressive propertyes. Braz J Med Biol Res, 2002, 35(1): 81-89
    
    164. Stankiewicz M, Jeska E L. Evaluation of pyrantel tartrate abbreviated Ascaris suum infections for the development of resistance in young pigs against migrating larvae. Int. J. Parasitol, 1990, 20, 77-81
    
    165. Takamiya S, Yu Y, Cavaleante M E. Molecular and functional properties of cytochromec from adult Ascaris suum muscle [J]. Mol Biochem Parasito 1, 1996, 79 (1): 61-70
    
    166. Tsuji N, Suzuki K, Kasuga-Aoki H, Matsumoto Y, Arakawa T, Ishiwata K, Isobe T. Intranasal immunization with recombinant Ascaris suum 14-kDa antigen coupled with cholera toxin B subunit induces protective immunity to A. suum infection in mice. Infect Immun, 2001, 69: 7285-7292
    
    167. Tsuji N, Suzuki K, Kasuga-Aoki H, Isobe T, Arakawa T, MatsumotoY. Mice intranasally immunized with a recombinant 16-kilodalton antigen from the roundworm Ascaris parasites are protected against larval migration of Ascaris suum. Infect. Immun., 2003, 71: 5314-5323
    
    168. Tsuji N, Kasuga-Aoki H, Isobe T, Arakawa T, Matsumoto Y. Cloning and characterisation of a highly immunocreactive 37kDa antigen with multi-immunoglobulin domains from the swine roundworm Ascaris suum. Int J Parasitology, 2002(8): 1739-1746
    
    169. Urban J R, Tromba FG.Development of immune responsiveness to Ascaris suum antigens in pigs vaccinated with ultraviolet-attenuated eggs. Vet. Immunol. Immunopathol, 1982(3):379-409
    
    170. Urban J R, Josephf F, Romanowski J. Ascaris suum: protective immunity in pigs immunized with products from eggs and larvae. Exp.Parasitol, 1985, 60: 245-254
    
    171. Urban J R, Joseph F, Rasmussen T, Ishiwata K, Cheever A, Pilitt Patricia A, Eriksen 1, Nansen P M, Kenneth D. Migration and development of Ascaris suum larvae in erthrocebus patas: model for visceral larva migrants in humans.TEKTRAN, United States Department of Agriculture, Agricultural Research Service, Approved Date: 1998-08-31
    
    172. Vadlamudi R K, Ji T H, Bulla L A. Specific binding protein from Manduca sexta for the insecticidal toxin of Bacillus thuringiensis subsp. berliner. The Journal of Biological Chemistry, 1993,268:12334-12340
    
    173. Vadlamudi R K, Weber E, Ji I, Ji T H, Bulla L A Jr. Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuhngiensis. J Biol Chem, 1995, 270: 5490-5494
    
    174. Van Rie J, Janssen S, Hofte H, Degheele D, Van Mellaert H. Specificity of Bacillus thuhngiensis delta-endotoxins. Importance of specific receptors on the brush border membrane of the mid-gut of target insects. Eur J Biochem, 1989, 186(1-2): 239-47
    
    175. Wang Chang-Yuan. Characterization of Ascaris lumbricoides and Ascaris suum antigens, 中国寄生虫病防治杂志, 1994, 7 (2): 104-108
    
    176. Ward E S, Ellar D J, Todd J A. Cloning and expression in Escherichia coli of the insecticidal delta-endotoxin gene of Bacillus thuhngiensis var israelensis. FEBS Lett, 1984, 175(2):377-82
    
    177. Weiser H E, Tonka J, Hoiak T. A water soluble molluscicidal metabolite of Bacillus thuhngiensis. Meeting SIP, Heidelberg. 1992, 173
    
    178. Whalon M E, Wingerd B A. Bt: mode of action and use. Arch Insect Biochem Physiol. 2003, 54(4): 200-211. Review
    
    179. Wharton D A, Bone L W. Bacillus thuhngiensis israelensis toxin affects egg-shell ultrastructure ofTrichostrongylus colubriformis(Nematoda). Inter 3 Invertebr Repro Dev, 1989, 15(2): 155-158
    
    180. Wolfersberger M G. The toxicity of two Bacillus thuhngiensis delta-endotoxins to gypsy moth larvae is inversely related to the affinity of binding sites on midgut brush border membranes for the toxins. Experiential, 1990, 46(5): 475-477
    
    181. Wu D, Aronson A L. Localized mutagenesis defines regions of the Bacillus thuhngiensis delta-endotoxin involved in toxicity and specificity. J Biol Chem, 1992,267(4): 2311-2317
    
    182. Wu S J, Dean D H. Functional significance of loops in the receptor binding domain of Bacillus thuhngiensis CryIIIA delta-endotoxin. J Mol Biol, 1996, 255(4): 628-640
    
    183. Xia Y, Spence H J, Moore J. The ABA-1 antigen of Ascaris lumbricoides: sequence polymorphism, stage and tissue-specific, lipid binding function, and protein biophysical properties. Parasitology, 2000, 121(2): 211-224
    
    
    184. Yao B A, Zhong Q, Wang J. Larvicidal activity of toxic extracted from Bacillus thuringiensis strain YBT-1953 to infective larvae of strongyloides papillosus. American Association of Veterinary Parasitologists. Abstracts of the Proceedings of the 39~(th) annual Meeting, San Francisco, 1994,28
    
    185. Yu Y, Yamasak i H, Kita K. Purification and molecular characterization of a novel b5 - type cytochrome of the parasitic nematode, Ascaris suum [J]. Arch Biochem Biophys, 1996, 328 (1): 165-172
    
    186. Yu C G, Mullinsma, Warrengw. The Bacillus thuringiensis vegetative insecticidal protein Vip3A Lyses midgut epithelium cells of susceptible insects. Appl Environ Microbiol, 1997, 63: 532-536
    
    187. Zanga J, Chimonyo M, Kanengoni A, Dzama K, Mukaratirwa S. Comparison of the Suceptibility of Growing Mukota and Large White Pigs to infection with Ascaris suum .Veterinary Research Communications, 2003, 27(8): 653-660

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700