纳米银材料对植物病原细菌抑制作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究测定了纳米银材料对8种供试植物病原细菌的抑制活性,初步探讨了纳米银材料对植物病原细菌的作用机理以及防病效果,为进一步开发纳米银植物病原细菌防治剂提供依据。
     分别采用抑菌圈法、最小抑制浓度法(MIC)和平板菌落计数法,测定了纳米银对供试的8种植物病原细菌的抑制效果。结果表明,纳米银对8种供试细菌都有一定的抑制作用,说明纳米银作为新型杀菌剂具有较为广谱的杀菌效果。平板菌落计数法毒力测定结果显示,纳米银对黄单胞菌属(Xanthomonas)的4种细菌和茄青枯病菌(Ralstonia solanacearum)有较强的抑制效果,其中,对柑橘溃疡病菌(Xanthomonas axonopodis pv.citri)、稻白叶枯病菌(Xanthomonas oryzae pv.oryzae)、稻细菌性条斑病菌(Xanthomonas oryae pv.oryzicola)、甘蓝黑腐病菌(Xanthomonas campestris pv.campestris)和茄青枯病菌的EC_(50)分别为0.0820μg·mL~(-1)、0.1889μg·mL~(-1)、0.1779μg·mL~(-1)、0.1817μg·mL~(-1)和0.1820μg·mL~(-1);而纳米银对其它属的供试植物病原细菌的抑制效果则较弱,其中对玉米细菌性条斑病菌(Acidovorax avenae subsp.avenae)的EC_(50)为0.4042μg·mL~(-1)、对白菜软腐病菌(Pectobacterium carotovora subsp.carotovora)的EC_(50)为0.2654μg·mL~(-1)、对西瓜细菌性果斑病菌(Acidovorax enae subsp.citrulli)的EC_(50)为0.2370μg·mL~(-1)。
     纳米银对甘蓝黑腐病菌菌体生长抑制作用的结果表明,剂量为6μg·mL~(-1)的纳米银与菌体接触0.5 h后细菌的群体数量有明显的减少,且随着时间的推移,细菌菌体数量呈下降趋势。
     纳米银能显著地抑制甘蓝黑腐病菌的氧呼吸作用,使细菌的氧呼吸量明显变小,且随着纳米银对菌体作用时间的延长,细菌氧呼吸作用的受抑制程度增加,用剂量为9μg·mL~(-1)的纳米银处理75 min后,细菌的呼吸作用基本停止。
     采用电导率法测定纳米银作用后甘蓝黑腐病菌菌悬液的电导率,以研究细菌细胞膜透性的变化。结果表明,经纳米银处理后细菌悬液的电导率快速上升,表明了纳米银具有使细菌细胞膜功能受损、胞内电解质快速外渗的作用。
     胞外纤维素酶活性和胞外多糖产量与植物病原细菌的致病性关系密切。对甘蓝黑腐病菌胞外纤维素酶活性和胞外多糖产量的研究表明,在纳米银的作用下,甘蓝黑腐病菌胞外纤维素酶活性比对照下降了约34%,说明纳米银具有降低胞外纤维素酶活性的作用,但纳米银并不影响甘蓝黑腐病菌胞外多糖的产量。
     通过盆栽试验发现,纳米银对十字花科蔬菜黑腐病有较好的防治效果。用纳米银浓度为30μg·mL~(-1)的悬浮液处理后,对黑腐病的防治效果达67.67%;纳米银对供试植物的安全性观察结果表明,30μg·mL~(-1)的纳米银药液对小白菜苗的生长无不良的影响。
In this thesis,the inhibitory activities of nano-silver to eight tested bacterium were bioassayed.The antibacterial mechanisms and control effect of nano-silver to plant bacteria disease were studied.It could provide some theoretical basis for research and application of nano-silver bactericide
     The nano-silver for its inhibitory effects to eight plant pathogenic bacterium were evaluated by the bacteriostatic circle,minimum inhibitory concentration(MIC) and plate cultural count.The results showed that the nano-silver had obviously inhibitory effect on the bacterium of Xanthomonas spp.and Ralstonia solanacearum.The EC_(50) values of nano-silver were 0.0820,0.1889,0.1779,0.1817 and 0.1820μg·mL~(-1) on X. axonopodis pv.citri,X.oryzae pv.oryzae,X.oryzae pv.Oryzicola,X.campestris pv. campestris and R.solanacearum,respectively.While the nano-silver showed less inhibitory effects on the other three bacterium:Acidovorax avenae subsp,avenae (EC_(50)=0.4042μg·mL~(-1)),Pectobacterium.carotovora subsp,carotovora(EC_(50) =0.2654μg·mL~(-1)) and Acidovorax avenae subsp,citrulli(EC_(50)=0.2370μg·mL~(-1)).
