雌激素对老龄和去卵巢大鼠脑及垂体ER、NGF和ChAT表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了探讨雌激素对脑内ER、NGF和ChAT表达的影响及雌激素的作用形式,运用超敏感的免疫组织化学SP法,以SD大鼠为研究对象,建立老年和去卵巢大鼠模型,通过补充17β-雌二醇对ER、NGF和ChAT在小脑、间脑、端脑及垂体中的表达和分布变化进行研究,探讨雌激素对脑中三种物质的影响及其相互作用机制。另外,还通过在原代培养的神经细胞生长过程中添加17β-雌二醇来研究雌激素对体外培养神经元的生长及神经分泌功能的影响。主要实验结果如下:
    1. ER、NGF和ChAT免疫阳性反应物分布于小脑的蒲肯野氏细胞层、小脑齿状核、小脑间位核和小脑室顶核,ER阳性产物主要定位于细胞胞浆、胞膜和突起中,也存在于胞核中,表明ER、NGF和ChAT在小脑中发挥了作用,雌激素在小脑发挥作用可能既通过基因组机制,也通过非基因组机制途径。老年大鼠和去卵巢大鼠小脑皮质及小脑核中ER、NGF和ChAT的表达强度及阳性细胞数量总趋势是显著降低,而补充17β-雌二醇后三种阳性产物的强度和阳性细胞数目显著回升,蒲肯野氏细胞的阳性突起长度和数量也呈此变化趋势,表明雌激素可促进NGF和ChAT的表达,在维持和保护小脑神经元的结构和功能中发挥了重要作用;另外ER、NGF和ChAT表达变化的相似性提示三者在雌激素对小脑的作用中是相互调节和影响的。
    2. ER、NGF和ChAT广泛分布于间脑中,主要分布于缰核、外侧膝状体核、丘脑内侧核、外侧核、丘脑室旁核、带旁核、菱形核、下丘脑室周灰质、室周核、下丘脑腹内侧核、下丘脑前区外侧部和下丘脑后区。另外,还观察到在下丘脑前区和后区有阳性细胞成簇状密集分布的现象。ER阳性产物在细胞中呈多种形式分布,定位于胞浆、胞膜、胞核及突起中,NGF和ChAT主要定位于胞浆和突起中,表明雌激素、NGF和ChAT在间脑中发挥了作用,雌激素对间脑的作用途径是复杂的,有基因组形式,也有非基因组形式。老年大鼠和去卵巢大鼠间脑内ER、NGF和ChAT的表达强度和阳性细胞数目总趋势是显著降低,而补充外源性雌激素可以阻止其下降,表明雌激素可通过ER促进间脑中NGF和ChAT的表达,雌激素对间脑中神经元结构和功能维持是必须的,而且雌激素对间脑神经元的作用与NGF和ChAT的表达是协同和一致的。
    3. ER、NGF和ChAT在大脑皮质扣带回、顶叶、额叶、梨状皮质和皮质杏仁核,海马齿状回、下托、CA2和CA3区,隔-斜角带区内侧隔核、外侧隔核、斜角带垂直部等均有分布,另外,ER阳性产物在细胞上定位于胞浆、胞核、胞膜和突起中,表明雌激素、NGF和ChAT在端脑中发挥了作用,雌激素可能既通过基因组形式,也通过非基因组形式作用于端脑。老年大鼠和去卵巢大鼠端脑大部分区域内ER、NGF和ChAT的
    
    
    表达活性及阳性细胞数目均显著下降,而补充17β-雌二醇后得到回升,并基本恢复到正常水平,表明雌激素通过ER对端脑内NGF和ChAT的表达有促进作用,这种作用可能部分地与雌激素对NGF的上调而作用于胆碱能神经元有关,也可能是雌激素通过ER直接调控了ChAT的表达,增强神经信息的传递。
    4. 垂体中广泛分布着ER、NGF和ChAT三种免疫阳性产物,即分布于垂体前叶、中间叶和后叶。细胞定位形式为ER主要分布于细胞浆和细胞膜,有少部分位于细胞核;NGF主要位于细胞浆和细胞膜;ChAT免疫阳性纤维终末包绕于腺细胞周围。揭示ER、NGF和ChAT参与了垂体生理功能发挥的过程。老龄化大鼠和去卵巢大鼠垂体中ER、NGF和ChAT免疫阳性细胞数目和表达强度均显著下降,而补充17β-雌二醇后其数目和强度均恢复到正常水平,且三者分布和强度的变化趋势一致,表明雌激素在垂体结构和功能维持上发挥了重要作用,通过ER促进NGF和ChAT表达而共同调节垂体的生殖内分泌活动。
    5. 雌激素对体外培养神经元的生长、发育影响显著,可促进胞体生长、突起伸长,但对发出的突起数量影响不大。另外,可延长培养神经元的存活时间,阻止神经元退化、萎缩和死亡。雌激素对体外培养神经元的神经分泌功能影响显著,可显著提高ER、NGF和ChAT阳性神经元的数量并呈现出培养时间依赖性的变化。另外,雌激素还可促进培养神经元ER、NGF和ChAT的表达,也随着培养时间而呈现变化。总的来说,雌激素通过ER可直接或间接的作用于培养神经元,发挥神经营养和调控神经信息传递的作用。
The effects of estrogen on the expression of ER, NGF and ChAT in rats brain was studied by using technique of immunohistochemical ultrasensitive SP in Sprague-Dawley rat. The model of aging and ovariectomized female rat were established to study the expression and distribution of ER, NGF and ChAT in the cerebellum, diencephalons, telencephalon and pituitary after 17β-estradiol treatment, and the mechanism of its effects were discussed. In addition, the modulation of 17β-estradiol on growth and neuroendocrine in primary cultural neurons in vitro were researched. The main results as follows:
    1. The immunoreactive productions were distributed in stratum Purkinje cell, nucleus golbosus, nucleus interpositus and nucleus fastigii of cerebellum, and the ER positive production mainly located in plasma, cytoplasmic membrane and neurite, also exited in nucleus. It showed that ER, NGF and ChAT played a key role in cerebellum, and the action of estrogen in cerebellum could via genomic and nongenomic mechanism. The general tendency of the expression of ER, NGF and ChAT positive production in cerebellum cortex and nuclei of the aging and ovariectomized rat is significantly decreased, while the intensity and quantity of the immunoreactive production ascended predominantly after 17β-estradiol treatment, simultaneously, the positive neurite of Purkinje cell showed the same tendency. The above results suggested that the estrogen upregulated the expression of NGF and ChAT, and played a vital role in sustaining and protecting the structure and function of cerebellum neurons. Furthermore, the similarity of their changing tendency implied that they were correlated and cooperated during the course of effect of estrogen on cerebellum.
