云南省静脉吸毒人群HIV-1分子流行病学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
艾滋病(AIDS),即获得性免疫缺陷综合症,是由人类免疫缺陷病毒(HⅣ)慢性感染而引起。自1981年发现第一例艾滋病病人以来,AIDS已发展成严重危害人类健康的全球性流行病。HIV-1一个重要的生物学特性是基因序列的高度变异性,使得HIV-1在传播过程中产生了许多亚型和重组型,并具有时间性和地区性的分布特征。目前,云南省静脉吸毒人群仍是我国艾滋病感染率最高的人群之一,并以此为中心向普通人群扩散。鉴于云南省在我国HIV-1流行病学中的特殊地位,研究现时段云南省HIV-1的分子流行病特点,不仅有助于了解HIV-1传播规律,预测将来的流行态势,对HIV-1感染的预防控制以及疫苗的研制也具有重要意义。
     本研究利用简单快速的RT-Nested-PCR方法对来自云南省大理和开远的42例HIV-1毒株分gag-(P17-P24)、gag-Prot、RT三个区段分别进行扩增,扩增长度分别为1160bp,885bp,1010bp。最终得到有效基因序列gag-(P17-P24)为31份(73.8%),gag-Prot为41份(97.6%),RT为30份(71.4%)。将有效基因序列分段或拼接得到P17、P24、Pr、RT、P17-P24、P17-Pr、Pr-RT和P17-RT8个区段序列,分别进行系统进化分析。比较分型结果显示:无论是单独利用P17、P24基因区段还是联合P17-P24基因区进行亚型鉴定都存在一定的局限性,尤其对同源相似性较高的目的基因序列缺乏有效的区分能力;基于Pr、RT、gag(P17-Pr)、gag-pol(Pr-RT)基因区的测序分型方法能够相对稳定有效的鉴定一般亚型和中国流行的两种主要B'/C重组型,但对于形成复杂重组结构的毒株却无法准确的鉴定。基于P17-RT长约2.6kb的基因区域进行测序分型则是全长测序较好的替代方法,因为这个基因区包括了我国主要流行的CRF07和CRF08-BC重组毒株截然不同的重组位点,对于实验室小工作量的研究中,足以确定所有HIV-1亚型和我国主要的重组型。本研究在建立P17-RT基因区有效分型的基础上,对42份样本进行基因亚型分析发现:HIV-1在云南省静脉吸毒人群中以CRF08-BC重组模式为主要的流行型(开远,50.0%;大理,92.3%),却很少发现CRF07-BC(7.1%),另有6例样品是介于CRF07和CRF08-BC重组模式之间,经不同基因区的分型结果均有所不同,暂时命名为URFs-BC,占样本总数的14.3%。
     为进一步研究云南省静脉吸毒人群中HIV-1重组毒株的断点分布情况,我们重点分析了27例样品高度保守的gag-pol (2.6kb)基因区,通过Simplot软件分析,得出以下结论:CRF08_BCs和CRF07_BCs重组毒株在高度保守的gag-pol区仍以C亚型为主要骨架,在其不同位置上插入了两段和三段来自中国B’亚型的重组片段。而6个独特重组型(URFs)各有不同的重组形式,并且出现了明显的CRF07和CRF08-BC重组的相对重组断点。毒株DL310在2448-2472nt、3109-3207 nt、3250-3372 nt分别出现了三个可能的重组断点。毒株KY104的两个相对重组断点出现在1534bp-1619 nt和1654-2134 nt。KY137毒株的两个重组断点,分别位于1612-1619 nt和1654-1968 nt。毒株KY117的断点位于1612-1619 nt、2170-2188 nt、2617-2943 nt、3069-3255 nt; KY118的断点出现在1425-1507 nt、2067-2134 nt、2617-2712 nt、3207-3255 nt.毒株KY139相对重组断点位于2067-2092nt、2397-2511 nt和2601-2616 nt.
