脑内去甲肾上腺素能系统参与寒冷应激时HPA轴的激活
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了探讨下丘脑室旁核-促皮质激素释放激素(PVN-CRH)和蓝斑-去甲肾上腺素(LC-NE)这两大应激系统间的相互关系,本实验在寒冷应激条件下,观察大鼠前脑(包括PVN)和后脑(包括LC)的c-fos表达,并用双重染色方法,确定表达Fos神经元的化学性质。同时,用放免方法测定血浆ACTH含量,以反映下丘脑-垂体-肾上腺皮质(HPA)轴的功能。最后用6-羟基多巴胺(6-OHDA)损毁脑内去甲肾上腺素(NE)能系统后,观察应激诱导的脑内Fos表达和血浆ACTH含量的改变。
     实验结果显示:(1)寒冷应激可使多个脑区Fos蛋白表达明显增高,包括前脑的室旁核(PVN)、视上核(SON)、下丘脑背内侧核(DMH)、下丘脑腹内侧核(VMH)、外侧隔核腹侧区(LSV)、中央杏仁核(CAN)、内侧视前区(MPO)、下丘脑室旁核前小细胞亚核(PaAP)和后脑的孤束核(NTS)、蓝斑(LC)、A5等部位。侧脑室内注射6-OHDA后寒冷应激,上述部位的c-fos表达明显减少。(2)双重染色显示,寒冷应激诱导的Fos样免疫反应阳性颗粒可见于室旁核(PVN)和视上核(SON)中的部分加压素(AVP)阳性神经元及孤束核(NTS)、蓝斑(LC)中的部分酪氨酸羟化酶(TH)阳性神经元。侧脑室内注射6-OHDA后被激活的AVP阳性神经元明显减少。(3)血浆ACTH的放射免疫测定结果显示,寒冷应激后血浆ACTH水平明显升高;侧脑室注射
    
    摘内去甲怜J匕月峨景跳系统月卜J口月民别卜应翻氏时HPA抽的徽活
    中文摘蚕
    6一OHDA后再应激,可部分阻断血浆ACTH的反应。
     结果提示:寒冷应激可激活下丘脑PVN一AVP能神经元系统和脑干LC一NE
    能神经元系统,从而激活HPA轴,H以轴的激活至少部分地通过脑内的NE
    能神经元系统介导。
To explore the relationship between PVN-CRH and LC - NE neuronal systems, which are considered as two most important stress systems, we studied the c-fos expression in rats brain after cold stress, including PVN and LC. We also identified the chemical characteristics of neurons expressing Fos by double staining and determined the plasma level of ACTH by radioimmunoassay, in addition, we studied the changes of plasma ACTH level and Fos expression in rats brain induced by cold stress after intracerebroventricular (Lev.) injection of 6-hydroxydopamine(6-OHDA).
    The experimental results indicated that: 1) Cold stress could induce significant Fos protein expression in many areas of brain, such as hypothalamic paraventricular nucleus, supraoptic nucleus, hypothalamic dorsomedial nucleus, hypothalamic ventromedial nucleus, lateral septal nucleus, central amygdaloid nucleus, medial preoptic nucleus, anterior parvicellular of paraventricular hypothalamic nucleus in forebrain and nucleus of the solitary tract, locus coeruleus, A5 in hindbrain. After i.c.v. 6-OHDA , the c-fos expression of these areas induced by cold stress reduced significantly. 2) Double staining showed that Fos-like immunoreactive positive granules were observed in some
    