    2. ER, NGF and ChAT immunoreactive productions were widely presented in diencephalons, mainly in nucleus habenula, nucleus corpus geniculatum lateral, nucleus medialis thalami, nucleus lateral thalami, nucleus paraventricularis, nucleus paratenialis, nucleus rhomboidens, grisea periventricularis hypothalami, nucleus periventricularis hypothalami, nucleus paraventricularis hypoythalami, nucleus ventromedialis hypothalami, anterior region and posterior region hypothalami. ER immunoreactive production existed in several formation, located in plasma, cytoplasmic membrane, nucleus and neurite, while the positive production of NGF and ChAT mainly existed in plasma and neurite, which suggested that ER, NGF and ChAT played a critical role in diencephalons, and the action of estrogen was complicated and via both genomic and non- genomic mechanism. The ER, NGF and ChAT immunoreactive production in diencephalons rat is significantly reduced in aging and ovariectomized rat, and treating with estrogen could greatly improve the immunoreactive intensity and positive cell number. The results illustrated that estrogen could upregulate the expression of NGF and ChAT by conjunction with ER. Estrogen is essential in sustaining the structure and function of neurons of diencephalons. Moreover, the effects of estrogen in diencephalons are correlated with NGF and ChAT.
    
    3. The positive production of ER, NGF and ChAT were detected in cirguli cortex, parieta lobe, frontal lobe, piriformis cortex and nucleus amydgaloideus corticalis, hippocampus gyrus fasciolaris, subiculum, CA2 and CA3, and mainly presented in nucleus medial septal, nucleus lateral septal and nucleus of diagonal band vertical division in septal-diagonal band area. In addition, the ER immunoreactive production located in plasma, nucleus, cytomembrane and neurite. The above results suggested that ER, NGF and ChAT played a key role in telencephalon, and the mechanism of its effect could be via genomic and /or nongenomic way. In the mostly part of telencephalon, the intensity and number of ER, NGF and ChAT positive production were significantly decreased in both aging and ovariectomized rat, which could be inhibited by treating with 17β-estradiol, even back to the normal level, which suggested that estrogen could upregulate NGF and ChAT, which could be partly re
引文
毕会民,王卫星,李栋等主编. 下丘脑—垂体疾病现代治疗(第一版). 人民军医出版社,2001:61~62
    步世忠,孙梅,俞瑾,等. 雌二醇对老年雌性大鼠下丘脑雌激素受体表达和β-内啡肽的影响. 中国神经科学杂志,1998,14(2):81~84
    常青,应大君,史常旭. 雌激素对下丘脑神经元结构及雌激素受体表达水平的影响. 第三军医大学学报,2001,23(3):318~320
    常青. 雌激素对下丘脑—垂体—卵巢轴的影响及对心血管保护作用的研究. 第三军医大学博士学位论文.2000,5:23~26
    陈正礼.鸡间脑中胆碱乙酰转移酶免疫反应产物的分布与发育研究.西北农林科技大学硕士毕业论文,2001
    邓小华,蔡维君,杜亚政,等. 大鼠下丘脑视前区神经元内雌激素受体α的表达—免疫组织化学研究.中国组织化学与细胞化学,2001,10(4):383~386
    邓小华,蔡维君,罗学港. 雌激素受体α和TrkA在基底前脑的分布于共存. 神经解剖学杂志,2001,17(2):127~130
    黄海霞,高建新,刘克敏,等.BDNF,NT-3对体外培养的胚属脊髓AchE和NADPH-d阳性神经元生长发育的影响.中国神经科学杂志,2002,18(4):673~677
    金国华,田美玲,秦建斌,等.BDNF、NGF对体外长期培养的培基底前脑胆碱能神经元的影响.神经解剖学杂志,2001,17(4):337~341
    李力燕,王廷华,杨正伟等. 脑源性神经营养因子在成年猴脑的分布. 神经解剖学杂志,200218(1):67~70
    刘健康,李庆明. 大鼠下丘脑弓状核年龄性变化的电镜观察.神经解剖学杂志,1992,8(2):217~220
    吕国蔚译. 神经系统生理学. 北京:人民卫生出版社,1987
    卿素珠. 山羊胎儿神经系统发育中NGF及其受体TrKA的表达.西北农林科技大学博士毕业论文,2003
    万选才,杨天祝,徐承焘 主编. 现代神经生物学. 北京:北京医科大学中国协和医科大学联合出版社,1999:541
    王建辰主编. 家畜生殖内分泌. 北京:农业出版社,1993,104~105
    王键,鞠躬. 大鼠垂体前叶中的TH-,ChAT-免疫阳性神经纤维. 中国组织化学与细胞化学杂志,1997,6(2):129~133
    王跃嗣. 鸡产蛋期间脑中的NGF免疫反应产物的分布与变化研究.西北农林科技大学硕士毕业论文,2002
    吴建云. 突触素免疫反应产物在鸡脑中的分布及变化研究.西北农林科技大学硕士毕业论文,2000
    徐杰,侯春莲,刘进师,等. 雌激素对大鼠海马通路损伤后认知能力的影响. 解剖学报,2003,26(1):12~15
    杨萍,殷玉芹,李振强.蛋白激酶C亚型在原代培养神经元生长中的作用.解剖学报,2002,33(1):38~41
    张吉强,蔡文琴. 雌激素β受体免疫阳性神经元在成年雌性大鼠脑内的分布. 解剖学
    
    
    报,2002,33(2): 118~121.
    张吉强,姚青,蔡文琴. 卵巢切除对小鼠基底前脑内雌激素β受体报道的影响. 第三军医大学学报,2003,25(3):260~262
    张培林主编. 神经解剖学. 北京:北京人民卫生出版社,1997:32~51
    张庆红,陈亚琼,胡玉珍,等. 雌激素受体在大鼠垂体前叶的分布. 解剖学报,2001,32 (4):352~353.