     进一步分段进化树和Information sites分析验证,绝大多数重组片段的Bootstrap值相对高于70%,并且Chi-Square (Pearson)检验均具有显著统计学意义,充分证实这6例URFs-BC毒株2.6kb的基因序列是在流行于中国的CRF07、CRF08-BC重组型的基础上,发生二次重组而成。
     综上所述,本研究建立了简便而有效测序分型方法,基于该方法我们对现阶段云南省静脉吸毒所致HIV-1感染人群的流行现状进行了较为系统的研究,为HIV-1感染者的药物治疗、预防控制措施的制定以及疫苗的研究提供了重要的分子流行病学资料。
Acquired immune deficiency syndrome (AIDS) is a kind of immune deficiency disease which is caused by a chronic infection with HIV. Since the first case was identified in 1981, AIDS has become a serious global epidemic disease that has bad effect on the health of humankind. One of the significant characteristics of HIV is its high genetic variability, which makes HIV-1 generate a lot of subtypes and recombinant types during its propagation process, and presents the time and regional distribution characteristics. At present, intravenous drug users (IDU) in Yunnan Province of China are still the people who have the highest AIDS infection rate among the crowd. The epidemic has already begun to diffuse from the high-risk groups (IDU, as the center of diffusion) to general population. In view of the special status of Yunnan Province in Chinese HIV-1 epidemiology, it's necessary to research the actual HIV-1 molecular epidemiological characteristics of Yunnan Province. The research will not only help to know HIV-1 disseminative laws, to predict the future trend of the epidemic, but also have great significance on HIV-1 infection prevention and control as well as the manufacture of vaccine.
     Using an easy-and-fast RT-Nested-PCR method to amplify three regions (respectively named:gag(P17-P24), gag-Prot, RT; length:1160bp,885bp, 1010bp) of forty-two HIV-1 samples from KaiYuan Prefecture and Dali Prefecture in Yunnan Province. Ultimately, we got 31 (73.8%)pieces gag(P17-P24),41 pieces (97.6%) Pr and 30 pieces (71.4%) RT effective gene sequences from the 42 samples respectively. By segmentalizing or jointing effective gene pieces, we obtained 8 regions--P27, P24, Pr, RT, P17-P24, P17-Pr, Pr-RT and P17-RT. Phylogenetic trees analysis shows that both the methods of using P17、P24 gene separately and of using P17-P24 jointed regions have their own limitation for determining the subtype, especially there is a lack of effective ability to distinguish the target gene fragments which have high homologous similarity. Genotyping assay based on Pr、RT、gag(P17-Pr)、gag-pol(Pr-RT) gene regions can effectively and steadily identify general subtypes and two kinds of B'/C recombinant strains mainly prevalent in China. But the method cannot identify the strains that have complex recombination structure precisely. Identification of genetic subtypes based on sequencing gene region P17-RT (2.6kb) is a good way to replace full-length sequencing, because the region has both completely different recombination sites of CRF07 and of CRF08-BC strains. Little workload in the lab will be enough to define all of subtypes and the recombinant types in China. Using this method, we found that the majority of IDUs were infected with CRF08-BC, (50.0% in Kaiyuan; 92.3% in Dali), whereas CRF07-BC was present in only low prevalence (3 of 42, 7.1%). Interestingly, there are six islates(14.3%), that branch out on the top of the phylogenic tree. These divergent viruses are probably derived from some novel B'/C recombinants, temporarily defined as URFs-BC.
     We had a focused analysis on 27 gag-pol (2.6kb) gene regions which are highly conservative to do some further study on the breakpoint distribution state of the HIV-1 recombinant strains among IDUs in Yunnan. By Simplot software analysis, we've got the result:CRF08_BCs and CRF07_BCs were comprised of subtype C throughout the majority of 2.6kb genome with two and three distinct B'subtype segments respectively. Moreover, these six URFs-BC appeared to be different recombinants, which showed structural similarity to both CRF07-BC and CRF08-BC in different regions of the gag-pol genome. The breakpoint distributions across the six HIV-12.6kb genome regions were scanned against a pair of parental strains of CRF07-BC and CRF08-BC. Three relative breakpoint regions were identified in sample DL310 at positions 2448-2472nt、3109-3207nt and 3250-3372nt(nucleotide numbering relative to HXB2). For the sample KY104, the first breakpoint is at approximately 1534-1619nt, while another breakpoint at position 1654-2134nt. Sample KY137 also presented two relative breakpoints at about 1612-1619nt and 1654-1968nt. Breakpoints of sample KY117 and KY118 are at 1612-1619nt, 2170-2188nt,2617-2943nt,3069-3255nt and 1425-1507nt,2067-2134nt,2617-2712nt, 3207-3255nt, respectively. Finally, sample KY139 has the breakpoints at positions 2067-2092nt,2397-2511nt and 2601-2616 nt.