     The study of inhibitory effect of nano-silver on the growth of X.campestris pv. campestris showed under the dosage 6μg·mL~(-1) of nano-silver,the population of bacteria had reduced significantly after exposed to nano-silver for 0.5 h.
     Nano-silver could obviously suppress the respiration of X.campestris pv. campestris.The bacteria oxygen respiration was suppressed intensively in the process of time.After exposure for 75 min,the respiration of bacteria basic stopped.
     The cells membrane damage of X.campestris pv.campestris was evaluated to analyze the change of the tested bacteria cells membrane infiltration by conductance method.The result indicated that the conductivity of X.campestris pv.campestris increased fast,showing nano-silver could destroy bacteria cells membrane function and cause cells electrolyte exosmose fast.
     The pathogenicity of plant bacterium was related to the cellulose enzyme activity and extracellular polysaccharides.The study of the cellulose enzyme activity and extracellular polysaccharides output of X.campestris pv.campestris showed that the cellulose enzyme activity of bacteria decreased about 34%compared with control, but there were little effects on the output of extracellular polysaccharides of X. campestris pv.campestris.
     The result of the pot experiment evaluated nano-silver had control effect on cabbage black rot.At the concentration of 30μg·mL~(-1),the control effect was 67.67% on cabbage black rot.The security observation of nano-silver indicated the nano-silver showed no harmful to the growth of chinese cabbage.
引文
[1]农业部农药检定所.2007年农药登记公告[M].北京:中国农业出版社,2007,1160-1157.
    [2]刘军锋,贾克刚.细菌耐药机制的研究进展[J].国际检验医学杂志,2006,27(11):1016-1017.
    [3]杨永珍,宋俊华,吴厚斌,等.欧盟农药管理措施对我国的影响及对策[J].农药科学与管理,2004,25(4):32-37.
    [4]刘长令.农用杀菌剂开发的新进展[J].农药科学与管理2000,21(3):20-26.
    [5]周明国,叶钟音,刘经芬.杀菌剂抗性研究进展[J].南京农业大学学报,1994,17(3):33-41.
    [6]钟金栋,夏雪山,张若愚,等.纳米银材料抗菌效果研究及其安全性初步评价[J].昆明理工大学学报(理王版),2005,30(5):91-93.
    [7]汤庆国,王雪峰,沈上越,等.金属离子抗菌剂的抗菌效果及应用[J].研究环境与健康杂志,2005,22(2):159.
    [8]胡发社,李博文,郑自立,等.金属离子抗菌剂的应用现状及前景展望[J].矿产综合利用,2000(4):29-30.
    [9]生堂塞,姜丽芝,王忠跃.浅谈果园保护性杀菌剂和内吸治疗性杀菌剂[J].烟台果树,2000,4(72):31-32.
    [10]石宏亮.利用纳米技术开发抗菌纤维的探讨[J].产业用纺织品,2001,(6):13-15.
    [11]EDWARD S N,MITCHELL S.B,PRATT A.Silver compound antimicrobial composite[P].European patent Application,EPO251.783.1987,1987.
    [12]吕国玉,李玉宝,魏杰,等.载银羟基磷灰石抗菌织物的研究[J].功能材料,2005,36(6):888-891.
    [13]CHENW,LIU Y,COURTNEY H.S,et al.In vitro anti-baterial and biological properties of magnetron co-sputtered silver--containing hydroxyapatite coating[J].Biomaterials,2006,27:5512-5517.