    张晓春,左萍萍,葛秦生. 雌激素类药物对去卵巢大鼠认知功能的影响. 生殖医学杂志,2001,10(3):135~140
    朱长庚. 免疫—神经—内分泌网络. 解剖学报,1993,24:216~221
    Adams MM, Shah RA, Janssen WGM, et al. Different modes of hippocampal plasticity in response to estrogen in young and aged female rats. Proc Natl Acad Sci USA ,2001,98: 8071~8076
    Allen PB, Ouimet CC, Greengard P. Spinophilin, a novel protein phosphatase 1 binding protein localized to dendritic spines. Proc Natl Acad Sci USA ,1997,94:9956~9961
    Altman J. Morphoolgical development of the rat cerebellum and some of its mechanisms. Exp Brain Res,1982,6:38~49
    Alves S, Weiland NG, Hayashi S,et al. Immunocytochemical localization of nuclear estrogen receptors and progestin receptors within the dorsal raphe nucleus. J Comp Neurol,1998,391:322~334
    Alves SE, McEwen BS, Hayashi S, et al. Estrogen-regulated progestin receptors are found in the midbrain raphe but not hippocampus of estrogen receptor alpha (ERα) gene-disrupted mice. J Comp Neurol,2000, 427:185~195
    Annie L. Somatostatin receptors in the human cerebellum during development.Brain Res,1992,573:251~259
    Arcaro KF, O’Keefe PW, Yang Y, et al. Antiestrogenicity of environmental polycyclic aromatic hydrocarbons in human breast cancer cells. Toxicology,1999,133:115~127.
    Auger AP, Tetel MJ, McCarthy MM. Steroid receptor coactivator-1 (SRC-1) mediates the development of sex-specific brain morphology and behavior. Proc Natl Acad Sci USA ,2000,97:7551~7555
    Bazzett TJ, Becker JB. Sex differences in the rapid and acute effects of estrogen on striatal D dopamine receptor binding. Brain Res,1994,637:163~172
    Bethea CL, Pecins-Thompson M, Schutzer WE, et al. Ovarian steroids and serotonin neural function. Mol Neurobiol,1999,18:87~123
    Beyer C and Karolczak M. Estrogenic stimulation of neurite growth in midbrain dopaminerg- ic neurons depends on cAMP/protein kinase A signalling. J Neurosci Res,2000,59:107~116.
    Beyer C and Raab H. Nongenomic effects of oestrogen: embryonic mouse midbrain neurones respond with a rapid release of calcium from intracellular stores. Eur J Neurosci,1998,10: 255~262.
    Beyer C. Estrogen and the developing mammalian brain. Anat Embryol (Berl) ,1999, 199:379~390.
    Bi R, Broutman G, Foy MR, Thompson RF, et al. The tyrosine kinase and mitogen- activated protein kinase pathways mediate multiple effects of estrogen in hippocampus. Proc Natl Acad Sci USA,2000,97: 602~ 3607.
    Bingham SA, Atkinson C, Liggins J,et al. Phyto-oestrogens: where are we now? Br J
    
    
    Nutr,1998,79:393~406.
    Blaustein JD, Lehman MN, Turcotte JC, et al. Estrogen receptors in dendrites and axon terminals in guinea pig hypothalamus. Endocrinology,1992,131:281~290
    Brake WG, Alves SE, Dunlop JC, et al. Novel target sites for estrogen action in the dorsal hippocampus: an examination of synaptic proteins. Endocrinology,2001,142: 1284~1289
    Brinton RD. Cellular and molecular mechanisms of estrogen regulation of memory function and neuroprotection against Alzheimer’s disease: Recent insights and remaining challenges. Learn Memory, 2001,8:121~133
    Bulloch K, Brake WG, Lee SJ, et al. Estrogen increases synaptic protein immunoreactivity in the dorsal and ventral hippocampus of ovariectomized rats. Abstr Soc Neurosci,2000, 26(7.1):4
    Calizo LH, Flanagan-Cato LM. Estrogen selectively regulates spine density within the dendritic arbor of rat ventromedial hypothalamic neurons. J Neurosci,2000,20:1589~1596
    Carrer H, Aoki A. Ultrastructural changes in the hypothalamic ventromedial nucleus of ovariectomized rats after estrogen treatment. Brain Res,1982,240:221~233
    Casanova M, You L, Gaido KW, et al. Developmental effects of dietary phytoestrogens in Sprague-Dawley rats and interactions of genistein and daidzein with rat estrogen receptors alpha and beta in vitro. Toxicol Sci,1999,51:236~244.
    Clarke CH, Norfleet AM, Clarke MS, et al. Perimembrane localization of the estrogen receptor α protein in neuronal processes of cultured hippocampal neurons. Neuro endocrinology,2000,71:34~42
    Con G Giav A,Stell JH,et al. Localization of immunoreactivity for calcitonin gene-related peptide in the rat anterior pituitary during ontogeny and gonadal steroid manipulations and detection of its messenger ribonucleic acid. Endocrinology,1990,127: 2618
    Couse J, Hewitt S,Bunch D,et al. Postnatal sex recversal of the ovaries in mice lacking estrogen receptors alpha and beta. Science,1999,286: 2328~2331.
    Crino PB, Eberwine J. Molecular characterization of the dendritic growth cone: regulated mRNA transport and local protein synthesis. Neuron,1996,17:1173~1187
    Daniel JM, Roberts SL, Dohanich GP. Effects of ovarian hormones and environment on radial maze and water maze performance of female rats. Physiol Behav,1999,66:11~20
    Datta SR, Brunet A, Greenberg ME. Cellular survival: a play in three Akts. Genes Dev 1999,13:2905~2927
    Debeljuk L,Bandera R,Bartke A. Effect of progesterone on tackykinin concentrations in the hypothalamus and anterior pituitary of female Siberian hamsters. Peptides,1999,20 (3):353
    Debeljuk L,Lasaga M.Modulationof the hypothalamo-pituitary-gonadal axis and the pineal gland by neurokinin A,neuropeptide Kand neuropeptide gamma. Peptides, 1999, 20(2):285
    Dechering K,Boersma C,Mosselaqman S. Estrogen receptors alpha and beta: Two receptors of a kind?. Current Med Chem,2000,7(5):561~576.