     By further analysis of Explorotory trees and information sites, we have the finding that the Bootstrap value of most recombinants is more than 70% relatively, and the Chi-Square (Pearson) tests boast outstanding statistical significance. It can prove to be true that 6 samples belong to a new URFs-BC, which is likely to be generated by the recombinants between the CRF07-BC and CRF08-BC spreading in China.
     In summary, a simple and effective assay for genetic subtyping is established. Using this method, the systematic molecular epidemiology of HIV-1 infections among IDUs in Yunnan province have been investigated in our study, the observation will provide an important data for the therapy, prophylaxia and vaccine research of HIV-1.
引文
[1]UNAIDS. AIDS Epidemic Update.2007. Available at http://data.unaids. org/pub/ EPISlides/2007/2007_epiupdate_en.pdf
    [2]Andrews G, Skinner D, Zuma K. Epidemiology of health and vulnerability among children orphaned and made vulnerable by HIV/AIDS in sub-Saharan Africa[J]. AIDS Care,2006,18:269-276
    [3]Marlink R, Kanki P, Thior L, et al. Reduced rate of disease development after HIV-2 infection as compared to HIV-1[J]. Science,1994,265(5178):1587-1590
    [4]O'Donovan D, Ariyoshi K, Milligan P, et al. Maternal plasma viral RNA levels determine marked differences in mother-to transmission rates of HIV-1 and HIV-2 in the Gambia. C/Gambia Government/University College London Medieal School working group on mother-child transmission of HIV[J]. AIDS,2000,14(4):441-448
    [5]Freed EO, Englund G, Martin MA. Role of the basic domain of human immunodeficiency virus type 1 matrix in macrophage infection[J]. J Virol,1995, 69(6):3949-3954
    [6]Wild CT, Shugars DC, Greenwell TK, et al. Peptides corresponding to a predictive 'alpha-helical'domain of human immunodegiciency virus type 1 gp41 are potent inhibitors of virus infection[J]. Proc Natl Acad Sci USA,1994,91(21):9770-9774
    [7]Kilby JM, Eron JI. Novel therapies based on mechanisms of HIV-1 cell entry[J]. N Engl J Med,2003,348(22):2228-2238
    [8]Kilby JM, Hopkins S, Venetta TM, et al. Potent suppression of HIV-1 replication in human by T20, a peptide inhibitor of gp41-mediated virus entry[J]. Nat Med,1998,4(11):1302-1307
    [9]Garcia JV, Miller AD. Serine Phosphorylation-independent downregulation of cell-surface CD4 by nef[J]. Nature,1991,350:508-511
    [10]Fujita K, Omura S, Sliver J. Rapid degradation of CD4 in cells expressing human immunodeficiency virus type 1 Env and Vpu is blocked by prodeasome inhibitoes[J]. J Gen Virol,1997,78:619-625
    [11]Willey RL, Maldarelli F, Martin MA, et al. Human immunodegiciency virus type 1 Vpu protein induces rapid degradation of CD4[J]. J Vriol,1992,66:7193-7200
    [12]Yu XF, Yu QC, Essex M, et al. The vpx gene of human immunodeficiency virus facilitates efficient viral replication in fresh lymphocytes and macrophage[J]. J Virol, 1991,65:5088-5091
    [13]Berger EA, Murphy PM, Farber JM. Chemokine receptors as HIV-1 coreceptors:roles in viral entry, tropism and disease[J]. Annu Rev Immunol,1999,17:657-700
    [14]Ho DD, Zhang L. HIV-1 rebound after anti-retroviral therapy[J]. Nat Med,2000, 6:736-737
    [15]Gao F, Bailes E, Robertson DL, et al. Origin of HIV-1 in the chimpanzee pan troglodytes[J]. Nature,1999,397(6718):436-441
    [16]Clavel F, Gutard D, Brunpvezinet F, et al. Isolation of a new human retro-virus from West African Patients with AIDS[J]. Science,1986,233:343-346
    [17]Hahn BH, Shal GM, Cock KM, et al. AIDS as a zoonosis:scientific anpublic health implications[J]. Science,2000,287(5453):607-614