    [14]迟广俊,姚素薇,张卫国,等.沉淀二氧化硅载银抗菌剂的制备及其抗菌性能[J].天津大学学报,2002,35(2):247-249.
    [15]贾宁,徐志凯.细菌生物被膜对抗生素耐药机制的研究进展[J].微生物学通 报,2006,33(1):184-186.
    [16]RIVERA G M,OLGUIN M T,GARCIA S I,et al.Silver supported on natural Mexican zeolite as an antibacterial Material[J].Microporous and Mesoporous Materials,2000,39:438-443.
    [17]KUMAR V S,NAGARAJA B M.,SHASHIKALA V,et al.Highly efficient Ag/C catalyst prepared by electro-chemical deposition method in controlling microorganisms in water[J].Journal of Molecular Catalysis A:Chemical,2004,223:313-319.
    [18]SUMIN K,HYUN-JOONG K.Anti-bacterial performance of colloidal silver treated Laminate wood flooring[J].International Biodeterioration & Degradation,2006,57:155-162.
    [19]BETTS A J,DOWLING D R MCCONNELL M L,et al.The influence of platinum on the performance of silver-platinum anti-bacterial coatings[J].Materials and Design,2005,26:217-222.
    [20]鞠剑峰,李澄俊,徐铭.纳米Ag/TiO_2复合材料的抗菌性能[J].精细化工.2005,22(1):59-61.
    [21]YAMAMOTOL K,OHASHIL S,AONOL M,et al.Antibacterial activity of silver ions implanted in filler on oral streptococci[J].Dent Mater,1996,12:227-229.
    [22]KAWAHARA K,TSURUDA K,MORISHITA M,et al.Antibacterial effect of silver zeolite on oral bacteria under anaerobic conditions.Dental Materials,2000,16:452-455.
    [23]张一宾.金属银作为农药的开发和应用技术[J].世界农药,2004,26(3):9-11.
    [24]张峰,李茜,周国光.载银无机抗菌剂的研究和应用[J].上海化工,2005,30(7):34.
    [25]肖清华,李博文,王宁.载银无机抗菌剂的研究进展和发展趋势[J].中国非金属矿工业导刊,1999,6:7.
    [26]杨玉旺,刘敬利.纳米银研究和应用新进展[J].工业催化,2003,11(12):7-12.
    [27]赵青梅.纳米技术的发展与应用[J].内蒙古石油化工,2004,30:11-12.
    [28]沈海军,史友进.纳米抗菌材料的分类、制备、抗菌机理及其应用[J].上海建材.2006,12:13-14.
    [29]施建球,刘冰,纳米抗菌材料的研究[J].科技与应用,2004,(5):4-5.
    [30]赵婷,戴红,许伟,等.纳米抗菌材料及其在制革领域的应用[J],中国皮革,2005,34(17):31-35.
    [31]段月琴,孙永昌,王玉红,等.纳米复合抗菌面料的研制及其抗菌性能[J].天津冶金,2005(1):44-45.
    [32]林爱红,秦彦珉,饶健,等.纳米抗菌剂抑菌杀菌性能研究[J].实用预防医学,2003,10(2):168-170.
    [33]胡圣飞.无机纳米抗菌剂的应用与前景[J].精细与专业化学品,2000(9):16-17.
    [34]张萍,崔海信,宋娜,等.纳米TiO_2光半导体材料防治植物病害的初步研究[J].农业工程学报,2006,22(12):13-16.
    [35]陈惜燕,王利国,李玲,等.纳米材料二氧化钛对胶孢炭疽菌的抑制作用[J].中国生物防治,2005,21(4):269-272.
    [36]蒲丽,蒋家珍,李效禹,等.纳米TiO_2悬浮液对烟草青枯菌杀菌活性的研究[J].农药学学报,2005,7(4):339-342.
    [37]钟金栋,夏雪山,张若愚,等.纳米银材料抗菌效果研究及其安全性初步评价[J].昆明理工大学学报(理工版),2005,30(5):91-93.