    Dubal DB,Kashon ML,Pettigrew LC,et al. Estradiol protects against ischemic injury. J Cereb Blood Flow Metab,1998,18(11):1253~1258
    Eichenbaum H, Otto T. The hippocampus – what does it do? Behav Neural Biol, 1992, 57:2~36
    Ellerkmann E,Nagy GM,Frawley LS. α-Melanocyte-stimulating hormone is mammotrophic factor
    
    
    reased by neurointermediate lobe cells after estrogen treatment. Endocrinology,1992, 130(1):133~138
    Enmark E, Pelto-Huikko M, Grandien K, et al. Human estrogen receptor beta-gene structure, chromosomal localization, and expression pattern. J Clin Endocrinol Metab, 1997,82:4258 ~4265.
    Fader AJ, Hendricson AW, Dohanich GP. Estrogen improves performance of reinforced T-maze alternation and prevents the amnestic effects of scopolamine administered systemically or intrahippocampally. Neurobiol Learn Memory,1998,69:225~240
    Falk L,Nordberg A,Seiger A, et al. The alpha 7nicotinic receptors in human fetal brain and spinal cord. J Neurochem,2002,80(3):457~465
    Falkenstein E, Tillmann HC, Christ M, et al. Multiple actions of steroid hormones-A focus on rapid, nongenomic effects. Pharmacol Rev,2000,52:513~556.
    Feng J, Yan Z, Ferreira A, et al. Spinophilin regulates the formation and function of dendritic spines. Proc Natl Acad Sci USA ,2000,97:9287~9292
    Ferguson SA, Scallet AC, Flynn KM, et al. Developmental neurotoxicity of endocrine disrupters: focus on estrogens. Neurotoxicology,2000,21:947~956.
    Fischette C, Biegon A, McEwen BS. Sex steroid modulation of the serotonin behavioral syndrome. Life Sci,1984,35:1197~1206
    Foy MR, Xu J, Xie X, et al. 17β-estradiol enhances NMDA receptor-mediated EPSPs and long-term potentiation. J Neurophysiol,1999,81:925~929
    Frankfurt M, Gould E, Wolley C, et al. Gonadal steroids modify dendritic spine density in ventromedial hypothalamic neurons: a Golgi study in the adult rat. Neuroendocrin- ology,1990,51:530~535
    Gao F-B. Messenger RNAs in dendrites: localization, stability, and implications for neuronal function. BioEssays,1998,20:70~78
    Gazzaley AH, Benson DL, Huntley GW, et al. Differential subcellular regulation of NMDAR1protein and mRNA in dendrites of dentate gyrus granule cells after perforant path transection. J Neurosci,1997,17: 2006~2017
    Gazzaley AH, Weiland NG, McEwen BS, et al. Differential regulation of NMDAR1 mRNA and protein by estradiol in the rat hippocampus. J Neurosci,1996,16:6830~6838.
    Gehm BD,McAndrews JM,Jordan VC,et al. EGF activates highly selective estrogen- responsive reporter plasmids by an ER-independent pathway. Mol Cell Endocrinol, 2000, 159(1-2):53~62.
    Gibbs RB. Expression of estrogen receptor-like immunoreactivity by different subgroups of basal forebrain cholinergic neurons in gonadectomized male and female rats. Brain Res,1996,720:61~68
    Gibbs RB. Impairment of basal forebrain cholinergic neurons associated with aging and long-term loss of ovarian funtion. Exp Neurol,1998,151:289~302
    Gingras A-C, Raught B, Sonenberg N. eIF4 initiation factors: Effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem,1999,68: 913~963
    Gould E,Woolley CS,Frankfurt M, et al. Gonadal steroids regulate dendritic spine density in hippocempal pyramidal cells in dulthood. J Neurosci,1990,10(4):1286~1291
    Goy R, McEwen BS. Sexual Differentiation of the Brain. Cambridge: MIT Press,1980
    Green PS, Bishop J, Simpkins JW. 17β-Estradiol exerts neuroprotective effects on SK-N-SH cells. J
    
    
    Neurosci,1997,17:511~515
    Gu Q, Korach KS, Moss RL. Rapid action of 17β-estradiol on kainate-induced currents in hippocampal neurons lacking intracellular estrogen receptors. Endocrinology,1999, 140: 660~666
    Gundlah C, Pecins-Thompson M, Schutzer WE, et al. Ovarian steroid effects on serotonin 1A, 2A and 2C receptor mRNA in macaque hypothalamus. Mol Brain Res, 1999,63:325~339
    Hall JM,Mcdonnell DP. The estrogen receptorβ-isoform (ERβ)of the human estrogen receptor modulates ERα transcriptional activity and is a key regulator of the cellular response to estrogen and antiestrogens. Endorcrinology,1999,140(12):556~5578
    Hartikka J,Hefti F.Developmen of septal cholinergic neurons in culture:planting density and glial cells modulate effects of NGF on survival fiber growth,and expression of transmitter-specific enzymes.J Neurosci,1998,8:2967~2985
    Hawkins MB, Thornton JW, Crews D, et al. Identification of a third distinct estrogen receptor and reclassification of estrogen receptors in teleosts. Proc Natl Acad Sci USA,2000,97:10751~10756.
    Higley JD, Linnoila M. Low central nervous system serotonergic activity is traitlike and correlates with impulsive behavior. Ann NY Acad Sci,1997,836:39~56
    Honda K, Sawada H, Kihara T, et al. Phosphatidylinositol 3-kinase mediates neuro- protection by estrogen in cultured cortical neurons. J Neurosci Res,2000,60:321~327.