    [18]Keele BF, Van Heuverswyn F, Li Y, et al. Chimpanzee reservoirs of pandemic and nonpandemic HIV-1[J]. Science,2006,28(313):523-526
    [19]Domingo E.Quasispecies and the implications for virus persistence and escape[J]. Clinical and Diagnostic Virology,1998,10(2-3):97-101
    [20]Bollinger RC, Tripathy SP, Quinn TC. The immunodeficiency virus epidemic in India. Current magnitude and future projections[J]. Medicine,1995,74:97-106
    [21]Overbaugh J, Bangham CR. Selection forces and constraints on retroviral sequence variation[J]. Science,2001,292(5519):1106-1109
    [22]Mansky LM. Forward mutation rate of human immunodeficiency virus type 1 in a T lymphoid cell line[J]. AIDS Res Hum Retroviruses,1996,12(4):307-314
    [23]Kandathil AJ, Ramalingam S, Kannangai R, et al. Molecular epidemiology of HIV[J]. Indian J MedRes 121,2005, pp333-344
    [24]Taylor BS, Sobieszczyk ME, McCutchan FE, et al. The challenge of HIV-1 subtype diversity[J]. N Engl J Med,2008,358:1590-1602
    [25]Gurtler LG, Hauser PH, Eberle J, et al. A new subtype of human immunodeficiency virus type 1 (MVP-5180) from Cameroon[J]. Journal of Virology,1994, 68(3):1581-1585
    [26]Loussert-Ajaka I, Chaix ML, Korber B, et al. Variability of human immunodeficiency virus type 1 group O strains isolated from Cameroonian patients living in France[J]. Journal of Virology,1995,69(9):5640-5649
    [27]Alamos Sequence Database,2007. Los Alamos National Laboratory, Los Alamos, New Mexico, http://www.hiv.lanl.gov/
    [28]Lemey P, Pybus OG, Wang B, et al. Tracing the origin and history of the HIV-2 epidemic[J]. Proc Natl Acad Sci USA,2003,100:6588-6592
    [29]Basu V.P., Song M., Gao L., et al. Strand transfer events during HIV-1 reverse transcription[J]. Virus Res,2008,134:19-38
    [30]Hemelaar J, Gouws E, Ghys P, Osmanov S. Global and regional distribution of HIV-1 genetic subtypes and recombinants in 2004[J]. AIDS,2006,20(16):W13-W23
    [31]Essex M. Human immunodeficiency viruses in the developing world[J]. Adv Virus Res, 1999,53:71-88
    [32]Piyasirisilp S, McCutchan F, Carr J, et al. A recent outbreak of human immunodeficiency virus type 1 infection in southern China was initiated by two highly homogeneous, geographically separated strains, circulating recombinant form AE and a novel BC recombinant[J]. J Virol,2000,74:11286-11295
    [33]Soares E, Martinez A, Souza T, et al. HIV-1 subtype C dissemination in southern Brazil[J]. AIDS,2005,19(Suppl 4):S81-86
    [34]McCutchan FE. Understanding the genetic diversity of HIV-1[J]. AIDS,2000,14 (Suppl 3):S31-44
    [35]Carrion G, Hierholzer J, Montano S, et al. Circulating recombinant form CRF02AG in South America[J]. AIDS Res Hum Retroviruses,2003,19:329-332
    [36]Kantor R, Katzenstein DA, Efron B, et al. Impact of HIV-1 subtype and antiretroviral therapy on protease and reverse transcriptase genotype:results of a global collaboration [J]. PLoS Med,2005;2:e112
    [37]Achkar JM, Burda ST, Konings FA, et al. Infection with HIV type 1 group M non-B subtypes in individuals living in New York city[J]. J Acquir Immune Defic Syndr,2004, 36:835-844
    [38]Vachot L, Ataman-Onal Y, Terrat C, et al. Retrospective study to time the introduction of HIV type 1 non-B subtypes in Lyon, France, using env genes obtained from primary infection samples[J]. AIDS Res Hum Retroviruses,2004,20:687-691
    [39]Keulen W, Nijhuis M, Schuurman R, et al. Reverse transcriptase fidelity and HIV-1 variation[J]. Science,1997,275(5297):229-1