    
    vasopressin(AVP)-immunoreactive positive neurons in paraventricular and supraoptic nuclei, as well as in some tyrosine hydroxylase(TH) -immunoreactive positive neurons in NTS and LC nuclei. The number of cells expressing Fos- and AVP-immunoreactivity in PVN were decreased significantly after i.c.v. 6-OHDA. 3) Plasma ACTH level was increased by cold stress significantly, which could be blocked partially after 6-OHDA i.c.v, administration.
    The results suggested that hypothalamic PVN-AVP neuronal system and LC -NE neuronal stystem in brainstem could be activated by cold stress. Cold stress could also activated HPA axis. The activation of HPA axis could be mediated, at least in part, by NE neuronal system.
引文
1. Chrousos GP, Loriaux DL, Gold PW, et al. Mechanisms of Physical and Emotional Stress. New York, NY: Plenum Press; 1988. Advances in Experimental Medicine and Biology, vol 245
    2. O'Connor, T. M; O'Hallorarn, D. J; Shanahan, F, The stress response and the hypothalamic-pituitary-adrenal axis: from molecule to melancholia[Review]。 QJM 2000: 93(6): 323-333
    3. Van Bockstaele EJ; Colago EE, Valentino RJ. Corticotropin-releasing factor-containing axon terminals synapse onto catecholamine dendrites and may presynaptically modulate other afferents in the rostral pole of the nucleus locus coeruleus in the rat brain. Journal of Comparative Neurologv. 1996; ocus 364(3): 523-534
    4. Ruggiero DA; Underwood MD, Rice PM. Mann JJ, et al. Corticotropin-releasing hormone and serotonin interact in the human brainstem: behavioral implications. euroscience 1999; 91(4): 1343-54
    5. Valention RJ, Foote SL. Corticotropin-releasing hormone increases tonic but not sensory-evoked activity of noradrenergic locus coeruleus neurons in unanesthetized rats. Journal of Neuroscience 1988; 8(3): 1016-25
    6. Valentino RJ, Foote SL. Corticotropin-releasing factor disrupts sensory responses of brain noradrenergic neurons. Neuroendocrinology 1987 Jan; 45(11): 28-36
    7. Pacak K. Stressor-specific activation of the hypothalamic-pituitary-adrenocorticai axis. Physiological Research 2000; 49 Suppl 1: S11-7
    8. Baffi JS, Palkovits M. Fine topography of brain areas activated by cold stress. A fos immunohistochemical study in rats. Neuroendocrinology 2000. 72(2): 102-13
    9. Mana MJ; Grace AA. Chronic cold stress alters the basal and evoked electrophysiological activity of rat locus coeruleus neurons. Neuroscience
    
    1997; 81(4):1055-64
    10. Seema Bhatnagar, John B. Mttchell, Katia Betito, et al. Effects of chronic intermittent cold stress on pituitary adrenocortical and sympathetic adrenomedullary functioning. Physiology & Behavior 1995;57(4):633-639
    11. Beatriz Duarte Palma, Deborah Suchecki, Sergio Tufik. Differential effects of acute cold and footshock on the sleep of rats. Brain Research 2000; 861:97-104
    12.韩济生.神经科学纲要.北京:北京医科大学.北京协和医科大学出版社,1993,355-357
    13. Herbert J. Studying the central actions of angiotensin using the expression of immediate-early genes:expectations and limitation. Regulatory Peptide 1996; 66:13-18
    14.张卫和,龚珊,殷伟平等。蓝斑-去甲肾上腺素能系统及中缝背核-5-羟色胺能系统在刺激弓状核镇痛中的作用,科学通报,1986;31(19):1509-1511。
    15. Arnold, E J; de Lucas Bueno, M; Shiers, H et al. Expression of C-fos in regions of the basal limbic forebrain following ICV CRH in unstressed or stressed male rats. Neuroscience 1992; 51:377-390
    16. george P, Chrousos MD, PHilip Wj, et al. The concepts of stress and stress system disorders. JAMA 1992; 267(9): 1244
    17. Helmreich DL. The effect of adrenalectomy on stress-induced c-fos mRNA expression in the rat brain. Brain Research 1995, 694(1-2):279-86
    18. Imaki T. Intracerebroventricular administration of corticotropin-releasing factor antagonist attenuate c-fos mRNA expression in the paraventricular nucleus after stress. Neuroendocrinology 1995; 61(4):445-52
    19. Ransone LJ, Verma IM. Nuclear proto-oncogenes fos and jun. Annu Rev Cell Biol 1990; 6:539-57
    20. Gutman A, Wasylyk B. Nuclear targets for transcription regulation by oncogenes. Trends Genetics 1991; 7(2):49-54
    21. Arancibia S, Rage F, Astier H, Tapia-Arancibia L. Neuroendocrine and
    
