双旋流燃烧器气固流动特性的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球对NOx排放量的要求越来越严格,低NOx燃烧器在电站锅炉中得到越来越广泛的应用。但在一些采用低NOx旋流燃烧器的燃煤电站锅炉中出现炉内结渣严重、低负荷稳燃能力差和煤种适应性差等问题。因此深入研究旋流煤粉燃烧器的气固两相流动特性是十分必要的。本文对日本石川岛播磨公司开发的双旋流燃烧器进行了三维PDA试验,研究了不同二次风风量和不同内外二次风叶片角度下燃烧器的气固两相流动特性。
     双旋流煤粉燃烧器在二次风风量为0.099kg/s的工况下不存在回流区,在二次风风量为0.142kg/s和0.184kg/s的工况下存在较小的环形回流区。三种二次风风量下,在二次风流动区域和边壁区域存在两个颗粒体积流量峰值和相对颗粒数密度峰值,在燃烧器中心线附近的粒径始终低于径向其它位置的粒径。
     在三种外二次风叶片角度下,双旋流煤粉燃烧器具有较小的环形回流区,在x/d=0.1-1.0的截面,颗粒体积流量呈双峰分布,颗粒体积流量峰值分别位于二次风流动区域和边壁区域,颗粒相对数密度与颗粒体积流量的分布规律基本相同,同时燃烧器中心区域的粒径较小。
     在两种内二次风叶片角度下双旋流煤粉燃烧器都存在着壁面回流,在燃烧器出口附近出现了较小尺寸的环形回流区。在x/d=0.1-0.7的截面,颗粒体积流量呈双峰分布,颗粒相对数密度的分布与颗粒体积流量分布规律相似。在x/d=0.1-0.5之间的截面,中心线附近的粒径始终低于径向其它位置的粒径。
     在不同二次风风量和不同内、外二次风叶片角度下,双旋流煤粉燃烧器的气固两相轴向、径向和RMS切向脉动速度的分布规律基本相同,与轴向速度和径向速度相比,切向速度衰减的较快,而且切向脉动速度也比较小。
With the increasing stricter requirement of NOx emission all over the world, swirl burners with low NOx formation are more and more widely used in thermal power plants in China. However, a series of problems were arisen on the boilers adoping swirl burners, such as serious slagging in furnace, poor combustion stability at low load, and low adaptability of coal fineness. Thus, it is necessary to conduct study on gas-particle flows characteristics of low NOx swirl burners. In view of this, experiments were performed on Double-swirl Flow burner designed by Ishikawajima-Harima Heavy Industries Co., Ltd in Japanese. A three-dimensional PDA system was used to study gas-particle flow characteristics of DF burner with different secondary air fluxes and vane angles of inner and outer secondary air.
     When the mass flux of secondary air was 0.099kg/s, the recirculation zone could not form. There was a small ring recirculation zone with the mass flux of 0.142kg/s and 0.184kg/s. For three different mass fluxes of secondary air, two peak values of particle volume flux and relative number density of particles appeared in the secondary air flow zone and near-wall region. The diameter of particles near the chamber axis of burner was always less than that at other positions.
     The DF burner had a small ring recirculation zone near the burner nozzle with three different outer secondary air vane angles. The profiles of the particle volume flux had two peaks at sections of x/d=0.1-1.0, one was in the secondary air region and another was in the near-wall region. The relative number density of particles profiled similar to the particle volume flux, and the particles in the central region of burner were small.
     With two different inner secondary air vane angles, back flow occur in the near-wall region, and there was small ring recirculation zone near the burner nozzle. At sections of x/d=0.1-0.7, the particle volume flux had two peaks values while the relative number density had similar profiles. At sections of x/d=0.1-0.5, the diameter of particles near the chamber axis of burner was always less than that at other positions.
     The DF burner had similar distributions of axial RMS velocities, tangential RMS velocities and radial RMS velocities with different secondary air mass flux, inner and outer secondary air vane angles. Compared with the axial and radial velocities, the tangential velocities attenuated more quickly, and the tangential fluctuation velocities were lower.