    [40]Yang R, Kusagawa S, Zhang C, Xia X, Ben K, Takebe Y. Identification and characterization of a new class of human immunodeficiency virus type 1 recombinants comprised of two circulating recombinant forms, CRF07_BC and CRF08_BC, in China[J]. J Virol,2003,77:685-695
    [41]Delgado E, Thomson MM, Villahermosa ML, et al. Identification of a newly characterized HIV-1 BG intersubtype circulating recombinant form in Galicia, Spain, which exhibits a pseudotype-like virion structure[J]. J Acquir Immune Defic Syndr, 2002,29:536-543
    [42]Yang R, Xia X, Kusagawa S, et al. On-going generation of multiple forms of HIV-1 intersubtype recombinants in the Yunnan Province of China[J]. AIDS,2002, 16:1401-1407
    [43]Settle E. AIDS in China:an annotated chronology:1985-2003[J]. Montreal:China AIDS Survey,2003
    [44]Zunyou Wu, Sheena G Sullivan, Yu Wang, et al. Evolution of China's response to HIV/AIDS[J]. Public Health, Lancet,2007,369:679-690
    [45]Laeyendecker O, Zhang GW, Quinn TC, et al. Molecular epidemiology of HIV-1 subtypes in southern China[J]. J AIDS,2005,38:356-362
    [46]Zhong P, Pan Q, Ning Z, et al. Genetic diversity and drug resistance of human immunodeficiency virus type 1 (HIV-1) strains circulating in Shanghai[J]. AIDS Res Hum Retrovir,2007,23:847-856
    [47]Ma Y, Li ZZ, Zhang KX. Identification of HIV infection among drug users in China[J]. Zhonghua Liu Xing Bing Xue Za Zhi,1990,11:184-185 (in Chinese)
    [48]http://cn.chinagate.com.cn/health/2008-02/26/content_10738578.htm
    [49]邵一鸣,赵全壁,王斌,等.我国云南德宏地区HIV感染者HIV病毒膜蛋白基因的 序列测定和分析[J].病毒学报,1994,10:219-299
    [50]藤智平,段一娟,张家鹏,曾毅.我国云南瑞丽市区HIV感染者HIV分子流行病学分析[J].中国性病艾滋病防治,1995,1:1-5
    [51]Luo CC, Lan C, Hu DJ, Kai M, Dondero T, Zheng X. HIV-1 subtype C in China[J]. Lancet,1995,345(895b):1051-1052
    [52]李大勤,张桂云,田春桥,等.中国云南瑞丽等地艾滋病Ⅰ型C亚型的分布研究[J].中华流行病学杂志,1996,17:337-339
    [53]Cheng H, Zhang J, Capizzi J, et al. HIV-1 subtype E in Yunnan, China[J]. Lancet,1994, 344(8927):953-954
    [54]Chen J, Young NL, Subbarao S, et al. HIV type 1 subtypes in Guangxi Provinee, China, 1996[J]. AIDS Res Hum Retroviruses,1999,15(1):81-84
    [55]Yu XF, Chen J, Shao Y, et al. Two subtypes of HIV-Zamong injection-drug users in southern China[J]. Lancet,1998,351(9111):1250
    [56]Tee KK, Oliver G. Pybus, Xiao-Jie Li, et al. Temporal and Spatial Dynamics of Human Immunodeficiency Virus Type 1 Circulating Recombinant Forms 08_BC and 07_BC in Asia[J]. J. Virol,2008,82:9206-9215
    [57]McComsey QMaa JF.Host factors maybe more important than choice of antiretrovirals in the development of lipoatrophy[J]. AIDS Read,2003,13(11):539-542,559
    [58]Neilson J, John G, J, et al. Subtypes of human immumodeficiency virus type 1 and diseases stage among women in Nairobi, Kenya[J]. J Virol,1999,73:4393-4403
    [59]Kanki P, amel D, Sandale JL, et al. Human immumodeficiency virus type 1 subtypes in disease pregression[J]. J Infect Dis,1999,179:68-73
    [60]Aleus A, Lidman K, Biorkman A, et al. Similar rate if disease progression among individuals infected with HIV-1 genetic subtypes A-D[J]. ADIS,1999,13:901-907
    [61]Chow DC, Souza SA, Chen R. Elevated blood pressure in HIV-infected individuals receiving highly active antiretroviral therapy [J]. HIV Clin Trials,2003,4(6):411-416
    [62]Corzo JE, Gomea-Mateos, Rueda A. Relationship between low bone mineral density and highly active antiretroviral therapy Includiong protease inhibitors in HIV infected patients[J]. HIV Clin Trials,2003,4(5):337-346
    [63]Graham NM. Metabolic disorders among HIV-infected patients treated with protease inhibitors:a review[J]. J Acquir Immune Defic Syndr,2000,25(Suppl 1):S4-11