    [38]张富强,佘文军,傅远飞.六种纳米载银无机抗菌剂的体外细胞毒性比较[J].中华口腔医学杂志,2005,40(6):504-507.
    [39]胡骁骅,张普柱,孙永华,等.纳米银抗菌医用敷料银离子吸收和临床应用[J].中华医学杂志,2003,83(24):2178-2179.
    [40]邵明,赵敏,周翔.棉织物纳米银抗菌整理[J].印染,2006,10:1-4.
    [41]刘伟,张子德,王琦,等.纳米银对常见食品污染菌的抑制作用研究[J].食品研究与开发,2006,27(5):135-137.
    [42]张名慜,段振华,单薇.准纳米银对蔬菜汁保鲜的效果[J].无锡轻工大学学报,2003,22(2):63-66.
    [43]张立红.纳米银系抗菌聚酯产品研制成功[J].合成树脂及塑料,2003,(20):58.
    [44]余日月,周永胜,冯海兰.纳米载银树脂基托的体外抗菌效果[J].实用口腔医学杂志,2005,2l(5):670-672.
    [45]张林褀,高勃,杨聚才,等.三种纳米载银无机抗菌剂对口腔致病菌的抗菌活性比较[J].牙体牙髓牙周病学杂志,2006,16(5):254-256.
    [46]王综.纳米银杀菌涂料[J].军民两用技术与产品,2002,(12):23.
    [47]黄德武,刘雯.纳米银钛健康玻璃的研制与应用[J].中国建材,2005,(5):74-78.
    [48]SON W K,YOUK J H,PARK W H.Antimicrobial cellulose acetate nano fiber containing silver nanoparticles[J].Carbohydrate Polymers,2006,65:430-434.
    [49]BROOK L A,EVANS P,FOSTER H A,et al.Highly bioactive silver and silver/titania composite films grown by chemical vapour deposition[J].Journal of Photochemistry and Photobiology A:Chemistry,2007,187:53-63.
    [50]SHASHIKALA V,KUMARA V.S,PADMASRI A.H,et al.Advantages of nano-silver carbon covered alumina catalyst prepared by electro-chemical method for drinking water purification[J].Journal of Molecular Catalysis A:Chemical,2007,268:95-100.
    [51]YEO S Y,LEE H J,JEONG S H.Preparation of nanocomposite fibers for permanent antibacterial effect[J].Journal of materials science,2005,38(10):2143-2147.
    [52]KIM J S.Antibacterial Activity ofAg+ Ion-Containing Silver Nanopativcles Prepared Using the Alcohol Reduction Method[J].Journal.Ind.Eng.Chemistry,2007,13(4):718-722.
    [53]孙超,郭荣君,李世东.载银无机抗菌制剂对大豆根腐病的防治效果[J].植物病理学报,2006,36(6):550-554.
    [54]陈超,柳纷华,许文耀,等.纳米银对香蕉枯萎病的抑制效果[J].中国农学通报,2006,22:147-149.
    [55]熊涛.细菌常用抗生素的作用机制及耐药机制[J].检验医学与临床,2007,4(10):975.
    [56]夏金兰,王春,刘新星.抗菌剂及其抗菌机理[J].中南大学学报(自然科学 版),2004.35(1):32.
    [57]栾耀芳,边秀房.几种常用金属对大肠埃希菌杀灭作用观察.中国消毒学杂志[J].2005,22(1):58-59.
    [58]夏枚生,胡彩虹,赵文艳.载铜蒙脱石的抗菌机理研究[J].微生物学报,2006,46(3):432-435.
    [59]张文钲,张羽天.载银抗菌材料的研究与开发[J].化工新型材料,1997,25(7):20-22.
    [60]王姗姗,蒋涛.银系无机抗菌剂的新进展[J].化工科技市场,2005(12):20.
    [61]张文征,张羽天.载银抗菌材料的研究与开发[J].化工新型材料,1997,25
    [62]萧耀南,曾汉民,张菊梅,等.金属络合型聚丙烯腈抗菌消臭纤维的结构与性能[J].合成纤维工业,2001,24(4):6-8.