引文
1.刘典福,魏小林,盛宏至.大力发展洁净煤技术促进我国煤炭工业可持续发展.工业技术, 2009, 11: 39–41
    2.王茂林.科学推进中国新能源产业发展.中国城市经济, 2009, 12: 6–10
    3.吴敬儒,陈剑波.我国电力工业发展规划问题.中国电力, 2005, 38(9): 11–15
    4.陈清如.发展洁净煤技术推动节能减排.中国高效科技与产业化, 2008, 3: 65–67
    5.戴兰,梅秀忍.我国能源开发利用中的问题及对策研究.中小企业管理科学, 2009, 11: 43–44
    6.黄其励.火力发电可持续发展新技术.中国电力, 2002, 35(1): 8–12
    7.王军,李如祥.低NOx燃烧器的新发展及在我国的应用前景.华北电力技术, 1995, (3): 59–64
    8. Andreas R, Burrows J, Nuss H, et al. Increase in Troposphere Nitrogen Dioxide over China Observed from Space. Natrue, 2005, 437(7055): 129–132
    9. L. D. Smoot. A Decade of Combustion Research. Progress in Energy and Combustion Science, 1997, 23(3): 203–232
    10. R. A. Newby, W. F. Domeracki, A. W. McGuigan. Integration of Combustion Turbine Systems into Pressurized Fluidized Bed Combustion Combined Cycles. American Society of Mechanical Engineers, 1994: 1–11
    11.薛剑.发展洁净煤技术是解决能源与环境问题的必然选择.黑龙江科技信息, 2009, 1: 13
    12.童艳,孙博.低NOx燃烧技器的研究进展.节能, 2005, 277(8): 11–15
    13.方庆艳,汪华剑,张志国,傅培坊,周怀春.一种可调节自适应煤粉燃烧器的数值模拟.动力工程, 2007, 27(2): 189–193
    14.陈智超,李争起,孙锐,吴少华.大容量锅炉新型旋流煤粉燃烧技术的研究.动力工程, 2005, 25(5): 618–622
    15. J. O. Chae, Y. N. Chun. Effect of Two-Stage Combustion on NOx Emission in Pulverized Coal Combustion. Fuel, 1991, 70(6):703–707
    16.赵静,杨宗恒,张海.浓缩型双调风旋流燃烧器的冷模试验研究.动力工程, 2008, 28(5): 690–695
    17. J. L. King. Low NOx Pulverized Fuel Burners Summary of Plant Experience. ASME, Environmental Control Division Publication, EC, FACT. Proceedings of the 1995 International Joint Power Generation Conference, Minneapolis, MN, USA, 1995: 353–364
    18.刘振琪. FW双调风旋流燃烧器的NOx生成特性研究.锅炉技术, 1998(5): 12–16
    19.尹民权,柳朝,窦连玉,焊光华2020t/h锅炉结焦原因探讨,山东电力技术. 2003, 131(3): 47–48
    20.袁德.现代电站锅炉技术极其改造.中国电力出版社. 2006: 32–39
    21. Tigges KD. The DS Burner for the Entire Range of Bituminous Coals in Opposed Firing Systems. Deutsche Babcock, 1997
    22.吴生来,郝振亚.德国低NOx煤粉燃烧器.热力发电, 1997(5): 51–61
    23.王富强,一次扩口对中心给粉燃烧器气固流动影响的试验研究.哈尔滨工业大学硕士学位论文. 2007: 6–7
    24.赵伶伶,周强泰.新型旋流燃烧器-花瓣燃烧器的研究与应用.中国电力, 2005, 38(11): 31–34
    25. L. L. Zhao, Q. T. Hou, C. S. Zhao. Flame Characteristics in a Novel Petal Swirl Burner. Combustion and Flame, 2008, 155: 277–288
    26.赵伶伶.花瓣燃烧器的稳燃性能与应用研究.东南大学博士学位论文. 2005: 20–24
    27.陈智超.中心给粉旋流燃烧器气固流动及应用的研究.哈尔滨工业大学博士学位论文. 2007: 26–33
    28.李争起,孙锐,陈智超,孙绍增,吴少华,秦裕琨.一种中心给粉旋流煤粉燃烧器.中国发明专利: 03111101.7
    29.李海燕,王毅.试验用流速测试技术的新发展.计测技术, 2009, 29(2): 1–4
    30. L. M. Pickett, R. E. Jackson, D. R. Tree. LDA Measurements in a Pulverized Coal Flame at Three Swirl Ratios. Combustion Science and technology, 1999, 143:79–106
    31. S. Moon, C. Bae, J. Choi, E. Abo-Serie. The Influence of Airflow on Fuel Spray Characteristics from a Slit Injector. Fuel, 2007, 86: 400–409
    32. M. Sommerfeld, J. Kussin. Wall Roughness Effects on Pneumatic Conveying of Spherical Particles in a Narrow Horizontal Channel. Powder Technology, 2004, 142: 180–192
    33. V. Mathiesen, T. Solberg, B.H. Hjertager. An Experimental and Computational Study of Multiphase Flow Behavior in a Circulating Fluidized Bed. International Journal of Multiphase Flow, 2000, 26: 387–419
    34. M. H. Xu, J. W. Yuan, C. Y. Han, C. G. Zheng. Investigation of Particle Dynamics and Pulverized Coal Combustion in a Cavity Bluff-body Burner. Fuel, 1995, 74(12): 1913–1917