    [64]Penzak SR, Chuck SK. Hyperlipidemia associated with HIV protease inhibitor use: pathophysiology, prevalence, risk factors and treatment[J]. Scand J Infect Dis,2000, 32(2):111-123
    [65]Webber G. The impact of migration on HIV prevention for women:constructing a conceptual framework[J]. Health Care Women Int,2007,28:712-730
    [66]Watts J. China's shift in HIV/AIDS policy marks turnaround on health. Pledge to provide free HIV tests shows China is starting to take action on combating the disease[J]. Lancet,2004,363:1370-1371
    [67]严延生,翁育伟,陈舸,等.福建省艾滋病感染的流行病学和病毒亚型之间相互关系的研究[J].中华流行病学杂志,2001,22(6):428-431
    [68]Yagyu F, Ikeda Y, Ariyoshi K, et al. Differentiation of subtypes B and E of human immunodeficiency virus type 1 by polymerase chain reaction using novel env gene primers[J]. J Virol Methods,2002,101:11-20
    [69]Min W, Qi G, Hao L, et al. Simple subtyping assay for human immunodeficiency virus type 1 subtypes B, C, CRF01-AE, CRF07-BC, and CRF08-BC[J]. J Clin Microbiol, 2004,42:4261-4267
    [70]Su L, Graf M, Zhang Y, et al. Characterization of a virtually full-length human immunodeficiency virus type 1 genome of a prevalent intersubtype (C/B') recombinant strain in China[J]. J Virol,2000,74:11367-11376
    [71]Michael Mccarthy. Early tests may indicate rate of progression to AIDS[J]. Lancet, 1997,49:33-34
    [72]Caver TE, Lockey TD, Srinivas RV, et al. A novel vaccine regimen utilizing DNA, vaccinia virus and protein immunizations for HFV-1 envelope presentation[J]. Vaccine, 1999,17(11-12):1567-1572
    [73]Shao Y. AIDS epidemic at age 25 and control efforts in China[J]. Retrovirology 2006, 3:87
    [74]Garten RJ, Zhang J, Lai S, et al. Coinfection with HIV and hepatitis C virus among injection drug users in southern China[J]. Clin Infect Dis,2005,1:18-24
    [75]http://www.chinaids.org.cn.2008
    [76]Mansky LM. The mutation rate of human immunodeficiency virus type 1 is influenced by the vpr gene[J]. Virology,1996b,222(2):391-400
    [77]Zhao LJ, Mukherjee S, Narayan O. Biochemical mechanism of HIV-1 Vpr function. Specific interaction with a cellular protein. J Biol Chem,1994,269(22):15577-15582
    [78]Mansky LM, Benrard LC.3_-Azido-3_-de-oxythymidine (AZT) and AZT-resistant reverse transcriptase can increase the in vivo mutation rate of human immunodeficiency virus type 1[J]. J Virol,2000,4(20):9532-9539
    [79]Zhang Kl, Ma SJ. Epidemiology of HIV in China[J]. Bmj,2002,324(7341):803-4
    [80]Vartanian JP, Meyerhans A, Asjo B, et al. Selection, recombination, and G_A hypermutation of human immunodeficiency virus type 1 genomes[J]. J Virol,1991, 65(4):1779-1788
    [81]张小波,马艳玲,等.云南省2001年HIV/AIDS监测结果分析[J].疾病监测,2002,17(9):327-329
    [82]Beyrer C, Razak MH, Lisam K, et al. Overland heroin trafficking routes and HIV-1 spread in south and south-east Asia[J]. AIDS,2000,14(1):75-83
    [83]Preston BK, Poiesz BJ, Loeb LA. Fidelity of HIV-1 reverse transcriptase [J]. Science, 1998,242:1168-1171
    [84]Arion D, Kaushik N, McCormick S, et al. Phenotypic mechanism of HIV-1 resistance to 3_-azido-3_-deoxythymidine(ATZ):increased polymerization processivity and enhanced sensitivity to pyrophosphate of the mutant virul reverse transcriptase[J]. Biochemistry,1998,37(45):158908-15917
    [85]Ray SC. SimPlot for Windows (version 2.5). Baltimore, MD, US. http:sray.med.som.jhmi.edu/RaySoft/Simplot
    [86]Lai MM. Genetic recombination in RNA viruses[J]. Current Topics in Microbiology and immunology,1992,176:21-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700