    Horner CH. Plasticity of the dendritic spine. Progr Neurobiol,1993,41:281~321
    Hrabovszky E, Kallo I, Hajszan T, et al. Expression of estrogen receptor-βmessenger ribonucleic acid in oxytocin and vasopressin neurons of the rat supraoptic and paraventricular nuclei. Endocrinology,1998, 139:2600~2604
    Jacobs BL. Serotonin, motor activity and depression-related disorders. Am Sci,1994,82: 456~463
    Jacobson L, Sapolsky R. The role of the hippocampus in feedback regulation of the hypothalamic-pituitary- adrenocortical axis. Endocr Rev,1991,12:118~134
    Jensen E, Jacobson H. Basic guides to the mechanism of estrogen action. Rec Progr Horm Res,1962 ,18: 387~408
    Ju G,Liu SJ,Zhang X. peptidergic innervation of the pars dietalis of the adenohypophysis. Neuroendocrinology,1991,127:2168
    Ju G,Liu SJ. Substrance P-immunoreactive nerve fibers in the pars distals of the anterior pituitary of macaques. J Chem Neuroanat,1989,2:349
    Karas RH, Hodgin JB,Kwoun M,et al. Estrogen inhibits the vascular injury response in estrogen receptor beta-deficient famale mice. Proc Natl Acad Sci USA,1999,96: 15133~15136.
    Katzenellenbogen BS,Katzenellbogen JM. Estrogen receptor transcription and transactivation: Estrogen receptor alpha and estrogen receptor beta:regulation by selective estrogen receptor modulators and importance in breast cancer. Breast Cancer Res,2000, 2(5):335~344.
    Kawamoto Y,Nakamura S,Nakano S,et al. Immunohistochemical localization of brain-derived neurotrophic factor in adult rat brain. Neuroscience,1996,74:1209~1226
    Kelly M, Moss R, Dudley C. The effects of microelectrophoretically applied estrogen, cortisol and acetylcholine on medial preoptic-septal unit activity throughout the estrous cycle of the female rat. Exp Brain Res,1977,30:53~64
    Kelly MJ and Wagner EJ. Estrogen modulation of G-protein-coupled receptors. Trends Endocrinol
    
    
    Metab,1999,10:369~374.
    Kelly MJ, Levin ER. Rapid actions of plasma membrane estrogen receptors. Trends Endocrinol Metab,2001, 12:152~156
    Kelly MJ, Wagner EJ, Estrogen modulation of G-protein-coupled receptors. Trends Endocrinol Metab,1999 10:369~374
    Kimura D. Sex differences in the brain. Sci Am,1992,267:119~125
    Knoblauch R,Garabedian MJ. Role for Hsp90-associated cochaperone p23 in estrogen receptor signol transduction.Mol Cell Biol,1999,19(5):3748~3759.
    Kruijver FP,Swaad DF. Sex hormone receptors are present in the human suprachiasmatic nucleus. Neuroendocrinology, 2002,75(5):296~305.
    Kuiper GG, Carlsson B, Grandien K, et al. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology, 1997,138: 863~870.
    Kuiper GG, Enmark E, Pelto-Huikko M, et al. Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci USA,1996,93:5925~5930.
    Kuiper GG, Lemmen JG, Carlsson B, et al. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology,1998,139:4252~4263.
    Kuiper GG, Carlsson B, Grandien K, et al. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors α and β Endocrinology,1997, 138: 863~870
    Kuiper GG, Shughrue PJ, Merchenthaler I, et al. The estrogen receptor β subtype: a novel mediator of estrogen action in neuroendocrine systems. Front Neuroendocrinol, 1998, 19:253~286
    Kuiper GG,Enmark E,Pelto-Huikko M,et al. Cloning of a novel estrogen receptor expressed in rat prostate and ovary. Proc Natl Acad Sci USA.1996,93:5925~5930.
    Lauterborn JC,Isackso PJ,Call CM. Cellular location of NGF and NT-3 mRNA in postnatal rat forebrain. Mol Cell Neurosci,1994,Feb,5(1):46~62
    Lecce G,Meduri G,Ancelin M,et al. Presence of estrogen receptorβ in the human endometirum through the cycle:expression in glandular,stromal,and vascular cells. J Clin Endocrinol Metab,2001,86(3): 1379~1386.
    Lee SJ, McEwen BS. Neurotrophic and neuroprotective actions of estrogens and their therapeutic implications. Annu Rev Pharmacol Toxicol,2001,41:569~591
    Levin ER. Cellular functions of the plasma membrane estrogen receptor. Trends Endocrinol Metab,1999, 10:374~377.
    Liggins J, Bluck LJ, Runswick S, et al. Daidzein and genistein contents of vegetables. Br J Nutr,2000, 84:717~725.
    Liu G,Schwartz JA,Brooks SC. Estrogen receptor protects p53 from deactivation by human bouble minute 2. Cancer Res,2000,60(7):1810~1814.
    Louis JP,Ann SP,Anna JC. A sterotaxic atlas of the rat brain. Plenum Press. New York and London.1979
    Luine VN, McEwen BS. Effects of an estrogen antagonist on enzyme activities and 3H estradiol nuclear binding in uterus, pituitary and brain. Endocrinology,1977,100:903~910
    Luine VN, Richards ST, Wu VY, et al. Estradiol enhances learning and memory in a spatial memory
    
    
    task and effects levels of monoaminergic neurotransmitters. Horm Behav,1998, 34:149~162
    Maruyama K, Endoh H, Sasaki-Iwaoka H, et al. A novel isoform of rat estrogen receptor beta with 18 amino acid insertion in the ligand binding domain as a putative dominant negative regular of estrogen action. Biochem Biophys Res Commun,1998, 246:142~147
    Matthews J, Celius T, Halgren R, et al. Differential estrogen receptor binding of estrogenic substances: a species comparison. J Steroid Biochem Mol Biol,2000,74: 223~234.