    autonomous mechanisms underlying thermoregulation in cold environment. Neuroendocrinology 1996: 64:257-67
    22. Paxinos G, Watson C. The rat brain in stereotaxic coordinates, 2nd edn. Academic Press, San Diego 1986
    23. Simon G, Illyes G. Structural vascular changes in hypertension: role of angiotensin Ⅱ, dietary sodium supplementation, and sympathetic stimulation, alone and in combination in rats. Hypertension 2001: 37(2):255-60,
    24. Kelsey RM, Patterson SM, Barnard M, et al. Consistency of hemodynamic responses to cold stress in adolescents. Hypertension 2000; 36(6):1013-7
    25. Kelsey RM, Alpert BS, Patterson SM, et al. Racial differences in hemodynamic responses to environmental thermal stress among adolescents. Circulation 2000; 101(19):2284-9
    26. Yu E, Owttrim GW. Characterization of the cold stress-induced cyanobacterial DEAD-box protein CrhC as an RNA helicase. Nucleic Acids Research 2000; 28(20):3926-34
    27. Steward N, Kusano T, Sano H. Expression of ZmMET1, a gene encoding a DNA methyltransferase from maize, is associated not only with DNA replication in actively proliferating cells, but also with altered DNA methylation status in cold-stressed quiescent cells. Nucleic Acids Research. 2000;28(17):3250-9
    28. Moore H, Rose HJ, Grace AA. Chronic cold stress reduces the spontaneous activity of ventral tegmental dopamine neurons. Neuropsychopharmacology 2001; 24(4):410-9
    29. Pacak K, Palkovits M, Kopin IJ, et al. Stress-induced Norepinephrime release in the hypothalamic paraventricular neucleus and pituitary-adrenocortical and sympathoadrenocortical and sympathoadrenal activity: In vivo microdialysis studies. Front. Neroendocrinology 1996: 16:89-150
    30. Levine S. Primary social relationships influence the development of the hypothalamic-pituitary-adrenal axis in the rat. Physiology Behaviour 2001;
    
    73(3): 255-60
    31. Brady LS, Whitfield HJ Jr, Fox RJ, et al. Long-term antidepressant administration alters corticotropin-releasing hormone, tyrosine hydroxylase, and mineralocorticoid receptor gene expression in rat brain. J Clin Invest 1991 Mar; 87(3):831-7
    32. Szafarczyk A, Alonso G, Ixart G, et al. Diuranat-stimulated and stress-induced ACTH release in rats is mediated by ventral noradrenergic bundle. Am Journal Physiology 1985; 249:219-226
    33. Miyata S, Ishiyama M, Shido O, et al. Central mechanism of neural activation-with cold acclimation of rats using Fos immunohistochemistry. Neuroscience Research. 1995:22:209-18
    34. Martinez-V, Wang-L, Tache-Y. Central TRH receptor 1 antisense block: coid-induced gastric emptying but not brain c-Fos induction. Peptides 2001 22(1): 81-90
    35. Dragunow M, Faull R. The use of c-fos as a metabolic marker in neurona pathways tracing. Journal Neuroscience Methods 1989; 29:261-5
    36. Morgan JI, Curran T. Stimulus-transcription coupling in the nervous system: involvement of the inducible proto - oncogenes fos and jun. Ann Rev Neuroscience 1991; 14: 421-51
    37. Feldman S, Conforti N, Melamed E. Norepinephrine depletion in the paraventricular nucleus inhibits the adrenocortical responses to neural stimuli. Neuroscience Letter 1986: 64:191-195
    38. Gaillet S, Lachuer J, Malaval F, et al. The involvement of noradrenergic ascending pathways in the stress-induced activation of ACTH and corticosterone secretions is dependent on the nature of stressors. Experimental Brain Research 1991;87:173-180
    39. Herman JP, Cullinan WE. Neurocircuitry of stress: central control of the hypothalamopituitary-adreno-cortical axis. Trends Neuroscience 1997;20:78-84
    
    
    41. Bhatnagar S, Meaney MJ. Hypothalamic pituitary adrenal function in chronic intermittently cold stressed neonatally handled and nonhandled rats. journal Neuroendocrinology 1995;7(2):97-108.
    42. Janssky L, Mejsnar J, Moravec J. Catecholamines and cold stress. Oxford: Pergamon Press; 1979:419-434
    43. Malendowicz LK, Nussdorfer GG. Investigations on the acute effects of neuropeprides on the pituitary-adrenocortical function in normal and cold-sstressed rats. Experimental Toxicol Pathology 1995; 47(1): 31-4
    44. Bonaz B, Tache Y. Induction of Fos immunoreactivity in the rat brain after cold-restraint induced gastric lesions and fecal excretion. Brain Research 1994; 652:56-64

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700