    35. Stefano Russo, Alessandro Gomes. Phsyical Characterization of Laminar Spray Flames in Pressure Range 0.1-0.9MPa. Combustion and Flame, 2006, 145: 339–356
    36. H. Zhou, K. F. Cen, J. R. Fan. Experimental Investigation on Flow Structures and Mixing Mechanisms of a Gas–solid Burner jet. Fuel, 2005, 84: 1622–1634
    37. D. L. Black, M. Q. McQuay. Laser-based Particle Measurements of Spherical and Nonspherical Particles. International Journal of Multiphase Flow, 2001, 27: 1333–1362
    38. Z. Q. Li, R. Sun, L. Z. Chen, Z. X. Wan, S. H. Wu, Y. K. Qin. Effect of Primary Air Flow Types on Particle Distributions in the Near Swirl Burner Region. Fuel, 2002, 81(6): 829–835
    39. Z. Q. Li, Z. X. Wan, S. Z. Sun, L. Z. Chen, S. H. Wu, Y. K. Qin. Influence of Division Cone Angles Between the Fuel-rich and the Fuel-lean Ducts on Gas-particle Flow and Combustion Near Swirl Burners. Energy, 2002, 27: 1119–1130
    40. Z. Q. Li, R. Sun, Z. X. Wan, S. Z. Sun, S. H. Wu, L. Z. Chen. Gas-particle Flow and Combustion in the Near-burner Zone of the Swirl-stabilized Pulverized Coal Burner. Combustion Science and Technology, 2003, 175(11): 1979–2014
    41.黄荣国,陈星晶,张红泉.直流燃烧器一次风通道气固两相流实验研究.水动力学研究与进展, 2009, 24(1): 7–14
    42. Z. C. Chen, Z. Q. Li, F. Q. Wang, J. P. Jing, L. Z. Chen,S. H. Wu. Gas/particleFlow Characteristics of a Centrally Fuel Rich Swirl Coal Combustion Burner. Fuel, 2008, 87: 2102–2110
    43. Z. C. Chen, Z. Q. Li, J. P. Jing, H. D. Wei, L. Z. Chen, S. H. Wu, Y. Yao. Experiment Investigations on the Performance of Centrally Fuel Rich Swirl Coal Combustion Burner: Influence of Primary Air Ratio. International Journal of Chemical Reactor Engineering, 2008, Vol. 6, Article A39: http://www.bepress.com/ijcre/vol6/A39
    44. Z. C. Chen, Z. Q. Li, J. P. Jing, F. Q. Wang, L. Z. Chen, S. H. Wu. The Influence of Fuel Bias in the Primary Air Duct on the Gas/particle Flow Characteristics Near the Swirl Burner Region. Fuel Processing Technology, 2008, 89: 958–965
    45. Z. C. Chen, Z. Q. Li, J. P. Jing, L. Z. Chen, S. H. Wu, Y. Yao. Gas/particle Flow Characteristics of Two Swirl Burners. Energy Conversion and Management, 2009, 50: 1180–1191
    46.邱朋华,陈力哲,王宏,吴少华,秦裕琨.粉体水平管道分层流动速度分布的PDA研究.哈尔滨工业大学学报. 2002, 1(34): 141–144
    47.崔金雷,王希麟,容易.气固两相圆湍射流颗粒对气相流动的影响.工程热物理学报. 2005, 26(6): 974–976
    48.王国忠,吴少华,陈力哲,邱朋华. PDA在炉膛气固两相流动特性研究中的应用.仪器仪表学报, 2005, 26(8): 199–202
    49.王国忠,吴少华,刘辉,邱朋华,秦裕琨.主燃区过量空气系数对再燃区速度场影响的试验研究.动力工程, 2006, 26(1): 125–129
    50. I. Gillandt, U. Fristching, K. Bauckhage. Measurement of Phase Interaction in Dispersed Gas/particle Two-phase Flow. Multiphase Flow, 2001, 27: 1313–1332
    51. J. Bao, S. L. Soo. Measurement of Particle Flow Properties in a Suspension by a Laser System. Powder Technology, 1995, 85: 261–268
    52. R. Weber et al. Assessment of Turbulence Modeling for Engineering Prediction of Swirling Vortices in the Near Burner Zone. lnt. J. Heat and Fluid Flow. 1900, 11(3): 225–235
    53.刘光奎,双旋流煤粉燃烧器流动及燃烧特性试验研究.哈尔滨工业大学硕士学位论文. 2009: 21–26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700