    Mattson MP, Robinson N, Guo Q. Estrogens stabilize mitochondrial function and protect neural cells against the pro-apoptotic action of mutant presenilin-1. NeuroReport,1997, 8:3817~3821
    Maus M, Homburger V, Bockaert J, et al. Pretreatment of mouse striatal neurons in primary culture with 17β-estradiol enhances the pertussis toxin-catalyzed ADPribosylation of Gαo,i protein subunits. J Neurochem,1990,55:1244~1251
    McEwen Bruce. Estrogen action throughout the brain. Recent Prog Horm Res,2002, 57:357
    McEwen BS, Akama K, Alves S, et al. Tracking the estrogen receptor in neurons: Implications for estrogen-induced synapse formation. Proc Natl Acad Sci USA,2001, 98:7093~7100
    McEwen BS, Alves SH. Estrogen actions in the central nervous system. Endocr Rev,1999b,20: 279~307
    McEwen BS, Tanapat P, Weiland NG. Inhibition of dendritic spine induction on hippocampal CA1 pyramidal neurons by a non-steroidal estrogen antagonist in female rats. Endocrinology, 1999a,140:1044~1047
    McEwen BS. Gonadal steroid influences on brain development and sexual differentiation. In: Greep R, ed. Reproductive Physiology IV. University Park, MD: University Park Press,1983, 99~145
    Meisel R, Dohanich G, McEwen BS, et al. Antagonism of sexual behavior in female rats by ventromedial hypothalamic implants of antiestrogen. Neuroendocrinology,1987, 45:201~207
    Mermelstein PG, Becker JB, Surmeier DJ. Estradiol reduces calcium currents in rat neostriatal neurons via a membrane receptor. J Neurosci,1996,16:595~604
    Miksicek RJ. Interaction of naturally occurring nonsteroidal estrogens with expressed recombinant human estrogen receptor. J Steroid Biochem Mol Biol,1994,49:153~160.
    Milner TA, McEwen BS, Hayashi S, et al. Ultrastructural evidence that hippocampal alpha estrogen receptors are located at extranuclear sites. J Comp Neurol,2001, 429:355~371
    Mitchner NA,Garlick Cben-Jonathan N. Cellular distribution and gene regulation of estrogen receptors α and βin the rat pituitary gland. Endocrinology,1998,139(9): 3976~3983
    Mize AL, Poisner AM, Alper RH. Estrogens act in rat hippocampus and frontal cortex to produce rapid, receptor-mediated decreases in serotonin 5-HT1A receptor function. Neuroendocrinology,2001,73:166~174
    Mosselman S,Polman J,Dijkma R. ERβ:identification and characterization of a novel human estrogen receptor. FEBS Lett,1996,392:49~53.
    Motta M,Fraschini F,Giuliani G. The central nerveous system estrogen and puberty. Endocrinology, 1968,83:1101~1104
    Muramatsu M,Inoue S. Estrogen receptors: How do they control reproductive and nonreproductiv functions?. Biochem Biophys Res Commun,2000,270(1):1~10.
    Murphy DD, Cole NB, Greenberger V, et al. Estradiol increases dendritic spine density by reducing
    
    
    GABA neurotransmission in hippocampal neurons. J Neurosci,1998a, 18:2550~2559
    Murphy DD, Cole NB, Segal M. Brain-derived neurotrophic factor mediates estradiol-induced dendritic spine formation in hippocampal neurons. Proc Natl Acad Sci USA ,1998b, 95:11412~11417
    Murphy DD, Segal M. Morphological plasticity of dendritic spines in central neurons is mediated by activation of cAMP response element binding protein. Proc Natl Acad Sci USA,1997,94:1482~1487
    Murphy DD, Segal M. Regulation of dendritic spine density in cultured rat hippocampal neurons by steroid hormones. J Neurosci,1996,16:4059~4068
    Nabekura J, Oomura Y, Minami T, et al. Mechanism of the rapid effect of 17β-estradiol on medial amygdala neurons. Science,1986,233:226~228
    Nadal A, Ropero AB, Laribi O, et al. Nongenomic actions of estrogens and xenoestrogens by binding at a plasma membrane receptor unrelated to estrogen receptor alpha and estrogen receptor beta. Proc Natl Acad Sci USA,2000,97:11603~11608.
    Naftolin F. Brain aromatization of androgens. J Reprod Med,1994,39:257~261
    Nie W,Zhang YX,Zhou WX. Effect of 17β-estradiol on the expression of derived neurotrophic factor and neurotrophin-3 in the hippocampus of ovariectomized mice. Chinese Journal of Pharmacology and Toxiicology,2002,16(4):246~249
    Nilsson R. Endocrine modulators in the food chain and environment. Toxicol Pathol,2000,28: 420~431.
    Nonner D,Brarrett ER,Barrett JN.Neurotrophin effects on survival and expression of cholinergic properties in cultured rat septal neurons under normal and stress conditions.J Neurosci,1996,16: 6665~6675
    Nonner D,Brass BJ,Barrett ER,et al.Reversibility of nerve growth factors enchancement of cholin acetyltransferase activity in cultured embryonic rat septum.Exp Neurol,1993, 122:1 96~208
    Nonner D,Temple S,Barrett JN.Rat embryonic septal neurons survive and express cholinergic properties in isolation and without nerve growth factor.Brain Res Dev Brain Res,1996,70: 197~205
    Norfleet AM, Thomas ML, Gametchu B,et al. Estrogen receptor-α detected on the plasma membrane of aldehyde-fixed GH3/B6/F10 rat pituitary tumor cells by enzyme- linked immuno cytochemistry. Endocrinology,1999,140:3805~3814.
    O’Neal MF, Means LW, Poole MC, et al. Estrogen affects performance of ovariec- tomized rats in a two-choice water-escape working memory task. Psychoneuro- endocrinology, 1996,21: 51~65
    Osterlund MK, Halldin C, Hurd YL. Effects of chronic 17β-estradiol treatment on the serotonin 5-HT1A receptor mRNA and binding levels in the rat brain. Synapse, 2000,35:39~44
    Osterlund MK, Overstreet DH, Hurd YL. The flinders sensitive line rats, a genetic model of depression, show abnormal serotonin receptor mRNA expression in the brain that is reversed by 17β-estradiol. Mol Brain Res,1999,74:158~166
    Paech K, Webb P, Kuiper GG, et al. Differential ligand activation of estrogen receptors ER alpha and ER beta at AP1 sites. Science (Wash DC),1997,277:1508~1510.
    Paech K, Webb P, Kuiper GG, et al. Differential ligand activation of estrogen receptors ERα and ERβ at AP1 sites. Science,1997,277:1508~1510
    
    Palanza P, Morellini F, Parmigiani S, et al. Prenatal exposure to endocrine disrupting chemicals: effects on behavioral development. Neurosci Biobehav Rev,1999,23:1011~1027.
    Pamela J,MeMillan PJ,Singer CA,et al. The effects of ovariectomy and estrogen replacement on trkA and cholineacetyltransferase mRNA expression in the basal forebrain of the adult female Sprague-Dawley rat. J Neurosci,1996,16:1860~1865
    Pelletier G,El-Alfy M. Immunocytochemical localization of estrogen receptors αand β in the human reproductive organs. J Clin Endocrinol Metab, 200085(12):4835~4840.