    [63]INOUE Y,HOSHINO M,TAKAHASHI H,et al.Bactericidal activity of Ag~+ zeolite mediated by reactive oxygen species under aerated conditions[J].Journal of Inorganic Biochemistry,2002,92(1):37-42.
    [64]陆春华,倪亚茹,许仲梓,等.无机抗菌材料及其抗菌机理[J].南京工业大学学报,2003,25(1):107-108.
    [65]虞振飞,刘吉平.纳米无机抗菌剂的分类与抗菌机理研究[J].中国个体防护装备,2004(3):12.
    [66]ZHENG H,MANESS P C,BLAKE D M,et al.Bactericidal mode of titanium dioxide photocatalysis[J].Journal of Photochemistry and PhotobiologyA:Chemistry,2000,130:163-170.
    [67]SUNADA K,WATANABE T,HASHIMOTO K.Studies on photokilling of bacteria on TiO_2 thin film[J].Journal of Photochemistry and Photobiology A:Chemistry,2003,156:227-233.
    [68]戴晋明,魏丽乔,许并社.纳米TiO_2-Ag复合材料抗菌机理极其在聚乙烯基体中分散性的研究.合成纤维,2003,5:22-24.
    [69]SUKDEB P,TAK Y K,SONG J M.Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli[J].Applied And Environment Microbiology,2007,73(6):1712-1720.
    [70]SONI,I.,SALOPEK B.Silver nanoparticles as antimicrobial agent:a case study on E.coli as a model for Gram-negative bacteria[J].J.Colloid Interface Science,275(1):77-82.
    [71]黄国洋 主编.农药试验技术与评价方法[M].北京:中国农业出版社,2000,38-39.
    [72]慕立义主编.植物化学保护研究方法[M].北京:中国农业出版社,1997,81-82.
    [73]游文莉,许文耀.杀细菌剂毒力测定方法研究[J].农药科学与管理,2002,23:21-22.
    [74]黄青春,周明国,叶钟音.拌种灵叶枯唑和萎锈灵对病菌的毒力机制比较[J].农药学学报,2002,2(4):72-75.
    [75]许文耀 主编.普通植物病理学试验指导[M].北京:科学出版社,2006,162-163.
    [76]夏枚生,胡彩虹,赵文艳.载铜蒙脱石的抗菌机理研究[J].微生物学报,2006,46(3):432-435.
    [77]黄青春,周明国,叶钟音.拌种灵对柑桔溃疡病菌菌体细胞活性的影响[J].南京农业大学学报,2001,24(3):23-26.
    [78]黄青春.拌种灵对柑桔溃疡病菌作用机制研究[D].南京农业大学博士论文,2001.
    [79]胡彩虹,夏枚生,熊莉,等.嗜水气单胞菌体外粘附Caco-2细胞对细胞膜生物学特性的影响[J].中国兽医学报,2006,26(3):283.
    [80]郭彤,许梓荣.铜离子对引起仔猪腹泻的大肠杆菌K88杀菌机理的研究[J].中国预防兽医学报,2004,26(2):129.
    [81]王金生 主编.植物病原细菌学[M].北京:中国农业出版社,2000,109-112.
    [82]李合生 主编.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    [83]黄青春,周明国,叶钟音.柑桔溃疡病菌胞外产物在拌种灵与菌体互作中的作用[J].植物病理学报,2001,31(2):170-174.
    [84]韩学易.枯草芽孢杆菌纤维素酶产酶条件及酶学性质研究[D].四川农业大 学,2005
    [85]周明国,刘经芬,叶钟音.关于杀菌剂研究方法综述[J].南京农业大学学报.1987,(4)增刊:128-134.
    [86]魏丽莉.细菌对抗生素耐药性的研究进展[J].生物学教学,2007,32(9):10-11.
    [87]李清禄,何海斌主编.实验化学(第二版)[M].北京:中国林业出版社,2000,281.
    [88]李经略,李惠兰,干正荣,等.甘蓝对7uMV和黑腐病苗期兼抗性平行鉴定研究[J].陕西农业科学,1994(1):19.
    [89]慕立义 主编.植物化学保护研究方法[M].北京:中国农业出版社,1997,82-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700