    Pettersson K, Grandien K, Kuiper GGJM, et al. Mouse estrogen receptorβ forms estrogen response element-binding heterodimers with estrogen receptor α. Mol Endocrinol,1997,11: 1486~1496
    Pfaff DW. Estrogens and Brain Function. New York: Springer-Verlag,1980
    Phillips RG, LeDoux JE. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci,1992,106:274~285
    Pierce JP, van Leyen K, McCarthy JB. Translocation machinery for synthesis of integral membrane and secretory proteins in dendritic spines. Nature Neurosci,2000,3:311~313
    Price RH Jr, Lorenzon N, Handa RJ. Differential expression of estrogen receptor beta splice variants in rat brain: identification and characterization of a novel variant missing exon 41. Mol Brain Res,2000,80:260~268
    Raap DK, DonCarlos L, Garcia F, et al. Estrogen desensitizes 5-HT1A receptors and reduces levels of Gz, Gi1 and Gi3 proteins in the hypothalamus. Neuropharmacology, 2000,39: 1823~1832
    Razandi M, Pedram A, Greene GL, et al. Cell membrane and nuclear estrogen receptors (ERs) originate from a single transcript: studies of ERα and ERβ expressed in Chinese hamster ovary cells. Mol Endocrinol,1999,13:307~319.
    Resnick EM,Schreihofer DA,Periaamy A,et al. Truncated estrogen receptor product- 1suppresses estrogen receptor transactivation by dimerization with estrogen receptors alpha and beta. J Biol Chem,2000,275(10): 7158~7166.
    Rissman EF,Heck Al,Leonard JE,et al. Disruption of estrogen receptor beta gene impairs spatial learning in female mice. Proc Natl Acad Sci USA,2002,99(6): 3996~4000.
    Robyr D,Wolffe AP,Wahli W. Nuclear hormone receptor coregulators in action: diversityfor shared tasks. Mol Endocrinol,2000,14(3):329~347.
    Rollerova E,Urbancikova M. Intracelluar estrogen receptor s, their characterization and function. Endocr Regul,2000,34(4):203~218.
    Rosselli M, Reinhart K, Imthurn B, et al. Cellular and biochemical mechanisms by which environmental oestrogens influence reproductive function. Hum Reprod Update, 2000,6: 332~350.
    Roy E, MacLusky N, McEwen BS. Antiestrogen inhibits the induction of progestin receptors by estradiol in the hypothalamus, pituitary and uterus. Endocrinology,1979, 104:1333~1336
    Rubinow DR, Schmidt PJ, Roca CA. Estrogen-serotonin interactions: Implications for affective regulation. Biol Psychiat,1998,44:839~850
    Rudick CN, Woolley CS. Estradiol induces a phasic Fos response in the hippocampal CA1 and CA3 regions of adult female rats. Hippocampus,2000,10:274~283
    Ruehlmann DO, Steinert JR, Valverde MA, et al. Environmental estrogenic pollutants induce acute vascular relaxation by inhibiting L-type Ca2+channels in smooth muscle cells. FASEB
    
    
    J,1998,12:613~619.
    Sagreves R. Estrogen therapy for postmenopausal symptoms and prevention of osteoporosis. J Clin Pharmacol,1995,35(9suppl),2s
    Saji S,Jensen EV,Nilsson S,et al. Estrogne receptor αand β in the rodent mammary gland. Proc Natl Acad Sci USA,2000,97(1):337~342.
    Sapolsky R. Stress, the aging brain and the mechanisms of neuron death. Cambridge: MIT Press,1992,1~423
    Schmidt BM, Gerdes D, Feuring M, et al. Rapid, nongenomic steroid actions: a new age? Front Neuroendocrinol,2000,21:57~94.
    Setchell KD, Zimmer-Nechemias L, Cai J, et al. Isoflavone content of infant formulas and the metabolic fate of these phytoestrogens in early life. Am J Clin Nutr,1998,68:1453~S1461.
    Sherwin BB, Tulandi T. “Add-back” estrogen reverses cognitive deficits induced by a gonadotropin-releasing hormone agonist in women with leiomyomata uteri. J Clin Endocrinol Metab,1996,81:2545~2549
    Shughrue PJ, Lane MV, Merchenthaler I. Biologically active estrogen receptor-α: evidence from in vivo autoradiographic studies with estrogen receptor α-knockout mice. Endocrinology,1999, 140:2613~2620
    Shughrue PJ, Merchenthaler I. Distribution of estrogen receptor α immunoreactivity in the rat central nervous system. J Comp Neurol,2001,43:64~81
    Shughrue PJ, Merchenthaler I. Evidence for novel estrogen binding sites in the rat hippocampus. Neuroscience, 2000,99:605~612
    Shughrue PJ,Lane MV,Merchenthaler I. Comparative distribution of estrogen receptor-alpha and beta mRNA in the rat central nervous system. J Comp Neurol,1997, 388(4):507~525
    Singer CA, Figueroa-Masot XA, Batchelor RH,et al. The mitogenactivated protein kinase pathway mediates estrogen neuroprotection after glutamate toxicity in primary cortical neurons [in process citation]. J Neurosci,1999,19:2455~2463.
    Singh M, Se′ta′ lo′ G Jr, Guan XP, et al. Estrogeninduced activation of mitogen- activated protein kinase in cerebral cortical explants: convergence of estrogen and neurotrophin signaling pathways. J Neurosci,1999, 19:1179~1188.
    Singh M, Setalo G, Guan X, et al. Estrogeninduced activation of the mitogen-activated protein kinase cascade in the cerebral cortex of estrogen receptor-alpha knock-out mice. J Neurosci,2000,20:1694~1700.
    Sobreviela T,Clary DO,Reichardt LF,et al. Trk-A-immunoreactive profiles in the central nervous system: Colocalization with neurons containing p75 nerve growth factor receptor,choline acetyltransferase and serotonin. J Comp Neurol,1994,350: 587~611
    Solum DT, Handa RJ. Localization of estrogen receptor alpha (ERα) in pyramidal neurons of the developing rat hippocampus. Devel Brain Res,2001,128:165~175
    Stumpf WE, Sar M. Steroid hormone target sites in the brain: the differential distribution of estrogen, progestin, androgen and glucocorticosteroid. J Steroid Biochem,1976,7:1163~1170
    Sumner BEH, Fink G. Testosterone as well as estrogen increases serotonin2A receptor mRNA and binding site densities in the male rat brain. Mol Brain Res,1998,59:205~214
    
    Suresh BP,Jenny MJ,Robert DK. Treatment of rats with 17β-estradiol or relaxin rapidly inhibits uterine estrogen receptor β1 and β2 messenger ribonucleic acid levels. Biology of Reproduction, 2002,67:1919~1926
    Terasawa E, Timiras P. Electrical activity during the estrous cycle of the rat: cyclic changes in limbic structures. Endocrinology,1968,83:207~216
    Teyler T, Vardaris R, Lewis D, et al. Gonadal steroids: effects on excitability of hippocampal pyramidal cells. Science,1980,209:1017~1019
    Tiedge H, Bloom FE, Richter D. Colloquium: molecular kinesis in cellular function and plasticity. Proc Natl Acad Sci USA,2001,98:6997~7106
    Toran-Allerand CD, Singh M, and Setalo GJ. Novel mechanisms of estrogen action in the brain: new players in an old story. Front Neuroendocrinol,1999,20:97~121.
    Toran-Allerand CD,Miranada RC,Bentham WD,et al. Estrogen receptor colocalize with low-affinity nerve growth factor receptors in cholinergic neurons of the basal forbrain. Proc. Natl Acad Sci USA,1992,89:4668~4672
    Toran-Allerand CD. Mechanisms of estrogen action during neural development: mediation by interactions with the neurotrophins and their receptors? J Steroid Biochem Mol Biol,1996,56: 69~178.
    Tyler CR, Jobling S, and Sumpter JP. Endocrine disruption in wildlife: a critical review of the evidence. Crit Rev Toxicol,1998,28:319~361.
    Vicario-Abejon C, Collin C, McKay RDG, et al. Neurotrophins induce formation of functional excitatory and inhibitory synapses between cultured hippocampal neurons. J Neurosci, 1998,18:7256~7271
    Wang J, Green PS, Simpkins JW. Estradiol protects against ATP depletion, mitochondrial membrane potential decline and the generation of reactive oxygen species induced by 3-nitroproprionic acid in SK-N-SH human neuroblastoma cells. J Neurochem,2001, 77:804~811
    Warren SG, Humphreys AG, Juraska JM, et al. LTP varies across the estrous cycle: enhanced synaptic plasticity in proestrus rats. Brain Res,1995,703:26~30
    Watson CS, Norfleet AM, Pappas TC, et al. Rapid actions of estrogens in GH3/B6 pituitary tumor cells via a plasma membrane version of estrogen receptor-α. Steroids, 1999,64:5~13.
    Weiland NG, Orikasa C, Hayashi S, et al. Distribution and hormone regulation of estrogen receptor immunoreactive cells in the hippocampus of male and female rats. J Comp Neurol,1997,388:603~612
    Weiland NG. Estradiol selectively regulates agonist binding sites on the N-methyl- D-aspartate receptor complex in the CA1 region of the hippocampus. Endocrinology,1992,131:662~668
    Wells DG, Richter JD, Fallon JR. Molecular mechanisms for activity-regulated protein synthesis in the synapto-dendritic compartment. Curr Opin Neurobiol,2000,10:132~137
    Westlund NK,Chnielowie S,Childs VG. Somatostin fibers and their relationship to specific cell types(GH and TSH) in the rat anterior pituitary. Peptides,1983,4:557
    Williams CL, Meck WH. The organizational effects of gonadal steroids on sexually dimorphic spatial ability. Psychoneuroendocrinology,1991,16:155~176
    Wise PM, Dubal DB, Wilson ME, et al. Estrogens: trophic and protective factors in the adult brain.
    
    
    Front Neuroendocrinol,2001,22:33~66.
    Wise PM,Dubal DB,Wilson ME,et al. Minireview:neuroprotective effects of estrogen-new insights into mechanism of action. Endocrinology,2001,142(3):969~973
    Witelson SF, Glezer II, Kigar DL. Women have greater density of neurons in posterior temporal cortex. J Neurosci,1995,15:3418~3428
    Wong JK and Belcher SM. Estrogen-induced activation of the mitogenactivated protein kinase pathway in cultured cerebellar neurons. Soc Neurosci Abstr,2000,26:115.2.
    Wong M, Moss RL. Long-term and short-term electrophysiological effects of estrogen on the synaptic properties of hippocampal CA1 neurons. J Neurosci,1992,12:3217~3225
    Woolley C, Gould E, Frankfurt M, et al. Naturally occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons. J Neurosci,1990,10:4035~4039
    Woolley C, McEwen BS. Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat. J Neurosci,1992,12:2549~2554
    Woolley C, McEwen BS. Estradiol regulates hippocampal dendritic spine density via an N-methyl-D-aspartate receptor dependent mechanism. J Neurosci,1994,14:7680~7687
    Woolley C, McEwen BS. Roles of estradiol and progesterone in regulation of hippocampal dendritic spine density during the estrous cycle in the rat. J Comp Neurol,1993,336:293~306
    Woolley CS, Weiland NG, McEwen BS, et al. Estradiol increases the sensitivity of hippocampal CA1 pyramidal cells to NMDA receptor-mediated synaptic input: correlation with dendritic spine density. J Neurosci, 1997,17:1848~1859
    Woolley CS. Effects of estrogen in the CNS. Curr Opin Neurobio,1999,19:349~354.
    Yankova M, Hart SA, Woolley CS. Estrogen increases synaptic connectivity between single presynaptic inputs and multiple postsynaptic CA1 pyramidal cells: a serial electron- microscopic study. Proc Natl Acad Sci USA,2001,98:3525~3530
    Yawo H. Involvement of cGMP-dependent protein kinase in adrenergic potentiation of transmitter release from the calyx-type presynaptic terminal. J Neurosci,1999,19: 5293~5300.
    Ziv NE, Smith SJ, Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron,1996,17:91~102

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700